blob: b072045eb154103c502182b415551ad09017d651 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Realtek SMI subdriver for the Realtek RTL8365MB-VC ethernet switch.
*
* Copyright (C) 2021 Alvin Šipraga <alsi@bang-olufsen.dk>
* Copyright (C) 2021 Michael Rasmussen <mir@bang-olufsen.dk>
*
* The RTL8365MB-VC is a 4+1 port 10/100/1000M switch controller. It includes 4
* integrated PHYs for the user facing ports, and an extension interface which
* can be connected to the CPU - or another PHY - via either MII, RMII, or
* RGMII. The switch is configured via the Realtek Simple Management Interface
* (SMI), which uses the MDIO/MDC lines.
*
* Below is a simplified block diagram of the chip and its relevant interfaces.
*
* .-----------------------------------.
* | |
* UTP <---------------> Giga PHY <-> PCS <-> P0 GMAC |
* UTP <---------------> Giga PHY <-> PCS <-> P1 GMAC |
* UTP <---------------> Giga PHY <-> PCS <-> P2 GMAC |
* UTP <---------------> Giga PHY <-> PCS <-> P3 GMAC |
* | |
* CPU/PHY <-MII/RMII/RGMII---> Extension <---> Extension |
* | interface 1 GMAC 1 |
* | |
* SMI driver/ <-MDC/SCL---> Management ~~~~~~~~~~~~~~ |
* EEPROM <-MDIO/SDA--> interface ~REALTEK ~~~~~ |
* | ~RTL8365MB ~~~ |
* | ~GXXXC TAIWAN~ |
* GPIO <--------------> Reset ~~~~~~~~~~~~~~ |
* | |
* Interrupt <----------> Link UP/DOWN events |
* controller | |
* '-----------------------------------'
*
* The driver uses DSA to integrate the 4 user and 1 extension ports into the
* kernel. Netdevices are created for the user ports, as are PHY devices for
* their integrated PHYs. The device tree firmware should also specify the link
* partner of the extension port - either via a fixed-link or other phy-handle.
* See the device tree bindings for more detailed information. Note that the
* driver has only been tested with a fixed-link, but in principle it should not
* matter.
*
* NOTE: Currently, only the RGMII interface is implemented in this driver.
*
* The interrupt line is asserted on link UP/DOWN events. The driver creates a
* custom irqchip to handle this interrupt and demultiplex the events by reading
* the status registers via SMI. Interrupts are then propagated to the relevant
* PHY device.
*
* The EEPROM contains initial register values which the chip will read over I2C
* upon hardware reset. It is also possible to omit the EEPROM. In both cases,
* the driver will manually reprogram some registers using jam tables to reach
* an initial state defined by the vendor driver.
*
* This Linux driver is written based on an OS-agnostic vendor driver from
* Realtek. The reference GPL-licensed sources can be found in the OpenWrt
* source tree under the name rtl8367c. The vendor driver claims to support a
* number of similar switch controllers from Realtek, but the only hardware we
* have is the RTL8365MB-VC. Moreover, there does not seem to be any chip under
* the name RTL8367C. Although one wishes that the 'C' stood for some kind of
* common hardware revision, there exist examples of chips with the suffix -VC
* which are explicitly not supported by the rtl8367c driver and which instead
* require the rtl8367d vendor driver. With all this uncertainty, the driver has
* been modestly named rtl8365mb. Future implementors may wish to rename things
* accordingly.
*
* In the same family of chips, some carry up to 8 user ports and up to 2
* extension ports. Where possible this driver tries to make things generic, but
* more work must be done to support these configurations. According to
* documentation from Realtek, the family should include the following chips:
*
* - RTL8363NB
* - RTL8363NB-VB
* - RTL8363SC
* - RTL8363SC-VB
* - RTL8364NB
* - RTL8364NB-VB
* - RTL8365MB-VC
* - RTL8366SC
* - RTL8367RB-VB
* - RTL8367SB
* - RTL8367S
* - RTL8370MB
* - RTL8310SR
*
* Some of the register logic for these additional chips has been skipped over
* while implementing this driver. It is therefore not possible to assume that
* things will work out-of-the-box for other chips, and a careful review of the
* vendor driver may be needed to expand support. The RTL8365MB-VC seems to be
* one of the simpler chips.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/mutex.h>
#include <linux/of_irq.h>
#include <linux/regmap.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include "realtek.h"
/* Family-specific data and limits */
#define RTL8365MB_PHYADDRMAX 7
#define RTL8365MB_NUM_PHYREGS 32
#define RTL8365MB_PHYREGMAX (RTL8365MB_NUM_PHYREGS - 1)
#define RTL8365MB_MAX_NUM_PORTS 11
