blob: 7f4c1b38d6ecfdbf0617937b4e40a2dc488c6535 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Lee Revell <rlrevell@joe-job.com>
* James Courtier-Dutton <James@superbug.co.uk>
* Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
* Creative Labs, Inc.
*
* Routines for control of EMU10K1 chips / PCM routines
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/init.h>
#include <sound/core.h>
#include <sound/emu10k1.h>
static void snd_emu10k1_pcm_interrupt(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *voice)
{
struct snd_emu10k1_pcm *epcm;
epcm = voice->epcm;
if (!epcm)
return;
if (epcm->substream == NULL)
return;
#if 0
dev_dbg(emu->card->dev,
"IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n",
epcm->substream->runtime->hw->pointer(emu, epcm->substream),
snd_pcm_lib_period_bytes(epcm->substream),
snd_pcm_lib_buffer_bytes(epcm->substream));
#endif
snd_pcm_period_elapsed(epcm->substream);
}
static void snd_emu10k1_pcm_ac97adc_interrupt(struct snd_emu10k1 *emu,
unsigned int status)
{
#if 0
if (status & IPR_ADCBUFHALFFULL) {
if (emu->pcm_capture_substream->runtime->mode == SNDRV_PCM_MODE_FRAME)
return;
}
#endif
snd_pcm_period_elapsed(emu->pcm_capture_substream);
}
static void snd_emu10k1_pcm_ac97mic_interrupt(struct snd_emu10k1 *emu,
unsigned int status)
{
#if 0
if (status & IPR_MICBUFHALFFULL) {
if (emu->pcm_capture_mic_substream->runtime->mode == SNDRV_PCM_MODE_FRAME)
return;
}
#endif
snd_pcm_period_elapsed(emu->pcm_capture_mic_substream);
}
static void snd_emu10k1_pcm_efx_interrupt(struct snd_emu10k1 *emu,
unsigned int status)
{
#if 0
if (status & IPR_EFXBUFHALFFULL) {
if (emu->pcm_capture_efx_substream->runtime->mode == SNDRV_PCM_MODE_FRAME)
return;
}
#endif
snd_pcm_period_elapsed(emu->pcm_capture_efx_substream);
}
static void snd_emu10k1_pcm_free_voices(struct snd_emu10k1_pcm *epcm)
{
for (unsigned i = 0; i < ARRAY_SIZE(epcm->voices); i++) {
if (epcm->voices[i]) {
snd_emu10k1_voice_free(epcm->emu, epcm->voices[i]);
epcm->voices[i] = NULL;
}
}
}
static int snd_emu10k1_pcm_channel_alloc(struct snd_emu10k1_pcm *epcm,
int type, int count, int channels)
{
int err;
snd_emu10k1_pcm_free_voices(epcm);
err = snd_emu10k1_voice_alloc(epcm->emu,
type, count, channels,
epcm, &epcm->voices[0]);
if (err < 0)
return err;
if (epcm->extra == NULL) {
// The hardware supports only (half-)loop interrupts, so to support an
// arbitrary number of periods per buffer, we use an extra voice with a
// period-sized loop as the interrupt source. Additionally, the interrupt
// timing of the hardware is "suboptimal" and needs some compensation.
err = snd_emu10k1_voice_alloc(epcm->emu,
type + 1, 1, 1,
epcm, &epcm->extra);
if (err < 0) {
/*
dev_dbg(emu->card->dev, "pcm_channel_alloc: "
"failed extra: voices=%d, frame=%d\n",
voices, frame);
*/
snd_emu10k1_pcm_free_voices(epcm);
return err;
}
epcm->extra->interrupt = snd_emu10k1_pcm_interrupt;
}
return 0;
}
// Primes 2-7 and 2^n multiples thereof, up to 16.
static const unsigned int efx_capture_channels[] = {
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16
};
static const struct snd_pcm_hw_constraint_list hw_constraints_efx_capture_channels = {
.count = ARRAY_SIZE(efx_capture_channels),
.list = efx_capture_channels,
.mask = 0
};
static const unsigned int capture_buffer_sizes[31] = {
384, 448, 512, 640,
384*2, 448*2, 512*2, 640*2,
384*4, 448*4, 512*4, 640*4,
384*8, 448*8, 512*8, 640*8,
384*16, 448*16, 512*16, 640*16,
384*32, 448*32, 512*32, 640*32,
384*64, 448*64, 512*64, 640*64,
384*128,448*128,512*128
};
static const struct snd_pcm_hw_constraint_list hw_constraints_capture_buffer_sizes = {
.count = 31,
.list = capture_buffer_sizes,
.mask = 0
};
static const unsigned int capture_rates[8] = {
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000
};
static const struct snd_pcm_hw_constraint_list hw_constraints_capture_rates = {
.count = 8,
.list = capture_rates,
.mask = 0
};
static unsigned int snd_emu10k1_capture_rate_reg(unsigned int rate)
{
switch (rate) {
case 8000: return ADCCR_SAMPLERATE_8;
case 11025: return ADCCR_SAMPLERATE_11;
case 16000: return ADCCR_SAMPLERATE_16;
case 22050: return ADCCR_SAMPLERATE_22;
case 24000: return ADCCR_SAMPLERATE_24;
case 32000: return ADCCR_SAMPLERATE_32;
case 44100: return ADCCR_SAMPLERATE_44;
case 48000: return ADCCR_SAMPLERATE_48;
default:
snd_BUG();
return ADCCR_SAMPLERATE_8;
}
}
static const unsigned int audigy_capture_rates[9] = {
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
};
static const struct snd_pcm_hw_constraint_list hw_constraints_audigy_capture_rates = {
.count = 9,
.list = audigy_capture_rates,
.mask = 0
};
static unsigned int snd_emu10k1_audigy_capture_rate_reg(unsigned int rate)
{
switch (rate) {
case 8000: return A_ADCCR_SAMPLERATE_8;
case 11025: return A_ADCCR_SAMPLERATE_11;
case 12000: return A_ADCCR_SAMPLERATE_12;
case 16000: return ADCCR_SAMPLERATE_16;
case 22050: return ADCCR_SAMPLERATE_22;
case 24000: return ADCCR_SAMPLERATE_24;
case 32000: return ADCCR_SAMPLERATE_32;
case 44100: return ADCCR_SAMPLERATE_44;
case 48000: return ADCCR_SAMPLERATE_48;
default:
snd_BUG();
return A_ADCCR_SAMPLERATE_8;
}
}
static void snd_emu10k1_constrain_capture_rates(struct snd_emu10k1 *emu,
struct snd_pcm_runtime *runtime)
{
if (emu->card_capabilities->emu_model &&
emu->emu1010.word_clock == 44100) {
// This also sets the rate constraint by deleting SNDRV_PCM_RATE_KNOT
runtime->hw.rates = SNDRV_PCM_RATE_11025 | \
SNDRV_PCM_RATE_22050 | \
SNDRV_PCM_RATE_44100;
runtime->hw.rate_min = 11025;
runtime->hw.rate_max = 44100;
return;
}
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
emu->audigy ? &hw_constraints_audigy_capture_rates :
&hw_constraints_capture_rates);
}
static void snd_emu1010_constrain_efx_rate(struct snd_emu10k1 *emu,
