blob: a3e69ecafd2750f6674929f6843b840c8bc49fe4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Universal Flash Storage Host controller Platform bus based glue driver
* Copyright (C) 2011-2013 Samsung India Software Operations
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <ufs/ufshcd.h>
#include "ufshcd-pltfrm.h"
#include <ufs/unipro.h>
#define UFSHCD_DEFAULT_LANES_PER_DIRECTION 2
static int ufshcd_parse_clock_info(struct ufs_hba *hba)
{
int ret = 0;
int cnt;
int i;
struct device *dev = hba->dev;
struct device_node *np = dev->of_node;
const char *name;
u32 *clkfreq = NULL;
struct ufs_clk_info *clki;
int len = 0;
size_t sz = 0;
if (!np)
goto out;
cnt = of_property_count_strings(np, "clock-names");
if (!cnt || (cnt == -EINVAL)) {
dev_info(dev, "%s: Unable to find clocks, assuming enabled\n",
__func__);
} else if (cnt < 0) {
dev_err(dev, "%s: count clock strings failed, err %d\n",
__func__, cnt);
ret = cnt;
}
if (cnt <= 0)
goto out;
if (!of_get_property(np, "freq-table-hz", &len)) {
dev_info(dev, "freq-table-hz property not specified\n");
goto out;
}
if (len <= 0)
goto out;
sz = len / sizeof(*clkfreq);
if (sz != 2 * cnt) {
dev_err(dev, "%s len mismatch\n", "freq-table-hz");
ret = -EINVAL;
goto out;
}
clkfreq = devm_kcalloc(dev, sz, sizeof(*clkfreq),
GFP_KERNEL);
if (!clkfreq) {
ret = -ENOMEM;
goto out;
}
ret = of_property_read_u32_array(np, "freq-table-hz",
clkfreq, sz);
if (ret && (ret != -EINVAL)) {
dev_err(dev, "%s: error reading array %d\n",
"freq-table-hz", ret);
return ret;
}
for (i = 0; i < sz; i += 2) {
ret = of_property_read_string_index(np, "clock-names", i/2,
&name);
if (ret)
goto out;
clki = devm_kzalloc(dev, sizeof(*clki), GFP_KERNEL);
if (!clki) {
ret = -ENOMEM;
goto out;
}
clki->min_freq = clkfreq[i];
clki->max_freq = clkfreq[i+1];
clki->name = devm_kstrdup(dev, name, GFP_KERNEL);
if (!clki->name) {
ret = -ENOMEM;
goto out;
}
if (!strcmp(name, "ref_clk"))
clki->keep_link_active = true;
dev_dbg(dev, "%s: min %u max %u name %s\n", "freq-table-hz",
clki->min_freq, clki->max_freq, clki->name);
list_add_tail(&clki->list, &hba->clk_list_head);
}
out:
return ret;
}
static bool phandle_exists(const struct device_node *np,
const char *phandle_name, int index)
{
struct device_node *parse_np = of_parse_phandle(np, phandle_name, index);
if (parse_np)
of_node_put(parse_np);
return parse_np != NULL;
}
#define MAX_PROP_SIZE 32
int ufshcd_populate_vreg(struct device *dev, const char *name,
struct ufs_vreg **out_vreg, bool skip_current)
{
char prop_name[MAX_PROP_SIZE];
struct ufs_vreg *vreg = NULL;
struct device_node *np = dev->of_node;
if (!np) {
dev_err(dev, "%s: non DT initialization\n", __func__);
goto out;
}
snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", name);
if (!phandle_exists(np, prop_name, 0)) {
dev_info(dev, "%s: Unable to find %s regulator, assuming enabled\n",
__func__, prop_name);
goto out;
}
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg)
return -ENOMEM;
vreg->name = devm_kstrdup(dev, name, GFP_KERNEL);
if (!vreg->name)
return -ENOMEM;
if (skip_current) {
vreg->max_uA = 0;
goto out;
}
snprintf(prop_name, MAX_PROP_SIZE, "%s-max-microamp", name);
if (of_property_read_u32(np, prop_name, &vreg->max_uA)) {
dev_info(dev, "%s: unable to find %s\n", __func__, prop_name);
vreg->max_uA = 0;
}
out:
*out_vreg = vreg;
return 0;
}
EXPORT_SYMBOL_GPL(ufshcd_populate_vreg);
/**
* ufshcd_parse_regulator_info - get regulator info from device tree
* @hba: per adapter instance
*
* Get regulator info from device tree for vcc, vccq, vccq2 power supplies.
* If any of the supplies are not defined it is assumed that they are always-on
* and hence return zero. If the property is defined but parsing is failed
* then return corresponding error.