#define RTL8365MB_MAX_NUM_EXTINTS 3
#define RTL8365MB_LEARN_LIMIT_MAX 2112
/* Chip identification registers */
#define RTL8365MB_CHIP_ID_REG 0x1300
#define RTL8365MB_CHIP_VER_REG 0x1301
#define RTL8365MB_MAGIC_REG 0x13C2
#define RTL8365MB_MAGIC_VALUE 0x0249
/* Chip reset register */
#define RTL8365MB_CHIP_RESET_REG 0x1322
#define RTL8365MB_CHIP_RESET_SW_MASK 0x0002
#define RTL8365MB_CHIP_RESET_HW_MASK 0x0001
/* Interrupt polarity register */
#define RTL8365MB_INTR_POLARITY_REG 0x1100
#define RTL8365MB_INTR_POLARITY_MASK 0x0001
#define RTL8365MB_INTR_POLARITY_HIGH 0
#define RTL8365MB_INTR_POLARITY_LOW 1
/* Interrupt control/status register - enable/check specific interrupt types */
#define RTL8365MB_INTR_CTRL_REG 0x1101
#define RTL8365MB_INTR_STATUS_REG 0x1102
#define RTL8365MB_INTR_SLIENT_START_2_MASK 0x1000
#define RTL8365MB_INTR_SLIENT_START_MASK 0x0800
#define RTL8365MB_INTR_ACL_ACTION_MASK 0x0200
#define RTL8365MB_INTR_CABLE_DIAG_FIN_MASK 0x0100
#define RTL8365MB_INTR_INTERRUPT_8051_MASK 0x0080
#define RTL8365MB_INTR_LOOP_DETECTION_MASK 0x0040
#define RTL8365MB_INTR_GREEN_TIMER_MASK 0x0020
#define RTL8365MB_INTR_SPECIAL_CONGEST_MASK 0x0010
#define RTL8365MB_INTR_SPEED_CHANGE_MASK 0x0008
#define RTL8365MB_INTR_LEARN_OVER_MASK 0x0004
#define RTL8365MB_INTR_METER_EXCEEDED_MASK 0x0002
#define RTL8365MB_INTR_LINK_CHANGE_MASK 0x0001
#define RTL8365MB_INTR_ALL_MASK \
(RTL8365MB_INTR_SLIENT_START_2_MASK | \
RTL8365MB_INTR_SLIENT_START_MASK | \
RTL8365MB_INTR_ACL_ACTION_MASK | \
RTL8365MB_INTR_CABLE_DIAG_FIN_MASK | \
RTL8365MB_INTR_INTERRUPT_8051_MASK | \
RTL8365MB_INTR_LOOP_DETECTION_MASK | \
RTL8365MB_INTR_GREEN_TIMER_MASK | \
RTL8365MB_INTR_SPECIAL_CONGEST_MASK | \
RTL8365MB_INTR_SPEED_CHANGE_MASK | \
RTL8365MB_INTR_LEARN_OVER_MASK | \
RTL8365MB_INTR_METER_EXCEEDED_MASK | \
RTL8365MB_INTR_LINK_CHANGE_MASK)
/* Per-port interrupt type status registers */
#define RTL8365MB_PORT_LINKDOWN_IND_REG 0x1106
#define RTL8365MB_PORT_LINKDOWN_IND_MASK 0x07FF
#define RTL8365MB_PORT_LINKUP_IND_REG 0x1107
#define RTL8365MB_PORT_LINKUP_IND_MASK 0x07FF
/* PHY indirect access registers */
#define RTL8365MB_INDIRECT_ACCESS_CTRL_REG 0x1F00
#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK 0x0002
#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ 0
#define RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE 1
#define RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK 0x0001
#define RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE 1
#define RTL8365MB_INDIRECT_ACCESS_STATUS_REG 0x1F01
#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG 0x1F02
#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK GENMASK(4, 0)
#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK GENMASK(7, 5)
#define RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK GENMASK(11, 8)
#define RTL8365MB_PHY_BASE 0x2000
#define RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG 0x1F03
#define RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG 0x1F04
/* PHY OCP address prefix register */
#define RTL8365MB_GPHY_OCP_MSB_0_REG 0x1D15
#define RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK 0x0FC0
#define RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK 0xFC00
/* The PHY OCP addresses of PHY registers 0~31 start here */
#define RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE 0xA400
/* External interface port mode values - used in DIGITAL_INTERFACE_SELECT */
#define RTL8365MB_EXT_PORT_MODE_DISABLE 0
#define RTL8365MB_EXT_PORT_MODE_RGMII 1
#define RTL8365MB_EXT_PORT_MODE_MII_MAC 2
#define RTL8365MB_EXT_PORT_MODE_MII_PHY 3
#define RTL8365MB_EXT_PORT_MODE_TMII_MAC 4
#define RTL8365MB_EXT_PORT_MODE_TMII_PHY 5
#define RTL8365MB_EXT_PORT_MODE_GMII 6
#define RTL8365MB_EXT_PORT_MODE_RMII_MAC 7
#define RTL8365MB_EXT_PORT_MODE_RMII_PHY 8
#define RTL8365MB_EXT_PORT_MODE_SGMII 9
#define RTL8365MB_EXT_PORT_MODE_HSGMII 10
#define RTL8365MB_EXT_PORT_MODE_1000X_100FX 11
#define RTL8365MB_EXT_PORT_MODE_1000X 12
#define RTL8365MB_EXT_PORT_MODE_100FX 13
/* External interface mode configuration registers 0~1 */
#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 0x1305 /* EXT1 */
#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 0x13C3 /* EXT2 */
#define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(_extint) \
((_extint) == 1 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 : \
(_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 : \
0x0)
#define RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(_extint) \