struct snd_pcm_runtime *runtime)
{
int rate;
rate = emu->emu1010.word_clock;
runtime->hw.rate_min = runtime->hw.rate_max = rate;
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
}
static unsigned int emu10k1_calc_pitch_target(unsigned int rate)
{
unsigned int pitch_target;
pitch_target = (rate << 8) / 375;
pitch_target = (pitch_target >> 1) + (pitch_target & 1);
return pitch_target;
}
#define PITCH_48000 0x00004000
#define PITCH_96000 0x00008000
#define PITCH_85000 0x00007155
#define PITCH_80726 0x00006ba2
#define PITCH_67882 0x00005a82
#define PITCH_57081 0x00004c1c
static unsigned int emu10k1_select_interprom(unsigned int pitch_target)
{
if (pitch_target == PITCH_48000)
return CCCA_INTERPROM_0;
else if (pitch_target < PITCH_48000)
return CCCA_INTERPROM_1;
else if (pitch_target >= PITCH_96000)
return CCCA_INTERPROM_0;
else if (pitch_target >= PITCH_85000)
return CCCA_INTERPROM_6;
else if (pitch_target >= PITCH_80726)
return CCCA_INTERPROM_5;
else if (pitch_target >= PITCH_67882)
return CCCA_INTERPROM_4;
else if (pitch_target >= PITCH_57081)
return CCCA_INTERPROM_3;
else
return CCCA_INTERPROM_2;
}
static u16 emu10k1_send_target_from_amount(u8 amount)
{
static const u8 shifts[8] = { 4, 4, 5, 6, 7, 8, 9, 10 };
static const u16 offsets[8] = { 0, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000 };
u8 exp;
if (amount == 0xff)
return 0xffff;
exp = amount >> 5;
return ((amount & 0x1f) << shifts[exp]) + offsets[exp];
}
static void snd_emu10k1_pcm_init_voice(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
bool w_16, bool stereo,
unsigned int start_addr,
unsigned int end_addr,
const unsigned char *send_routing,
const unsigned char *send_amount)
{
unsigned int silent_page;
int voice;
voice = evoice->number;
silent_page = ((unsigned int)emu->silent_page.addr << emu->address_mode) |
(emu->address_mode ? MAP_PTI_MASK1 : MAP_PTI_MASK0);
snd_emu10k1_ptr_write_multiple(emu, voice,
// Not really necessary for the slave, but it doesn't hurt
CPF, stereo ? CPF_STEREO_MASK : 0,
// Assumption that PT is already 0 so no harm overwriting
PTRX, (send_amount[0] << 8) | send_amount[1],
// Stereo slaves don't need to have the addresses set, but it doesn't hurt
DSL, end_addr | (send_amount[3] << 24),
PSST, start_addr | (send_amount[2] << 24),
CCCA, emu10k1_select_interprom(evoice->epcm->pitch_target) |
(w_16 ? 0 : CCCA_8BITSELECT),
// Clear filter delay memory
Z1, 0,
Z2, 0,
// Invalidate maps
MAPA, silent_page,
MAPB, silent_page,
// Disable filter (in conjunction with CCCA_RESONANCE == 0)
VTFT, VTFT_FILTERTARGET_MASK,
CVCF, CVCF_CURRENTFILTER_MASK,
REGLIST_END);
// Setup routing
if (emu->audigy) {
snd_emu10k1_ptr_write_multiple(emu, voice,
A_FXRT1, snd_emu10k1_compose_audigy_fxrt1(send_routing),
A_FXRT2, snd_emu10k1_compose_audigy_fxrt2(send_routing),
A_SENDAMOUNTS, snd_emu10k1_compose_audigy_sendamounts(send_amount),
REGLIST_END);
for (int i = 0; i < 4; i++) {
u32 aml = emu10k1_send_target_from_amount(send_amount[2 * i]);
u32 amh = emu10k1_send_target_from_amount(send_amount[2 * i + 1]);
snd_emu10k1_ptr_write(emu, A_CSBA + i, voice, (amh << 16) | aml);
}
} else {
snd_emu10k1_ptr_write(emu, FXRT, voice,
snd_emu10k1_compose_send_routing(send_routing));
}
emu->voices[voice].dirty = 1;
}
static void snd_emu10k1_pcm_init_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
bool w_16, bool stereo,
unsigned int start_addr,
unsigned int end_addr,
struct snd_emu10k1_pcm_mixer *mix)
{
spin_lock_irq(&emu->reg_lock);
snd_emu10k1_pcm_init_voice(emu, evoice, w_16, stereo,
start_addr, end_addr,
&mix->send_routing[stereo][0],
&mix->send_volume[stereo][0]);
if (stereo)
snd_emu10k1_pcm_init_voice(emu, evoice + 1, w_16, true,
start_addr, end_addr,
&mix->send_routing[2][0],
&mix->send_volume[2][0]);
spin_unlock_irq(&emu->reg_lock);
}
static void snd_emu10k1_pcm_init_extra_voice(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
bool w_16,
unsigned int start_addr,
unsigned int end_addr)
{
static const unsigned char send_routing[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
static const unsigned char send_amount[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
snd_emu10k1_pcm_init_voice(emu, evoice, w_16, false,
start_addr, end_addr,
send_routing, send_amount);
}
static int snd_emu10k1_playback_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
size_t alloc_size;
int type, channels, count;
int err;
if (epcm->type == PLAYBACK_EMUVOICE) {
type = EMU10K1_PCM;
channels = 1;
count = params_channels(hw_params);
} else {
type = EMU10K1_EFX;
channels = params_channels(hw_params);
count = 1;
}
err = snd_emu10k1_pcm_channel_alloc(epcm, type, count, channels);
if (err < 0)
return err;
alloc_size = params_buffer_bytes(hw_params);
if (emu->iommu_workaround)
alloc_size += EMUPAGESIZE;
err = snd_pcm_lib_malloc_pages(substream, alloc_size);
if (err < 0)
return err;
if (emu->iommu_workaround && runtime->dma_bytes >= EMUPAGESIZE)
runtime->dma_bytes -= EMUPAGESIZE;
if (err > 0) { /* change */
int mapped;
if (epcm->memblk != NULL)
snd_emu10k1_free_pages(emu, epcm->memblk);
epcm->memblk = snd_emu10k1_alloc_pages(emu, substream);
epcm->start_addr = 0;
if (! epcm->memblk)
return -ENOMEM;
mapped = ((struct snd_emu10k1_memblk *)epcm->memblk)->mapped_page;
if (mapped < 0)
return -ENOMEM;
epcm->start_addr = mapped << PAGE_SHIFT;
}
return 0;
}
static int snd_emu10k1_playback_hw_free(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm;
if (runtime->private_data == NULL)
return 0;
epcm = runtime->private_data;
if (epcm->extra) {
snd_emu10k1_voice_free(epcm->emu, epcm->extra);
epcm->extra = NULL;
}
snd_emu10k1_pcm_free_voices(epcm);
if (epcm->memblk) {
snd_emu10k1_free_pages(emu, epcm->memblk);
epcm->memblk = NULL;
epcm->start_addr = 0;
}