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_parse_regulator_info(struct ufs_hba *hba)
{
int err;
struct device *dev = hba->dev;
struct ufs_vreg_info *info = &hba->vreg_info;
err = ufshcd_populate_vreg(dev, "vdd-hba", &info->vdd_hba, true);
if (err)
goto out;
err = ufshcd_populate_vreg(dev, "vcc", &info->vcc, false);
if (err)
goto out;
err = ufshcd_populate_vreg(dev, "vccq", &info->vccq, false);
if (err)
goto out;
err = ufshcd_populate_vreg(dev, "vccq2", &info->vccq2, false);
out:
return err;
}
static void ufshcd_init_lanes_per_dir(struct ufs_hba *hba)
{
struct device *dev = hba->dev;
int ret;
ret = of_property_read_u32(dev->of_node, "lanes-per-direction",
&hba->lanes_per_direction);
if (ret) {
dev_dbg(hba->dev,
"%s: failed to read lanes-per-direction, ret=%d\n",
__func__, ret);
hba->lanes_per_direction = UFSHCD_DEFAULT_LANES_PER_DIRECTION;
}
}
/**
* ufshcd_parse_clock_min_max_freq - Parse MIN and MAX clocks freq
* @hba: per adapter instance
*
* This function parses MIN and MAX frequencies of all clocks required
* by the host drivers.
*
* Returns 0 for success and non-zero for failure
*/
static int ufshcd_parse_clock_min_max_freq(struct ufs_hba *hba)
{
struct list_head *head = &hba->clk_list_head;
struct ufs_clk_info *clki;
struct dev_pm_opp *opp;
unsigned long freq;
u8 idx = 0;
list_for_each_entry(clki, head, list) {
if (!clki->name)
continue;
clki->clk = devm_clk_get(hba->dev, clki->name);
if (IS_ERR(clki->clk))
continue;
/* Find Max Freq */
freq = ULONG_MAX;
opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, &freq, idx);
if (IS_ERR(opp)) {
dev_err(hba->dev, "Failed to find OPP for MAX frequency\n");
return PTR_ERR(opp);
}
clki->max_freq = dev_pm_opp_get_freq_indexed(opp, idx);
dev_pm_opp_put(opp);
/* Find Min Freq */
freq = 0;
opp = dev_pm_opp_find_freq_ceil_indexed(hba->dev, &freq, idx);
if (IS_ERR(opp)) {
dev_err(hba->dev, "Failed to find OPP for MIN frequency\n");
return PTR_ERR(opp);
}
clki->min_freq = dev_pm_opp_get_freq_indexed(opp, idx++);
dev_pm_opp_put(opp);
}
return 0;
}
static int ufshcd_parse_operating_points(struct ufs_hba *hba)
{
struct device *dev = hba->dev;
struct device_node *np = dev->of_node;
struct dev_pm_opp_config config = {};
struct ufs_clk_info *clki;
const char **clk_names;
int cnt, i, ret;
if (!of_find_property(np, "operating-points-v2", NULL))
return 0;
if (of_find_property(np, "freq-table-hz", NULL)) {
dev_err(dev, "%s: operating-points and freq-table-hz are incompatible\n",
__func__);
return -EINVAL;
}
cnt = of_property_count_strings(np, "clock-names");
if (cnt <= 0) {
dev_err(dev, "%s: Missing clock-names\n", __func__);
return -ENODEV;
}
/* OPP expects clk_names to be NULL terminated */
clk_names = devm_kcalloc(dev, cnt + 1, sizeof(*clk_names), GFP_KERNEL);
if (!clk_names)
return -ENOMEM;
/*
* We still need to get reference to all clocks as the UFS core uses
* them separately.
*/
for (i = 0; i < cnt; i++) {
ret = of_property_read_string_index(np, "clock-names", i,
&clk_names[i]);
if (ret)
return ret;
clki = devm_kzalloc(dev, sizeof(*clki), GFP_KERNEL);
if (!clki)
return -ENOMEM;
clki->name = devm_kstrdup(dev, clk_names[i], GFP_KERNEL);
if (!clki->name)
return -ENOMEM;
if (!strcmp(clk_names[i], "ref_clk"))
clki->keep_link_active = true;
list_add_tail(&clki->list, &hba->clk_list_head);
}
config.clk_names = clk_names,
config.config_clks = ufshcd_opp_config_clks;
ret = devm_pm_opp_set_config(dev, &config);
if (ret)
return ret;
ret = devm_pm_opp_of_add_table(dev);
if (ret) {
dev_err(dev, "Failed to add OPP table: %d\n", ret);
return ret;
}
ret = ufshcd_parse_clock_min_max_freq(hba);
if (ret)
return ret;
hba->use_pm_opp = true;
return 0;
}
/**
* ufshcd_negotiate_pwr_params - find power mode settings that are supported by
* both the controller and the device
* @host_params: pointer to host parameters
* @dev_max: pointer to device attributes
* @agreed_pwr: returned agreed attributes
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_negotiate_pwr_params(const struct ufs_host_params *host_params,
const struct ufs_pa_layer_attr *dev_max,
struct ufs_pa_layer_attr *agreed_pwr)
{
int min_host_gear;
int min_dev_gear;
bool is_dev_sup_hs = false;
bool is_host_max_hs = false;
if (dev_max->pwr_rx == FAST_MODE)
is_dev_sup_hs = true;
if (host_params->desired_working_mode == UFS_HS_MODE) {
is_host_max_hs = true;
min_host_gear = min_t(u32, host_params->hs_rx_gear,
host_params->hs_tx_gear);
} else {
min_host_gear = min_t(u32, host_params->pwm_rx_gear,
host_params->pwm_tx_gear);
}
/*
* device doesn't support HS but host_params->desired_working_mode is HS,
* thus device and host_params don't agree
*/
if (!is_dev_sup_hs && is_host_max_hs) {
pr_info("%s: device doesn't support HS\n",
__func__);
return -ENOTSUPP;
} else if (is_dev_sup_hs && is_host_max_hs) {
/*
* since device supports HS, it supports FAST_MODE.