(0xF << (((_extint) % 2)))
#define RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(_extint) \
(((_extint) % 2) * 4)
/* External interface RGMII TX/RX delay configuration registers 0~2 */
#define RTL8365MB_EXT_RGMXF_REG0 0x1306 /* EXT0 */
#define RTL8365MB_EXT_RGMXF_REG1 0x1307 /* EXT1 */
#define RTL8365MB_EXT_RGMXF_REG2 0x13C5 /* EXT2 */
#define RTL8365MB_EXT_RGMXF_REG(_extint) \
((_extint) == 0 ? RTL8365MB_EXT_RGMXF_REG0 : \
(_extint) == 1 ? RTL8365MB_EXT_RGMXF_REG1 : \
(_extint) == 2 ? RTL8365MB_EXT_RGMXF_REG2 : \
0x0)
#define RTL8365MB_EXT_RGMXF_RXDELAY_MASK 0x0007
#define RTL8365MB_EXT_RGMXF_TXDELAY_MASK 0x0008
/* External interface port speed values - used in DIGITAL_INTERFACE_FORCE */
#define RTL8365MB_PORT_SPEED_10M 0
#define RTL8365MB_PORT_SPEED_100M 1
#define RTL8365MB_PORT_SPEED_1000M 2
/* External interface force configuration registers 0~2 */
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 0x1310 /* EXT0 */
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 0x1311 /* EXT1 */
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 0x13C4 /* EXT2 */
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(_extint) \
((_extint) == 0 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 : \
(_extint) == 1 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 : \
(_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 : \
0x0)
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK 0x1000
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_NWAY_MASK 0x0080
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK 0x0040
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK 0x0020
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK 0x0010
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK 0x0004
#define RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK 0x0003
/* CPU port mask register - controls which ports are treated as CPU ports */
#define RTL8365MB_CPU_PORT_MASK_REG 0x1219
#define RTL8365MB_CPU_PORT_MASK_MASK 0x07FF
/* CPU control register */
#define RTL8365MB_CPU_CTRL_REG 0x121A
#define RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK 0x0400
#define RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK 0x0200
#define RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK 0x0080
#define RTL8365MB_CPU_CTRL_TAG_POSITION_MASK 0x0040
#define RTL8365MB_CPU_CTRL_TRAP_PORT_MASK 0x0038
#define RTL8365MB_CPU_CTRL_INSERTMODE_MASK 0x0006
#define RTL8365MB_CPU_CTRL_EN_MASK 0x0001
/* Maximum packet length register */
#define RTL8365MB_CFG0_MAX_LEN_REG 0x088C
#define RTL8365MB_CFG0_MAX_LEN_MASK 0x3FFF
#define RTL8365MB_CFG0_MAX_LEN_MAX 0x3FFF
/* Port learning limit registers */
#define RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE 0x0A20
#define RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(_physport) \
(RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE + (_physport))
/* Port isolation (forwarding mask) registers */
#define RTL8365MB_PORT_ISOLATION_REG_BASE 0x08A2
#define RTL8365MB_PORT_ISOLATION_REG(_physport) \
(RTL8365MB_PORT_ISOLATION_REG_BASE + (_physport))
#define RTL8365MB_PORT_ISOLATION_MASK 0x07FF
/* MSTP port state registers - indexed by tree instance */
#define RTL8365MB_MSTI_CTRL_BASE 0x0A00
#define RTL8365MB_MSTI_CTRL_REG(_msti, _physport) \
(RTL8365MB_MSTI_CTRL_BASE + ((_msti) << 1) + ((_physport) >> 3))
#define RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(_physport) ((_physport) << 1)
#define RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(_physport) \
(0x3 << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET((_physport)))
/* MIB counter value registers */
#define RTL8365MB_MIB_COUNTER_BASE 0x1000
#define RTL8365MB_MIB_COUNTER_REG(_x) (RTL8365MB_MIB_COUNTER_BASE + (_x))
/* MIB counter address register */
#define RTL8365MB_MIB_ADDRESS_REG 0x1004
#define RTL8365MB_MIB_ADDRESS_PORT_OFFSET 0x007C
#define RTL8365MB_MIB_ADDRESS(_p, _x) \
(((RTL8365MB_MIB_ADDRESS_PORT_OFFSET) * (_p) + (_x)) >> 2)
#define RTL8365MB_MIB_CTRL0_REG 0x1005
#define RTL8365MB_MIB_CTRL0_RESET_MASK 0x0002
#define RTL8365MB_MIB_CTRL0_BUSY_MASK 0x0001
/* The DSA callback .get_stats64 runs in atomic context, so we are not allowed
* to block. On the other hand, accessing MIB counters absolutely requires us to
* block. The solution is thus to schedule work which polls the MIB counters
* asynchronously and updates some private data, which the callback can then
* fetch atomically. Three seconds should be a good enough polling interval.