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_emu10k1_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
bool w_16 = snd_pcm_format_width(runtime->format) == 16;
bool stereo = runtime->channels == 2;
unsigned int start_addr, end_addr;
unsigned int rate;
rate = runtime->rate;
if (emu->card_capabilities->emu_model &&
emu->emu1010.word_clock == 44100)
rate = rate * 480 / 441;
epcm->pitch_target = emu10k1_calc_pitch_target(rate);
start_addr = epcm->start_addr >> w_16;
end_addr = start_addr + runtime->period_size;
snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, w_16,
start_addr, end_addr);
start_addr >>= stereo;
epcm->ccca_start_addr = start_addr;
end_addr = start_addr + runtime->buffer_size;
snd_emu10k1_pcm_init_voices(emu, epcm->voices[0], w_16, stereo,
start_addr, end_addr,
&emu->pcm_mixer[substream->number]);
return 0;
}
static int snd_emu10k1_efx_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
unsigned int start_addr;
unsigned int extra_size, channel_size;
unsigned int i;
epcm->pitch_target = PITCH_48000;
start_addr = epcm->start_addr >> 1; // 16-bit voices
extra_size = runtime->period_size;
channel_size = runtime->buffer_size;
snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, true,
start_addr, start_addr + extra_size);
epcm->ccca_start_addr = start_addr;
for (i = 0; i < runtime->channels; i++) {
snd_emu10k1_pcm_init_voices(emu, epcm->voices[i], true, false,
start_addr, start_addr + channel_size,
&emu->efx_pcm_mixer[i]);
start_addr += channel_size;
}
return 0;
}
static const struct snd_pcm_hardware snd_emu10k1_efx_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_NONINTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = NUM_EFX_PLAYBACK,
.buffer_bytes_max = (128*1024),
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
static int snd_emu10k1_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
int idx;
/* zeroing the buffer size will stop capture */
snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0);
switch (epcm->type) {
case CAPTURE_AC97ADC:
snd_emu10k1_ptr_write(emu, ADCCR, 0, 0);
break;
case CAPTURE_EFX:
if (emu->card_capabilities->emu_model) {
// The upper 32 16-bit capture voices, two for each of the 16 32-bit channels.
// The lower voices are occupied by A_EXTOUT_*_CAP*.
epcm->capture_cr_val = 0;
epcm->capture_cr_val2 = 0xffffffff >> (32 - runtime->channels * 2);
}
if (emu->audigy) {
snd_emu10k1_ptr_write_multiple(emu, 0,
A_FXWC1, 0,
A_FXWC2, 0,
REGLIST_END);
} else
snd_emu10k1_ptr_write(emu, FXWC, 0, 0);
break;
default:
break;
}
snd_emu10k1_ptr_write(emu, epcm->capture_ba_reg, 0, runtime->dma_addr);
epcm->capture_bufsize = snd_pcm_lib_buffer_bytes(substream);
epcm->capture_bs_val = 0;
for (idx = 0; idx < 31; idx++) {
if (capture_buffer_sizes[idx] == epcm->capture_bufsize) {
epcm->capture_bs_val = idx + 1;
break;
}
}
if (epcm->capture_bs_val == 0) {
snd_BUG();
epcm->capture_bs_val++;
}
if (epcm->type == CAPTURE_AC97ADC) {
unsigned rate = runtime->rate;
if (!(runtime->hw.rates & SNDRV_PCM_RATE_48000))
rate = rate * 480 / 441;
epcm->capture_cr_val = emu->audigy ? A_ADCCR_LCHANENABLE : ADCCR_LCHANENABLE;
if (runtime->channels > 1)
epcm->capture_cr_val |= emu->audigy ? A_ADCCR_RCHANENABLE : ADCCR_RCHANENABLE;
epcm->capture_cr_val |= emu->audigy ?
snd_emu10k1_audigy_capture_rate_reg(rate) :
snd_emu10k1_capture_rate_reg(rate);
}
return 0;
}
static void snd_emu10k1_playback_fill_cache(struct snd_emu10k1 *emu,
unsigned voice,
u32 sample, bool stereo)
{
u32 ccr;
// We assume that the cache is resting at this point (i.e.,
// CCR_CACHEINVALIDSIZE is very small).
// Clear leading frames. For simplicitly, this does too much,
// except for 16-bit stereo. And the interpolator will actually
// access them at all only when we're pitch-shifting.
for (int i = 0; i < 3; i++)
snd_emu10k1_ptr_write(emu, CD0 + i, voice, sample);
// Fill cache
ccr = (64 - 3) << REG_SHIFT(CCR_CACHEINVALIDSIZE);
if (stereo) {
// The engine goes haywire if CCR_READADDRESS is out of sync
snd_emu10k1_ptr_write(emu, CCR, voice + 1, ccr);
}
snd_emu10k1_ptr_write(emu, CCR, voice, ccr);
}
static void snd_emu10k1_playback_prepare_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_pcm *epcm,
bool w_16, bool stereo,
int channels)
{
struct snd_pcm_substream *substream = epcm->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned eloop_start = epcm->start_addr >> w_16;
unsigned loop_start = eloop_start >> stereo;
unsigned eloop_size = runtime->period_size;
unsigned loop_size = runtime->buffer_size;
u32 sample = w_16 ? 0 : 0x80808080;
// To make the playback actually start at the 1st frame,
// we need to compensate for two circumstances:
// - The actual position is delayed by the cache size (64 frames)
// - The interpolator is centered around the 4th frame
loop_start += (epcm->resume_pos + 64 - 3) % loop_size;
for (int i = 0; i < channels; i++) {
unsigned voice = epcm->voices[i]->number;
snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, voice, loop_start);
loop_start += loop_size;
snd_emu10k1_playback_fill_cache(emu, voice, sample, stereo);
}
// The interrupt is triggered when CCCA_CURRADDR (CA) wraps around,
// which is ahead of the actual playback position, so the interrupt
// source needs to be delayed.
//
// In principle, this wouldn't need to be the cache's entire size - in
// practice, CCR_CACHEINVALIDSIZE (CIS) > `fetch threshold` has never
// been observed, and assuming 40 _bytes_ should be safe.
//
// The cache fills are somewhat random, which makes it impossible to
// align them with the interrupts. This makes a non-delayed interrupt
// source not practical, as the interrupt handler would have to wait
// for (CA - CIS) >= period_boundary for every channel in the stream.
//
// This is why all other (open) drivers for these chips use timer-based
// interrupts.