* since host_params->desired_working_mode is also HS
* then final decision (FAST/FASTAUTO) is done according
* to pltfrm_params as it is the restricting factor
*/
agreed_pwr->pwr_rx = host_params->rx_pwr_hs;
agreed_pwr->pwr_tx = agreed_pwr->pwr_rx;
} else {
/*
* here host_params->desired_working_mode is PWM.
* it doesn't matter whether device supports HS or PWM,
* in both cases host_params->desired_working_mode will
* determine the mode
*/
agreed_pwr->pwr_rx = host_params->rx_pwr_pwm;
agreed_pwr->pwr_tx = agreed_pwr->pwr_rx;
}
/*
* we would like tx to work in the minimum number of lanes
* between device capability and vendor preferences.
* the same decision will be made for rx
*/
agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx,
host_params->tx_lanes);
agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx,
host_params->rx_lanes);
/* device maximum gear is the minimum between device rx and tx gears */
min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx);
/*
* if both device capabilities and vendor pre-defined preferences are
* both HS or both PWM then set the minimum gear to be the chosen
* working gear.
* if one is PWM and one is HS then the one that is PWM get to decide
* what is the gear, as it is the one that also decided previously what
* pwr the device will be configured to.
*/
if ((is_dev_sup_hs && is_host_max_hs) ||
(!is_dev_sup_hs && !is_host_max_hs)) {
agreed_pwr->gear_rx =
min_t(u32, min_dev_gear, min_host_gear);
} else if (!is_dev_sup_hs) {
agreed_pwr->gear_rx = min_dev_gear;
} else {
agreed_pwr->gear_rx = min_host_gear;
}
agreed_pwr->gear_tx = agreed_pwr->gear_rx;
agreed_pwr->hs_rate = host_params->hs_rate;
return 0;
}
EXPORT_SYMBOL_GPL(ufshcd_negotiate_pwr_params);
void ufshcd_init_host_params(struct ufs_host_params *host_params)
{
*host_params = (struct ufs_host_params){
.tx_lanes = UFS_LANE_2,
.rx_lanes = UFS_LANE_2,
.hs_rx_gear = UFS_HS_G3,
.hs_tx_gear = UFS_HS_G3,
.pwm_rx_gear = UFS_PWM_G4,
.pwm_tx_gear = UFS_PWM_G4,
.rx_pwr_pwm = SLOW_MODE,
.tx_pwr_pwm = SLOW_MODE,
.rx_pwr_hs = FAST_MODE,
.tx_pwr_hs = FAST_MODE,
.hs_rate = PA_HS_MODE_B,
.desired_working_mode = UFS_HS_MODE,
};
}
EXPORT_SYMBOL_GPL(ufshcd_init_host_params);
/**
* ufshcd_pltfrm_init - probe routine of the driver
* @pdev: pointer to Platform device handle
* @vops: pointer to variant ops
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_pltfrm_init(struct platform_device *pdev,
const struct ufs_hba_variant_ops *vops)
{
struct ufs_hba *hba;
void __iomem *mmio_base;
int irq, err;
struct device *dev = &pdev->dev;
mmio_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mmio_base)) {
err = PTR_ERR(mmio_base);
goto out;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto out;
}
err = ufshcd_alloc_host(dev, &hba);
if (err) {
dev_err(dev, "Allocation failed\n");
goto out;
}
hba->vops = vops;
err = ufshcd_parse_clock_info(hba);
if (err) {
dev_err(dev, "%s: clock parse failed %d\n",
__func__, err);
goto dealloc_host;
}
err = ufshcd_parse_regulator_info(hba);
if (err) {
dev_err(dev, "%s: regulator init failed %d\n",
__func__, err);
goto dealloc_host;
}
ufshcd_init_lanes_per_dir(hba);
err = ufshcd_parse_operating_points(hba);
if (err) {
dev_err(dev, "%s: OPP parse failed %d\n", __func__, err);
goto dealloc_host;
}
err = ufshcd_init(hba, mmio_base, irq);
if (err) {
dev_err_probe(dev, err, "Initialization failed with error %d\n",
err);
goto dealloc_host;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
dealloc_host:
ufshcd_dealloc_host(hba);
out:
return err;
}
EXPORT_SYMBOL_GPL(ufshcd_pltfrm_init);
MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
MODULE_DESCRIPTION("UFS host controller Platform bus based glue driver");
MODULE_LICENSE("GPL");