*/
#define RTL8365MB_STATS_INTERVAL_JIFFIES (3 * HZ)
enum rtl8365mb_mib_counter_index {
RTL8365MB_MIB_ifInOctets,
RTL8365MB_MIB_dot3StatsFCSErrors,
RTL8365MB_MIB_dot3StatsSymbolErrors,
RTL8365MB_MIB_dot3InPauseFrames,
RTL8365MB_MIB_dot3ControlInUnknownOpcodes,
RTL8365MB_MIB_etherStatsFragments,
RTL8365MB_MIB_etherStatsJabbers,
RTL8365MB_MIB_ifInUcastPkts,
RTL8365MB_MIB_etherStatsDropEvents,
RTL8365MB_MIB_ifInMulticastPkts,
RTL8365MB_MIB_ifInBroadcastPkts,
RTL8365MB_MIB_inMldChecksumError,
RTL8365MB_MIB_inIgmpChecksumError,
RTL8365MB_MIB_inMldSpecificQuery,
RTL8365MB_MIB_inMldGeneralQuery,
RTL8365MB_MIB_inIgmpSpecificQuery,
RTL8365MB_MIB_inIgmpGeneralQuery,
RTL8365MB_MIB_inMldLeaves,
RTL8365MB_MIB_inIgmpLeaves,
RTL8365MB_MIB_etherStatsOctets,
RTL8365MB_MIB_etherStatsUnderSizePkts,
RTL8365MB_MIB_etherOversizeStats,
RTL8365MB_MIB_etherStatsPkts64Octets,
RTL8365MB_MIB_etherStatsPkts65to127Octets,
RTL8365MB_MIB_etherStatsPkts128to255Octets,
RTL8365MB_MIB_etherStatsPkts256to511Octets,
RTL8365MB_MIB_etherStatsPkts512to1023Octets,
RTL8365MB_MIB_etherStatsPkts1024to1518Octets,
RTL8365MB_MIB_ifOutOctets,
RTL8365MB_MIB_dot3StatsSingleCollisionFrames,
RTL8365MB_MIB_dot3StatsMultipleCollisionFrames,
RTL8365MB_MIB_dot3StatsDeferredTransmissions,
RTL8365MB_MIB_dot3StatsLateCollisions,
RTL8365MB_MIB_etherStatsCollisions,
RTL8365MB_MIB_dot3StatsExcessiveCollisions,
RTL8365MB_MIB_dot3OutPauseFrames,
RTL8365MB_MIB_ifOutDiscards,
RTL8365MB_MIB_dot1dTpPortInDiscards,
RTL8365MB_MIB_ifOutUcastPkts,
RTL8365MB_MIB_ifOutMulticastPkts,
RTL8365MB_MIB_ifOutBroadcastPkts,
RTL8365MB_MIB_outOampduPkts,
RTL8365MB_MIB_inOampduPkts,
RTL8365MB_MIB_inIgmpJoinsSuccess,
RTL8365MB_MIB_inIgmpJoinsFail,
RTL8365MB_MIB_inMldJoinsSuccess,
RTL8365MB_MIB_inMldJoinsFail,
RTL8365MB_MIB_inReportSuppressionDrop,
RTL8365MB_MIB_inLeaveSuppressionDrop,
RTL8365MB_MIB_outIgmpReports,
RTL8365MB_MIB_outIgmpLeaves,
RTL8365MB_MIB_outIgmpGeneralQuery,
RTL8365MB_MIB_outIgmpSpecificQuery,
RTL8365MB_MIB_outMldReports,
RTL8365MB_MIB_outMldLeaves,
RTL8365MB_MIB_outMldGeneralQuery,
RTL8365MB_MIB_outMldSpecificQuery,
RTL8365MB_MIB_inKnownMulticastPkts,
RTL8365MB_MIB_END,
};
struct rtl8365mb_mib_counter {
u32 offset;
u32 length;
const char *name;
};
#define RTL8365MB_MAKE_MIB_COUNTER(_offset, _length, _name) \
[RTL8365MB_MIB_ ## _name] = { _offset, _length, #_name }
static struct rtl8365mb_mib_counter rtl8365mb_mib_counters[] = {
RTL8365MB_MAKE_MIB_COUNTER(0, 4, ifInOctets),
RTL8365MB_MAKE_MIB_COUNTER(4, 2, dot3StatsFCSErrors),
RTL8365MB_MAKE_MIB_COUNTER(6, 2, dot3StatsSymbolErrors),
RTL8365MB_MAKE_MIB_COUNTER(8, 2, dot3InPauseFrames),
RTL8365MB_MAKE_MIB_COUNTER(10, 2, dot3ControlInUnknownOpcodes),
RTL8365MB_MAKE_MIB_COUNTER(12, 2, etherStatsFragments),
RTL8365MB_MAKE_MIB_COUNTER(14, 2, etherStatsJabbers),
RTL8365MB_MAKE_MIB_COUNTER(16, 2, ifInUcastPkts),
RTL8365MB_MAKE_MIB_COUNTER(18, 2, etherStatsDropEvents),
RTL8365MB_MAKE_MIB_COUNTER(20, 2, ifInMulticastPkts),
RTL8365MB_MAKE_MIB_COUNTER(22, 2, ifInBroadcastPkts),
RTL8365MB_MAKE_MIB_COUNTER(24, 2, inMldChecksumError),
RTL8365MB_MAKE_MIB_COUNTER(26, 2, inIgmpChecksumError),
RTL8365MB_MAKE_MIB_COUNTER(28, 2, inMldSpecificQuery),
RTL8365MB_MAKE_MIB_COUNTER(30, 2, inMldGeneralQuery),
RTL8365MB_MAKE_MIB_COUNTER(32, 2, inIgmpSpecificQuery),
RTL8365MB_MAKE_MIB_COUNTER(34, 2, inIgmpGeneralQuery),
RTL8365MB_MAKE_MIB_COUNTER(36, 2, inMldLeaves),
RTL8365MB_MAKE_MIB_COUNTER(38, 2, inIgmpLeaves),