//
eloop_start += (epcm->resume_pos + eloop_size - 3) % eloop_size;
snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, epcm->extra->number, eloop_start);
// It takes a moment until the cache fills complete,
// but the unmuting takes long enough for that.
}
static void snd_emu10k1_playback_commit_volume(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
unsigned int vattn)
{
snd_emu10k1_ptr_write_multiple(emu, evoice->number,
VTFT, vattn | VTFT_FILTERTARGET_MASK,
CVCF, vattn | CVCF_CURRENTFILTER_MASK,
REGLIST_END);
}
static void snd_emu10k1_playback_unmute_voice(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
bool stereo, bool master,
struct snd_emu10k1_pcm_mixer *mix)
{
unsigned int vattn;
unsigned int tmp;
tmp = stereo ? (master ? 1 : 2) : 0;
vattn = mix->attn[tmp] << 16;
snd_emu10k1_playback_commit_volume(emu, evoice, vattn);
}
static void snd_emu10k1_playback_unmute_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
bool stereo,
struct snd_emu10k1_pcm_mixer *mix)
{
snd_emu10k1_playback_unmute_voice(emu, evoice, stereo, true, mix);
if (stereo)
snd_emu10k1_playback_unmute_voice(emu, evoice + 1, true, false, mix);
}
static void snd_emu10k1_playback_mute_voice(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice)
{
snd_emu10k1_playback_commit_volume(emu, evoice, 0);
}
static void snd_emu10k1_playback_mute_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice,
bool stereo)
{
snd_emu10k1_playback_mute_voice(emu, evoice);
if (stereo)
snd_emu10k1_playback_mute_voice(emu, evoice + 1);
}
static void snd_emu10k1_playback_commit_pitch(struct snd_emu10k1 *emu,
u32 voice, u32 pitch_target)
{
u32 ptrx = snd_emu10k1_ptr_read(emu, PTRX, voice);
u32 cpf = snd_emu10k1_ptr_read(emu, CPF, voice);
snd_emu10k1_ptr_write_multiple(emu, voice,
PTRX, (ptrx & ~PTRX_PITCHTARGET_MASK) | pitch_target,
CPF, (cpf & ~(CPF_CURRENTPITCH_MASK | CPF_FRACADDRESS_MASK)) | pitch_target,
REGLIST_END);
}
static void snd_emu10k1_playback_trigger_voice(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice)
{
unsigned int voice;
voice = evoice->number;
snd_emu10k1_playback_commit_pitch(emu, voice, evoice->epcm->pitch_target << 16);
}
static void snd_emu10k1_playback_stop_voice(struct snd_emu10k1 *emu,
struct snd_emu10k1_voice *evoice)
{
unsigned int voice;
voice = evoice->number;
snd_emu10k1_playback_commit_pitch(emu, voice, 0);
}
static void snd_emu10k1_playback_set_running(struct snd_emu10k1 *emu,
struct snd_emu10k1_pcm *epcm)
{
epcm->running = 1;
snd_emu10k1_voice_intr_enable(emu, epcm->extra->number);
}
static void snd_emu10k1_playback_set_stopped(struct snd_emu10k1 *emu,
struct snd_emu10k1_pcm *epcm)
{
snd_emu10k1_voice_intr_disable(emu, epcm->extra->number);
epcm->running = 0;
}
static int snd_emu10k1_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
struct snd_emu10k1_pcm_mixer *mix;
bool w_16 = snd_pcm_format_width(runtime->format) == 16;
bool stereo = runtime->channels == 2;
int result = 0;
/*
dev_dbg(emu->card->dev,
"trigger - emu10k1 = 0x%x, cmd = %i, pointer = %i\n",
(int)emu, cmd, substream->ops->pointer(substream))
*/
spin_lock(&emu->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_emu10k1_playback_prepare_voices(emu, epcm, w_16, stereo, 1);
fallthrough;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
mix = &emu->pcm_mixer[substream->number];
snd_emu10k1_playback_unmute_voices(emu, epcm->voices[0], stereo, mix);
snd_emu10k1_playback_set_running(emu, epcm);
snd_emu10k1_playback_trigger_voice(emu, epcm->voices[0]);
snd_emu10k1_playback_trigger_voice(emu, epcm->extra);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
snd_emu10k1_playback_stop_voice(emu, epcm->voices[0]);
snd_emu10k1_playback_stop_voice(emu, epcm->extra);
snd_emu10k1_playback_set_stopped(emu, epcm);
snd_emu10k1_playback_mute_voices(emu, epcm->voices[0], stereo);
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&emu->reg_lock);
return result;
}
static int snd_emu10k1_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
int result = 0;
spin_lock(&emu->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
/* hmm this should cause full and half full interrupt to be raised? */
outl(epcm->capture_ipr, emu->port + IPR);
snd_emu10k1_intr_enable(emu, epcm->capture_inte);
/*
dev_dbg(emu->card->dev, "adccr = 0x%x, adcbs = 0x%x\n",
epcm->adccr, epcm->adcbs);
*/
switch (epcm->type) {
case CAPTURE_AC97ADC:
snd_emu10k1_ptr_write(emu, ADCCR, 0, epcm->capture_cr_val);
break;
case CAPTURE_EFX:
if (emu->audigy) {
snd_emu10k1_ptr_write_multiple(emu, 0,
A_FXWC1, epcm->capture_cr_val,
A_FXWC2, epcm->capture_cr_val2,
REGLIST_END);
dev_dbg(emu->card->dev,
"cr_val=0x%x, cr_val2=0x%x\n",
epcm->capture_cr_val,
epcm->capture_cr_val2);
} else
snd_emu10k1_ptr_write(emu, FXWC, 0, epcm->capture_cr_val);
break;
default:
break;
}
snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, epcm->capture_bs_val);
epcm->running = 1;
epcm->first_ptr = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
epcm->running = 0;
snd_emu10k1_intr_disable(emu, epcm->capture_inte);
outl(epcm->capture_ipr, emu->port + IPR);
snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0);
switch (epcm->type) {
case CAPTURE_AC97ADC:
snd_emu10k1_ptr_write(emu, ADCCR, 0, 0);
break;
case CAPTURE_EFX:
if (emu->audigy) {
snd_emu10k1_ptr_write_multiple(emu, 0,
A_FXWC1, 0,
A_FXWC2, 0,
REGLIST_END);
} else
snd_emu10k1_ptr_write(emu, FXWC, 0, 0);
break;
default:
break;
}
break;
default:
result = -EINVAL;
}
spin_unlock(&emu->reg_lock);
return result;
}
static snd_pcm_uframes_t snd_emu10k1_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
int ptr;
if (!epcm->running)
return 0;
ptr = snd_emu10k1_ptr_read(emu, CCCA, epcm->voices[0]->number) & 0x00ffffff;
ptr -= epcm->ccca_start_addr;
// This is the size of the whole cache minus the interpolator read-ahead,
// which leads us to the actual playback position.
//
// The cache is constantly kept mostly filled, so in principle we could
// return a more advanced position representing how far the hardware has
// already read the buffer, and set runtime->delay accordingly. However,
// this would be slightly different for every channel (and remarkably slow
// to obtain), so only a fixed worst-case value would be practical.
//
ptr -= 64 - 3;
if (ptr < 0)
ptr += runtime->buffer_size;
/*
dev_dbg(emu->card->dev,
"ptr = 0x%lx, buffer_size = 0x%lx, period_size = 0x%lx\n",
(long)ptr, (long)runtime->buffer_size,
(long)runtime->period_size);
*/
return ptr;
}
static u64 snd_emu10k1_efx_playback_voice_mask(struct snd_emu10k1_pcm *epcm,
int channels)
{
u64 mask = 0;
for (int i = 0; i < channels; i++) {
int voice = epcm->voices[i]->number;
mask |= 1ULL << voice;
}
return mask;
}
static void snd_emu10k1_efx_playback_freeze_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_pcm *epcm,
int channels)
{
for (int i = 0; i < channels; i++) {
int voice = epcm->voices[i]->number;
snd_emu10k1_ptr_write(emu, CPF_STOP, voice, 1);
snd_emu10k1_playback_commit_pitch(emu, voice, PITCH_48000 << 16);
}
}
static void snd_emu10k1_efx_playback_unmute_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_pcm *epcm,
int channels)
{
for (int i = 0; i < channels; i++)
snd_emu10k1_playback_unmute_voice(emu, epcm->voices[i], false, true,
&emu->efx_pcm_mixer[i]);
}
static void snd_emu10k1_efx_playback_stop_voices(struct snd_emu10k1 *emu,
struct snd_emu10k1_pcm *epcm,
int channels)
{
for (int i = 0; i < channels; i++)
snd_emu10k1_playback_stop_voice(emu, epcm->voices[i]);
snd_emu10k1_playback_set_stopped(emu, epcm);
for (int i = 0; i < channels; i++)
snd_emu10k1_playback_mute_voice(emu, epcm->voices[i]);
}
static int snd_emu10k1_efx_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
u64 mask;
int result = 0;
spin_lock(&emu->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
mask = snd_emu10k1_efx_playback_voice_mask(
epcm, runtime->channels);
for (int i = 0; i < 10; i++) {
// Note that the freeze is not interruptible, so we make no
// effort to reset the bits outside the error handling here.
snd_emu10k1_voice_set_loop_stop_multiple(emu, mask);
snd_emu10k1_efx_playback_freeze_voices(
emu, epcm, runtime->channels);
snd_emu10k1_playback_prepare_voices(
emu, epcm, true, false, runtime->channels);
// It might seem to make more sense to unmute the voices only after
// they have been started, to potentially avoid torturing the speakers
// if something goes wrong. However, we cannot unmute atomically,
// which means that we'd get some mild artifacts in the regular case.
snd_emu10k1_efx_playback_unmute_voices(emu, epcm, runtime->channels);
snd_emu10k1_playback_set_running(emu, epcm);
result = snd_emu10k1_voice_clear_loop_stop_multiple_atomic(emu, mask);
if (result == 0) {
// The extra voice is allowed to lag a bit
snd_emu10k1_playback_trigger_voice(emu, epcm->extra);
goto leave;
}
snd_emu10k1_efx_playback_stop_voices(
emu, epcm, runtime->channels);
if (result != -EAGAIN)
break;
// The sync start can legitimately fail due to NMIs, etc.
}
snd_emu10k1_voice_clear_loop_stop_multiple(emu, mask);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
snd_emu10k1_playback_stop_voice(emu, epcm->extra);
snd_emu10k1_efx_playback_stop_voices(
emu, epcm, runtime->channels);
epcm->resume_pos = snd_emu10k1_playback_pointer(substream);
break;
default:
result = -EINVAL;
break;
}
leave:
spin_unlock(&emu->reg_lock);
return result;
}
static snd_pcm_uframes_t snd_emu10k1_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
unsigned int ptr;
if (!epcm->running)
return 0;
if (epcm->first_ptr) {
udelay(50); /* hack, it takes awhile until capture is started */
epcm->first_ptr = 0;
}
ptr = snd_emu10k1_ptr_read(emu, epcm->capture_idx_reg, 0) & 0x0000ffff;
return bytes_to_frames(runtime, ptr);
}
/*
* Playback support device description
*/
static const struct snd_pcm_hardware snd_emu10k1_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_96000,
.rate_min = 4000,
.rate_max = 96000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/*
* Capture support device description
*/
static const struct snd_pcm_hardware snd_emu10k1_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (64*1024),
.period_bytes_min = 384,
.period_bytes_max = (64*1024),
.periods_min = 2,
.periods_max = 2,
.fifo_size = 0,
};
static const struct snd_pcm_hardware snd_emu10k1_capture_efx =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 16,
.buffer_bytes_max = (64*1024),
.period_bytes_min = 384,
.period_bytes_max = (64*1024),
.periods_min = 2,
.periods_max = 2,
.fifo_size = 0,
};
/*
*
*/
static void snd_emu10k1_pcm_mixer_notify1(struct snd_emu10k1 *emu, struct snd_kcontrol *kctl, int idx, int activate)
{
struct snd_ctl_elem_id id;
if (! kctl)
return;
if (activate)
kctl->vd[idx].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
else
kctl->vd[idx].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(emu->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO,
snd_ctl_build_ioff(&id, kctl, idx));
}
static void snd_emu10k1_pcm_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate)
{
snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_routing, idx, activate);
snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_volume, idx, activate);
snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_attn, idx, activate);
}
static void snd_emu10k1_pcm_efx_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate)
{
snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_routing, idx, activate);
snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_volume, idx, activate);
snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_attn, idx, activate);
}
static void snd_emu10k1_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
kfree(runtime->private_data);
}
static int snd_emu10k1_efx_playback_close(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_pcm_mixer *mix;
int i;
for (i = 0; i < NUM_EFX_PLAYBACK; i++) {
mix = &emu->efx_pcm_mixer[i];
mix->epcm = NULL;
snd_emu10k1_pcm_efx_mixer_notify(emu, i, 0);
}
return 0;
}
static int snd_emu10k1_playback_set_constraints(struct snd_pcm_runtime *runtime)
{
int err;
// The buffer size must be a multiple of the period size, to avoid a
// mismatch between the extra voice and the regular voices.
err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
if (err < 0)
return err;
// The hardware is typically the cache's size of 64 frames ahead.