RTL8365MB_MAKE_MIB_COUNTER(40, 4, etherStatsOctets),
RTL8365MB_MAKE_MIB_COUNTER(44, 2, etherStatsUnderSizePkts),
RTL8365MB_MAKE_MIB_COUNTER(46, 2, etherOversizeStats),
RTL8365MB_MAKE_MIB_COUNTER(48, 2, etherStatsPkts64Octets),
RTL8365MB_MAKE_MIB_COUNTER(50, 2, etherStatsPkts65to127Octets),
RTL8365MB_MAKE_MIB_COUNTER(52, 2, etherStatsPkts128to255Octets),
RTL8365MB_MAKE_MIB_COUNTER(54, 2, etherStatsPkts256to511Octets),
RTL8365MB_MAKE_MIB_COUNTER(56, 2, etherStatsPkts512to1023Octets),
RTL8365MB_MAKE_MIB_COUNTER(58, 2, etherStatsPkts1024to1518Octets),
RTL8365MB_MAKE_MIB_COUNTER(60, 4, ifOutOctets),
RTL8365MB_MAKE_MIB_COUNTER(64, 2, dot3StatsSingleCollisionFrames),
RTL8365MB_MAKE_MIB_COUNTER(66, 2, dot3StatsMultipleCollisionFrames),
RTL8365MB_MAKE_MIB_COUNTER(68, 2, dot3StatsDeferredTransmissions),
RTL8365MB_MAKE_MIB_COUNTER(70, 2, dot3StatsLateCollisions),
RTL8365MB_MAKE_MIB_COUNTER(72, 2, etherStatsCollisions),
RTL8365MB_MAKE_MIB_COUNTER(74, 2, dot3StatsExcessiveCollisions),
RTL8365MB_MAKE_MIB_COUNTER(76, 2, dot3OutPauseFrames),
RTL8365MB_MAKE_MIB_COUNTER(78, 2, ifOutDiscards),
RTL8365MB_MAKE_MIB_COUNTER(80, 2, dot1dTpPortInDiscards),
RTL8365MB_MAKE_MIB_COUNTER(82, 2, ifOutUcastPkts),
RTL8365MB_MAKE_MIB_COUNTER(84, 2, ifOutMulticastPkts),
RTL8365MB_MAKE_MIB_COUNTER(86, 2, ifOutBroadcastPkts),
RTL8365MB_MAKE_MIB_COUNTER(88, 2, outOampduPkts),
RTL8365MB_MAKE_MIB_COUNTER(90, 2, inOampduPkts),
RTL8365MB_MAKE_MIB_COUNTER(92, 4, inIgmpJoinsSuccess),
RTL8365MB_MAKE_MIB_COUNTER(96, 2, inIgmpJoinsFail),
RTL8365MB_MAKE_MIB_COUNTER(98, 2, inMldJoinsSuccess),
RTL8365MB_MAKE_MIB_COUNTER(100, 2, inMldJoinsFail),
RTL8365MB_MAKE_MIB_COUNTER(102, 2, inReportSuppressionDrop),
RTL8365MB_MAKE_MIB_COUNTER(104, 2, inLeaveSuppressionDrop),
RTL8365MB_MAKE_MIB_COUNTER(106, 2, outIgmpReports),
RTL8365MB_MAKE_MIB_COUNTER(108, 2, outIgmpLeaves),
RTL8365MB_MAKE_MIB_COUNTER(110, 2, outIgmpGeneralQuery),
RTL8365MB_MAKE_MIB_COUNTER(112, 2, outIgmpSpecificQuery),
RTL8365MB_MAKE_MIB_COUNTER(114, 2, outMldReports),
RTL8365MB_MAKE_MIB_COUNTER(116, 2, outMldLeaves),
RTL8365MB_MAKE_MIB_COUNTER(118, 2, outMldGeneralQuery),
RTL8365MB_MAKE_MIB_COUNTER(120, 2, outMldSpecificQuery),
RTL8365MB_MAKE_MIB_COUNTER(122, 2, inKnownMulticastPkts),
};
static_assert(ARRAY_SIZE(rtl8365mb_mib_counters) == RTL8365MB_MIB_END);
struct rtl8365mb_jam_tbl_entry {
u16 reg;
u16 val;
};
/* Lifted from the vendor driver sources */
static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_8365mb_vc[] = {
{ 0x13EB, 0x15BB }, { 0x1303, 0x06D6 }, { 0x1304, 0x0700 },
{ 0x13E2, 0x003F }, { 0x13F9, 0x0090 }, { 0x121E, 0x03CA },
{ 0x1233, 0x0352 }, { 0x1237, 0x00A0 }, { 0x123A, 0x0030 },
{ 0x1239, 0x0084 }, { 0x0301, 0x1000 }, { 0x1349, 0x001F },
{ 0x18E0, 0x4004 }, { 0x122B, 0x241C }, { 0x1305, 0xC000 },
{ 0x13F0, 0x0000 },
};
static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_common[] = {
{ 0x1200, 0x7FCB }, { 0x0884, 0x0003 }, { 0x06EB, 0x0001 },
{ 0x03Fa, 0x0007 }, { 0x08C8, 0x00C0 }, { 0x0A30, 0x020E },
{ 0x0800, 0x0000 }, { 0x0802, 0x0000 }, { 0x09DA, 0x0013 },
{ 0x1D32, 0x0002 },
};
enum rtl8365mb_phy_interface_mode {
RTL8365MB_PHY_INTERFACE_MODE_INVAL = 0,
RTL8365MB_PHY_INTERFACE_MODE_INTERNAL = BIT(0),
RTL8365MB_PHY_INTERFACE_MODE_MII = BIT(1),
RTL8365MB_PHY_INTERFACE_MODE_TMII = BIT(2),
RTL8365MB_PHY_INTERFACE_MODE_RMII = BIT(3),
RTL8365MB_PHY_INTERFACE_MODE_RGMII = BIT(4),
RTL8365MB_PHY_INTERFACE_MODE_SGMII = BIT(5),
RTL8365MB_PHY_INTERFACE_MODE_HSGMII = BIT(6),
};
/**