// Leave enough time for actually filling up the buffer.
err = snd_pcm_hw_constraint_minmax(
runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 128, UINT_MAX);
return err;
}
static int snd_emu10k1_efx_playback_open(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_pcm *epcm;
struct snd_emu10k1_pcm_mixer *mix;
struct snd_pcm_runtime *runtime = substream->runtime;
int i, j, err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->type = PLAYBACK_EFX;
epcm->substream = substream;
runtime->private_data = epcm;
runtime->private_free = snd_emu10k1_pcm_free_substream;
runtime->hw = snd_emu10k1_efx_playback;
if (emu->card_capabilities->emu_model)
snd_emu1010_constrain_efx_rate(emu, runtime);
err = snd_emu10k1_playback_set_constraints(runtime);
if (err < 0) {
kfree(epcm);
return err;
}
for (i = 0; i < NUM_EFX_PLAYBACK; i++) {
mix = &emu->efx_pcm_mixer[i];
for (j = 0; j < 8; j++)
mix->send_routing[0][j] = i + j;
memset(&mix->send_volume, 0, sizeof(mix->send_volume));
mix->send_volume[0][0] = 255;
mix->attn[0] = 0x8000;
mix->epcm = epcm;
snd_emu10k1_pcm_efx_mixer_notify(emu, i, 1);
}
return 0;
}
static int snd_emu10k1_playback_open(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_pcm *epcm;
struct snd_emu10k1_pcm_mixer *mix;
struct snd_pcm_runtime *runtime = substream->runtime;
int i, err, sample_rate;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->type = PLAYBACK_EMUVOICE;
epcm->substream = substream;
runtime->private_data = epcm;
runtime->private_free = snd_emu10k1_pcm_free_substream;
runtime->hw = snd_emu10k1_playback;
err = snd_emu10k1_playback_set_constraints(runtime);
if (err < 0) {
kfree(epcm);
return err;
}
if (emu->card_capabilities->emu_model)
sample_rate = emu->emu1010.word_clock;
else
sample_rate = 48000;
err = snd_pcm_hw_rule_noresample(runtime, sample_rate);
if (err < 0) {
kfree(epcm);
return err;
}
mix = &emu->pcm_mixer[substream->number];
for (i = 0; i < 8; i++)
mix->send_routing[0][i] = mix->send_routing[1][i] = mix->send_routing[2][i] = i;
memset(&mix->send_volume, 0, sizeof(mix->send_volume));
mix->send_volume[0][0] = mix->send_volume[0][1] =
mix->send_volume[1][0] = mix->send_volume[2][1] = 255;
mix->attn[0] = mix->attn[1] = mix->attn[2] = 0x8000;
mix->epcm = epcm;
snd_emu10k1_pcm_mixer_notify(emu, substream->number, 1);
return 0;
}
static int snd_emu10k1_playback_close(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_pcm_mixer *mix = &emu->pcm_mixer[substream->number];
mix->epcm = NULL;
snd_emu10k1_pcm_mixer_notify(emu, substream->number, 0);
return 0;
}
static int snd_emu10k1_capture_open(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->type = CAPTURE_AC97ADC;
epcm->substream = substream;
epcm->capture_ipr = IPR_ADCBUFFULL|IPR_ADCBUFHALFFULL;
epcm->capture_inte = INTE_ADCBUFENABLE;
epcm->capture_ba_reg = ADCBA;
epcm->capture_bs_reg = ADCBS;
epcm->capture_idx_reg = emu->audigy ? A_ADCIDX : ADCIDX;
runtime->private_data = epcm;
runtime->private_free = snd_emu10k1_pcm_free_substream;
runtime->hw = snd_emu10k1_capture;
snd_emu10k1_constrain_capture_rates(emu, runtime);
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
&hw_constraints_capture_buffer_sizes);
emu->capture_interrupt = snd_emu10k1_pcm_ac97adc_interrupt;
emu->pcm_capture_substream = substream;
return 0;
}
static int snd_emu10k1_capture_close(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
emu->capture_interrupt = NULL;
emu->pcm_capture_substream = NULL;
return 0;
}
static int snd_emu10k1_capture_mic_open(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->type = CAPTURE_AC97MIC;
epcm->substream = substream;
epcm->capture_ipr = IPR_MICBUFFULL|IPR_MICBUFHALFFULL;
epcm->capture_inte = INTE_MICBUFENABLE;
epcm->capture_ba_reg = MICBA;
epcm->capture_bs_reg = MICBS;
epcm->capture_idx_reg = emu->audigy ? A_MICIDX : MICIDX;
substream->runtime->private_data = epcm;
substream->runtime->private_free = snd_emu10k1_pcm_free_substream;
runtime->hw = snd_emu10k1_capture;
runtime->hw.rates = SNDRV_PCM_RATE_8000;
runtime->hw.rate_min = runtime->hw.rate_max = 8000;
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
&hw_constraints_capture_buffer_sizes);
emu->capture_mic_interrupt = snd_emu10k1_pcm_ac97mic_interrupt;
emu->pcm_capture_mic_substream = substream;
return 0;
}
static int snd_emu10k1_capture_mic_close(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
emu->capture_mic_interrupt = NULL;
emu->pcm_capture_mic_substream = NULL;
return 0;
}
static int snd_emu10k1_capture_efx_open(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int nefx = emu->audigy ? 64 : 32;
int idx, err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->type = CAPTURE_EFX;
epcm->substream = substream;
epcm->capture_ipr = IPR_EFXBUFFULL|IPR_EFXBUFHALFFULL;
epcm->capture_inte = INTE_EFXBUFENABLE;
epcm->capture_ba_reg = FXBA;
epcm->capture_bs_reg = FXBS;
epcm->capture_idx_reg = FXIDX;
substream->runtime->private_data = epcm;
substream->runtime->private_free = snd_emu10k1_pcm_free_substream;
runtime->hw = snd_emu10k1_capture_efx;
if (emu->card_capabilities->emu_model) {
snd_emu1010_constrain_efx_rate(emu, runtime);
/*
* There are 32 mono channels of 16bits each.
* 24bit Audio uses 2x channels over 16bit,
* 96kHz uses 2x channels over 48kHz,
* 192kHz uses 4x channels over 48kHz.
* So, for 48kHz 24bit, one has 16 channels,
* for 96kHz 24bit, one has 8 channels,
* for 192kHz 24bit, one has 4 channels.
* 1010rev2 and 1616(m) cards have double that,
* but we don't exceed 16 channels anyway.
*/
#if 0
/* For 96kHz */
runtime->hw.channels_min = runtime->hw.channels_max = 4;
#endif
#if 0
/* For 192kHz */
runtime->hw.channels_min = runtime->hw.channels_max = 2;
#endif
runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE;
} else {
spin_lock_irq(&emu->reg_lock);
runtime->hw.channels_min = runtime->hw.channels_max = 0;
for (idx = 0; idx < nefx; idx++) {
if (emu->efx_voices_mask[idx/32] & (1 << (idx%32))) {
runtime->hw.channels_min++;
runtime->hw.channels_max++;
}
}
epcm->capture_cr_val = emu->efx_voices_mask[0];
epcm->capture_cr_val2 = emu->efx_voices_mask[1];
spin_unlock_irq(&emu->reg_lock);
}
err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
&hw_constraints_efx_capture_channels);
if (err < 0) {
kfree(epcm);
return err;
}
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
&hw_constraints_capture_buffer_sizes);
emu->capture_efx_interrupt = snd_emu10k1_pcm_efx_interrupt;
emu->pcm_capture_efx_substream = substream;
return 0;
}
static int snd_emu10k1_capture_efx_close(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
emu->capture_efx_interrupt = NULL;
emu->pcm_capture_efx_substream = NULL;
return 0;
}
static const struct snd_pcm_ops snd_emu10k1_playback_ops = {
.open = snd_emu10k1_playback_open,
.close = snd_emu10k1_playback_close,
.hw_params = snd_emu10k1_playback_hw_params,
.hw_free = snd_emu10k1_playback_hw_free,
.prepare = snd_emu10k1_playback_prepare,
.trigger = snd_emu10k1_playback_trigger,
.pointer = snd_emu10k1_playback_pointer,
};
static const struct snd_pcm_ops snd_emu10k1_capture_ops = {
.open = snd_emu10k1_capture_open,
.close = snd_emu10k1_capture_close,
.prepare = snd_emu10k1_capture_prepare,
.trigger = snd_emu10k1_capture_trigger,
.pointer = snd_emu10k1_capture_pointer,
};
/* EFX playback */
static const struct snd_pcm_ops snd_emu10k1_efx_playback_ops = {
.open = snd_emu10k1_efx_playback_open,
.close = snd_emu10k1_efx_playback_close,
.hw_params = snd_emu10k1_playback_hw_params,
.hw_free = snd_emu10k1_playback_hw_free,
.prepare = snd_emu10k1_efx_playback_prepare,
.trigger = snd_emu10k1_efx_playback_trigger,
.pointer = snd_emu10k1_playback_pointer,
};
int snd_emu10k1_pcm(struct snd_emu10k1 *emu, int device)
{
struct snd_pcm *pcm;
struct snd_pcm_substream *substream;
int err;
err = snd_pcm_new(emu->card, "emu10k1", device, 32, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = emu;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_ops);
pcm->info_flags = 0;
pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX;
strcpy(pcm->name, "ADC Capture/Standard PCM Playback");
emu->pcm = pcm;
/* playback substream can't use managed buffers due to alignment */
for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next)
snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG,
&emu->pci->dev,
64*1024, 64*1024);
for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; substream; substream = substream->next)
snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV,
&emu->pci->dev, 64*1024, 64*1024);
return 0;
}
int snd_emu10k1_pcm_multi(struct snd_emu10k1 *emu, int device)
{
struct snd_pcm *pcm;
struct snd_pcm_substream *substream;
int err;
err = snd_pcm_new(emu->card, "emu10k1", device, 1, 0, &pcm);
if (err < 0)
return err;
pcm->private_data = emu;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_efx_playback_ops);
pcm->info_flags = 0;
pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX;
strcpy(pcm->name, "Multichannel Playback");
emu->pcm_multi = pcm;
for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next)
snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG,
&emu->pci->dev,
64*1024, 64*1024);
return 0;
}
static const struct snd_pcm_ops snd_emu10k1_capture_mic_ops = {
.open = snd_emu10k1_capture_mic_open,
.close = snd_emu10k1_capture_mic_close,
.prepare = snd_emu10k1_capture_prepare,
.trigger = snd_emu10k1_capture_trigger,
.pointer = snd_emu10k1_capture_pointer,
};
int snd_emu10k1_pcm_mic(struct snd_emu10k1 *emu, int device)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(emu->card, "emu10k1 mic", device, 0, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = emu;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_mic_ops);
pcm->info_flags = 0;
strcpy(pcm->name, "Mic Capture");
emu->pcm_mic = pcm;
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev,
64*1024, 64*1024);
return 0;
}
static int snd_emu10k1_pcm_efx_voices_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
int nefx = emu->audigy ? 64 : 32;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = nefx;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_emu10k1_pcm_efx_voices_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
int nefx = emu->audigy ? 64 : 32;
int idx;
for (idx = 0; idx < nefx; idx++)
ucontrol->value.integer.value[idx] = (emu->efx_voices_mask[idx / 32] & (1 << (idx % 32))) ? 1 : 0;
return 0;
}
static int snd_emu10k1_pcm_efx_voices_mask_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
unsigned int nval[2], bits;
int nefx = emu->audigy ? 64 : 32;
int change, idx;
nval[0] = nval[1] = 0;
for (idx = 0, bits = 0; idx < nefx; idx++)
if (ucontrol->value.integer.value[idx]) {
nval[idx / 32] |= 1 << (idx % 32);
bits++;
}
if (bits == 9 || bits == 11 || bits == 13 || bits == 15 || bits > 16)
return -EINVAL;
spin_lock_irq(&emu->reg_lock);
change = (nval[0] != emu->efx_voices_mask[0]) ||
(nval[1] != emu->efx_voices_mask[1]);
emu->efx_voices_mask[0] = nval[0];
emu->efx_voices_mask[1] = nval[1];
spin_unlock_irq(&emu->reg_lock);
return change;
}
static const struct snd_kcontrol_new snd_emu10k1_pcm_efx_voices_mask = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Captured FX8010 Outputs",
.info = snd_emu10k1_pcm_efx_voices_mask_info,
.get = snd_emu10k1_pcm_efx_voices_mask_get,
.put = snd_emu10k1_pcm_efx_voices_mask_put
};
static const struct snd_pcm_ops snd_emu10k1_capture_efx_ops = {
.open = snd_emu10k1_capture_efx_open,
.close = snd_emu10k1_capture_efx_close,
.prepare = snd_emu10k1_capture_prepare,
.trigger = snd_emu10k1_capture_trigger,
.pointer = snd_emu10k1_capture_pointer,
};
/* EFX playback */
#define INITIAL_TRAM_SHIFT 14
#define INITIAL_TRAM_POS(size) ((((size) / 2) - INITIAL_TRAM_SHIFT) - 1)
static void snd_emu10k1_fx8010_playback_irq(struct snd_emu10k1 *emu, void *private_data)
{
struct snd_pcm_substream *substream = private_data;
snd_pcm_period_elapsed(substream);
}
static void snd_emu10k1_fx8010_playback_tram_poke1(unsigned short *dst_left,
unsigned short *dst_right,
unsigned short *src,
unsigned int count,
unsigned int tram_shift)
{
/*
dev_dbg(emu->card->dev,
"tram_poke1: dst_left = 0x%p, dst_right = 0x%p, "
"src = 0x%p, count = 0x%x\n",
dst_left, dst_right, src, count);
*/
if ((tram_shift & 1) == 0) {
while (count--) {
*dst_left-- = *src++;
*dst_right-- = *src++;
}
} else {
while (count--) {