* struct rtl8365mb_extint - external interface info
* @port: the port with an external interface
* @id: the external interface ID, which is either 0, 1, or 2
* @supported_interfaces: a bitmask of supported PHY interface modes
*
* Represents a mapping: port -> { id, supported_interfaces }. To be embedded
* in &struct rtl8365mb_chip_info for every port with an external interface.
*/
struct rtl8365mb_extint {
int port;
int id;
unsigned int supported_interfaces;
};
/**
* struct rtl8365mb_chip_info - static chip-specific info
* @name: human-readable chip name
* @chip_id: chip identifier
* @chip_ver: chip silicon revision
* @extints: available external interfaces
* @jam_table: chip-specific initialization jam table
* @jam_size: size of the chip's jam table
*
* These data are specific to a given chip in the family of switches supported
* by this driver. When adding support for another chip in the family, a new
* chip info should be added to the rtl8365mb_chip_infos array.
*/
struct rtl8365mb_chip_info {
const char *name;
u32 chip_id;
u32 chip_ver;
const struct rtl8365mb_extint extints[RTL8365MB_MAX_NUM_EXTINTS];
const struct rtl8365mb_jam_tbl_entry *jam_table;
size_t jam_size;
};
/* Chip info for each supported switch in the family */
#define PHY_INTF(_mode) (RTL8365MB_PHY_INTERFACE_MODE_ ## _mode)
static const struct rtl8365mb_chip_info rtl8365mb_chip_infos[] = {
{
.name = "RTL8365MB-VC",
.chip_id = 0x6367,
.chip_ver = 0x0040,
.extints = {
{ 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
PHY_INTF(RMII) | PHY_INTF(RGMII) },
},
.jam_table = rtl8365mb_init_jam_8365mb_vc,
.jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
},
{
.name = "RTL8367S",
.chip_id = 0x6367,
.chip_ver = 0x00A0,
.extints = {
{ 6, 1, PHY_INTF(SGMII) | PHY_INTF(HSGMII) },
{ 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
PHY_INTF(RMII) | PHY_INTF(RGMII) },
},
.jam_table = rtl8365mb_init_jam_8365mb_vc,
.jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
},
{
.name = "RTL8367RB-VB",
.chip_id = 0x6367,
.chip_ver = 0x0020,
.extints = {
{ 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
PHY_INTF(RMII) | PHY_INTF(RGMII) },
{ 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
PHY_INTF(RMII) | PHY_INTF(RGMII) },
},
.jam_table = rtl8365mb_init_jam_8365mb_vc,
.jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
},
};
enum rtl8365mb_stp_state {
RTL8365MB_STP_STATE_DISABLED = 0,
RTL8365MB_STP_STATE_BLOCKING = 1,
RTL8365MB_STP_STATE_LEARNING = 2,
RTL8365MB_STP_STATE_FORWARDING = 3,
};
enum rtl8365mb_cpu_insert {
RTL8365MB_CPU_INSERT_TO_ALL = 0,
RTL8365MB_CPU_INSERT_TO_TRAPPING = 1,
RTL8365MB_CPU_INSERT_TO_NONE = 2,
};
enum rtl8365mb_cpu_position {
RTL8365MB_CPU_POS_AFTER_SA = 0,
RTL8365MB_CPU_POS_BEFORE_CRC = 1,
};
enum rtl8365mb_cpu_format {
RTL8365MB_CPU_FORMAT_8BYTES = 0,
RTL8365MB_CPU_FORMAT_4BYTES = 1,
};
enum rtl8365mb_cpu_rxlen {
RTL8365MB_CPU_RXLEN_72BYTES = 0,
RTL8365MB_CPU_RXLEN_64BYTES = 1,
};
/**
* struct rtl8365mb_cpu - CPU port configuration
* @enable: enable/disable hardware insertion of CPU tag in switch->CPU frames
* @mask: port mask of ports that parse should parse CPU tags
* @trap_port: forward trapped frames to this port
* @insert: CPU tag insertion mode in switch->CPU frames
* @position: position of CPU tag in frame
* @rx_length: minimum CPU RX length
* @format: CPU tag format
*
* Represents the CPU tagging and CPU port configuration of the switch. These
* settings are configurable at runtime.
*/
struct rtl8365mb_cpu {
bool enable;
u32 mask;
u32 trap_port;
enum rtl8365mb_cpu_insert insert;
enum rtl8365mb_cpu_position position;
enum rtl8365mb_cpu_rxlen rx_length;
enum rtl8365mb_cpu_format format;
};
/**
* struct rtl8365mb_port - private per-port data
* @priv: pointer to parent realtek_priv data
* @index: DSA port index, same as dsa_port::index
* @stats: link statistics populated by rtl8365mb_stats_poll, ready for atomic
* access via rtl8365mb_get_stats64
* @stats_lock: protect the stats structure during read/update
* @mib_work: delayed work for polling MIB counters
*/
struct rtl8365mb_port {
struct realtek_priv *priv;
unsigned int index;
struct rtnl_link_stats64 stats;
spinlock_t stats_lock;
struct delayed_work mib_work;
};
/**
* struct rtl8365mb - driver private data
* @priv: pointer to parent realtek_priv data
* @irq: registered IRQ or zero
* @chip_info: chip-specific info about the attached switch
* @cpu: CPU tagging and CPU port configuration for this chip
* @mib_lock: prevent concurrent reads of MIB counters
* @ports: per-port data
*
* Private data for this driver.
*/
struct rtl8365mb {
struct realtek_priv *priv;
int irq;
const struct rtl8365mb_chip_info *chip_info;
struct rtl8365mb_cpu cpu;
struct mutex mib_lock;
struct rtl8365mb_port ports[RTL8365MB_MAX_NUM_PORTS];
};
static int rtl8365mb_phy_poll_busy(struct realtek_priv *priv)
{
u32 val;
return regmap_read_poll_timeout(priv->map_nolock,
RTL8365MB_INDIRECT_ACCESS_STATUS_REG,
val, !val, 10, 100);
}
static int rtl8365mb_phy_ocp_prepare(struct realtek_priv *priv, int phy,
u32 ocp_addr)
{
u32 val;
int ret;
/* Set OCP prefix */
val = FIELD_GET(RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK, ocp_addr);
ret = regmap_update_bits(
priv->map_nolock, RTL8365MB_GPHY_OCP_MSB_0_REG,
RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK,
FIELD_PREP(RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK, val));
if (ret)
return ret;
/* Set PHY register address */
val = RTL8365MB_PHY_BASE;
val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK, phy);
val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK,
ocp_addr >> 1);
val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK,
ocp_addr >> 6);
ret = regmap_write(priv->map_nolock,
RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG, val);
if (ret)
return ret;
return 0;
}
static int rtl8365mb_phy_ocp_read(struct realtek_priv *priv, int phy,
u32 ocp_addr, u16 *data)
{
u32 val;
int ret;
mutex_lock(&priv->map_lock);
ret = rtl8365mb_phy_poll_busy(priv);
if (ret)
goto out;
ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
if (ret)
goto out;
/* Execute read operation */
val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ);
ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
val);
if (ret)
goto out;
ret = rtl8365mb_phy_poll_busy(priv);
if (ret)
goto out;
/* Get PHY register data */
ret = regmap_read(priv->map_nolock,
RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG, &val);
if (ret)
goto out;
*data = val & 0xFFFF;
out:
mutex_unlock(&priv->map_lock);
return ret;
}
static int rtl8365mb_phy_ocp_write(struct realtek_priv *priv, int phy,
u32 ocp_addr, u16 data)
{
u32 val;
int ret;
mutex_lock(&priv->map_lock);
ret = rtl8365mb_phy_poll_busy(priv);
if (ret)
goto out;
ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
if (ret)
goto out;
/* Set PHY register data */
ret = regmap_write(priv->map_nolock,
RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG, data);
if (ret)
goto out;
/* Execute write operation */
val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE);
ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
val);
if (ret)
goto out;
ret = rtl8365mb_phy_poll_busy(priv);
if (ret)
goto out;
out:
mutex_unlock(&priv->map_lock);
return 0;
}