*dst_right-- = *src++;
*dst_left-- = *src++;
}
}
}
static void fx8010_pb_trans_copy(struct snd_pcm_substream *substream,
struct snd_pcm_indirect *rec, size_t bytes)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
unsigned int tram_size = pcm->buffer_size;
unsigned short *src = (unsigned short *)(substream->runtime->dma_area + rec->sw_data);
unsigned int frames = bytes >> 2, count;
unsigned int tram_pos = pcm->tram_pos;
unsigned int tram_shift = pcm->tram_shift;
while (frames > tram_pos) {
count = tram_pos + 1;
snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos,
(unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2,
src, count, tram_shift);
src += count * 2;
frames -= count;
tram_pos = (tram_size / 2) - 1;
tram_shift++;
}
snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos,
(unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2,
src, frames, tram_shift);
tram_pos -= frames;
pcm->tram_pos = tram_pos;
pcm->tram_shift = tram_shift;
}
static int snd_emu10k1_fx8010_playback_transfer(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
return snd_pcm_indirect_playback_transfer(substream, &pcm->pcm_rec,
fx8010_pb_trans_copy);
}
static int snd_emu10k1_fx8010_playback_hw_free(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
unsigned int i;
for (i = 0; i < pcm->channels; i++)
snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, 0);
return 0;
}
static int snd_emu10k1_fx8010_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
unsigned int i;
/*
dev_dbg(emu->card->dev, "prepare: etram_pages = 0x%p, dma_area = 0x%x, "
"buffer_size = 0x%x (0x%x)\n",
emu->fx8010.etram_pages, runtime->dma_area,
runtime->buffer_size, runtime->buffer_size << 2);
*/
memset(&pcm->pcm_rec, 0, sizeof(pcm->pcm_rec));
pcm->pcm_rec.hw_buffer_size = pcm->buffer_size * 2; /* byte size */
pcm->pcm_rec.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size);
pcm->tram_shift = 0;
snd_emu10k1_ptr_write_multiple(emu, 0,
emu->gpr_base + pcm->gpr_running, 0, /* reset */
emu->gpr_base + pcm->gpr_trigger, 0, /* reset */
emu->gpr_base + pcm->gpr_size, runtime->buffer_size,
emu->gpr_base + pcm->gpr_ptr, 0, /* reset ptr number */
emu->gpr_base + pcm->gpr_count, runtime->period_size,
emu->gpr_base + pcm->gpr_tmpcount, runtime->period_size,
REGLIST_END);
for (i = 0; i < pcm->channels; i++)
snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, (TANKMEMADDRREG_READ|TANKMEMADDRREG_ALIGN) + i * (runtime->buffer_size / pcm->channels));
return 0;
}
static int snd_emu10k1_fx8010_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
int result = 0;
spin_lock(&emu->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
/* follow thru */
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
#ifdef EMU10K1_SET_AC3_IEC958
{
int i;
for (i = 0; i < 3; i++) {
unsigned int bits;
bits = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS |
0x00001200 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT | SPCS_NOTAUDIODATA;
snd_emu10k1_ptr_write(emu, SPCS0 + i, 0, bits);
}
}
#endif
result = snd_emu10k1_fx8010_register_irq_handler(emu, snd_emu10k1_fx8010_playback_irq, pcm->gpr_running, substream, &pcm->irq);
if (result < 0)
goto __err;
snd_emu10k1_fx8010_playback_transfer(substream); /* roll the ball */
snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 1);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
snd_emu10k1_fx8010_unregister_irq_handler(emu, &pcm->irq);
snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 0);
pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size);
pcm->tram_shift = 0;
break;
default:
result = -EINVAL;
break;
}
__err:
spin_unlock(&emu->reg_lock);
return result;
}
static snd_pcm_uframes_t snd_emu10k1_fx8010_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
size_t ptr; /* byte pointer */
if (!snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_trigger, 0))
return 0;
ptr = snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_ptr, 0) << 2;
return snd_pcm_indirect_playback_pointer(substream, &pcm->pcm_rec, ptr);
}
static const struct snd_pcm_hardware snd_emu10k1_fx8010_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_RESUME |
/* SNDRV_PCM_INFO_MMAP_VALID | */ SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_APPLPTR),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 1024,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
static int snd_emu10k1_fx8010_playback_open(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
runtime->hw = snd_emu10k1_fx8010_playback;
runtime->hw.channels_min = runtime->hw.channels_max = pcm->channels;
runtime->hw.period_bytes_max = (pcm->buffer_size * 2) / 2;
spin_lock_irq(&emu->reg_lock);
if (pcm->valid == 0) {
spin_unlock_irq(&emu->reg_lock);
return -ENODEV;
}
pcm->opened = 1;
spin_unlock_irq(&emu->reg_lock);
return 0;
}
static int snd_emu10k1_fx8010_playback_close(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number];
spin_lock_irq(&emu->reg_lock);
pcm->opened = 0;
spin_unlock_irq(&emu->reg_lock);
return 0;
}
static const struct snd_pcm_ops snd_emu10k1_fx8010_playback_ops = {
.open = snd_emu10k1_fx8010_playback_open,
.close = snd_emu10k1_fx8010_playback_close,
.hw_free = snd_emu10k1_fx8010_playback_hw_free,
.prepare = snd_emu10k1_fx8010_playback_prepare,
.trigger = snd_emu10k1_fx8010_playback_trigger,
.pointer = snd_emu10k1_fx8010_playback_pointer,
.ack = snd_emu10k1_fx8010_playback_transfer,
};
int snd_emu10k1_pcm_efx(struct snd_emu10k1 *emu, int device)
{
struct snd_pcm *pcm;
struct snd_kcontrol *kctl;
int err;
err = snd_pcm_new(emu->card, "emu10k1 efx", device, emu->audigy ? 0 : 8, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = emu;
if (!emu->audigy)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_fx8010_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_efx_ops);
pcm->info_flags = 0;
if (emu->audigy)
strcpy(pcm->name, "Multichannel Capture");
else
strcpy(pcm->name, "Multichannel Capture/PT Playback");
emu->pcm_efx = pcm;
if (!emu->card_capabilities->emu_model) {
// On Sound Blasters, the DSP code copies the EXTINs to FXBUS2.
// The mask determines which of these and the EXTOUTs the multi-
// channel capture actually records (the channel order is fixed).
if (emu->audigy) {
emu->efx_voices_mask[0] = 0;
emu->efx_voices_mask[1] = 0xffff;
} else {
emu->efx_voices_mask[0] = 0xffff0000;
emu->efx_voices_mask[1] = 0;
}
kctl = snd_ctl_new1(&snd_emu10k1_pcm_efx_voices_mask, emu);
if (!kctl)
return -ENOMEM;
kctl->id.device = device;
err = snd_ctl_add(emu->card, kctl);
if (err < 0)
return err;
} else {
// On E-MU cards, the DSP code copies the P16VINs/EMU32INs to
// FXBUS2. These are already selected & routed by the FPGA,
// so there is no need to apply additional masking.
}
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev,
64*1024, 64*1024);
return 0;
}