static int rtl8365mb_phy_read(struct realtek_priv *priv, int phy, int regnum)
{
u32 ocp_addr;
u16 val;
int ret;
if (phy > RTL8365MB_PHYADDRMAX)
return -EINVAL;
if (regnum > RTL8365MB_PHYREGMAX)
return -EINVAL;
ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
ret = rtl8365mb_phy_ocp_read(priv, phy, ocp_addr, &val);
if (ret) {
dev_err(priv->dev,
"failed to read PHY%d reg %02x @ %04x, ret %d\n", phy,
regnum, ocp_addr, ret);
return ret;
}
dev_dbg(priv->dev, "read PHY%d register 0x%02x @ %04x, val <- %04x\n",
phy, regnum, ocp_addr, val);
return val;
}
static int rtl8365mb_phy_write(struct realtek_priv *priv, int phy, int regnum,
u16 val)
{
u32 ocp_addr;
int ret;
if (phy > RTL8365MB_PHYADDRMAX)
return -EINVAL;
if (regnum > RTL8365MB_PHYREGMAX)
return -EINVAL;
ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
ret = rtl8365mb_phy_ocp_write(priv, phy, ocp_addr, val);
if (ret) {
dev_err(priv->dev,
"failed to write PHY%d reg %02x @ %04x, ret %d\n", phy,
regnum, ocp_addr, ret);
return ret;
}
dev_dbg(priv->dev, "write PHY%d register 0x%02x @ %04x, val -> %04x\n",
phy, regnum, ocp_addr, val);
return 0;
}
static int rtl8365mb_dsa_phy_read(struct dsa_switch *ds, int phy, int regnum)
{
return rtl8365mb_phy_read(ds->priv, phy, regnum);
}
static int rtl8365mb_dsa_phy_write(struct dsa_switch *ds, int phy, int regnum,
u16 val)
{
return rtl8365mb_phy_write(ds->priv, phy, regnum, val);
}
static const struct rtl8365mb_extint *
rtl8365mb_get_port_extint(struct realtek_priv *priv, int port)
{
struct rtl8365mb *mb = priv->chip_data;
int i;
for (i = 0; i < RTL8365MB_MAX_NUM_EXTINTS; i++) {
const struct rtl8365mb_extint *extint =
&mb->chip_info->extints[i];
if (!extint->supported_interfaces)
continue;
if (extint->port == port)
return extint;
}
return NULL;
}
static enum dsa_tag_protocol
rtl8365mb_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_cpu *cpu;
struct rtl8365mb *mb;
mb = priv->chip_data;
cpu = &mb->cpu;
if (cpu->position == RTL8365MB_CPU_POS_BEFORE_CRC)
return DSA_TAG_PROTO_RTL8_4T;
return DSA_TAG_PROTO_RTL8_4;
}
static int rtl8365mb_ext_config_rgmii(struct realtek_priv *priv, int port,
phy_interface_t interface)
{
const struct rtl8365mb_extint *extint =
rtl8365mb_get_port_extint(priv, port);
struct device_node *dn;
struct dsa_port *dp;
int tx_delay = 0;
int rx_delay = 0;
u32 val;
int ret;
if (!extint)
return -ENODEV;
dp = dsa_to_port(priv->ds, port);
dn = dp->dn;
/* Set the RGMII TX/RX delay
*
* The Realtek vendor driver indicates the following possible
* configuration settings:
*
* TX delay:
* 0 = no delay, 1 = 2 ns delay
* RX delay:
* 0 = no delay, 7 = maximum delay
* Each step is approximately 0.3 ns, so the maximum delay is about
* 2.1 ns.
*
* The vendor driver also states that this must be configured *before*
* forcing the external interface into a particular mode, which is done
* in the rtl8365mb_phylink_mac_link_{up,down} functions.
*
* Only configure an RGMII TX (resp. RX) delay if the
* tx-internal-delay-ps (resp. rx-internal-delay-ps) OF property is
* specified. We ignore the detail of the RGMII interface mode
* (RGMII_{RXID, TXID, etc.}), as this is considered to be a PHY-only
* property.
*/
if (!of_property_read_u32(dn, "tx-internal-delay-ps", &val)) {
val = val / 1000; /* convert to ns */
if (val == 0 || val == 2)
tx_delay = val / 2;
else
dev_warn(priv->dev,
"RGMII TX delay must be 0 or 2 ns\n");
}
if (!of_property_read_u32(dn, "rx-internal-delay-ps", &val)) {
val = DIV_ROUND_CLOSEST(val, 300); /* convert to 0.3 ns step */
if (val <= 7)
rx_delay = val;
else
dev_warn(priv->dev,
"RGMII RX delay must be 0 to 2.1 ns\n");
}
ret = regmap_update_bits(
priv->map, RTL8365MB_EXT_RGMXF_REG(extint->id),
RTL8365MB_EXT_RGMXF_TXDELAY_MASK |
RTL8365MB_EXT_RGMXF_RXDELAY_MASK,
FIELD_PREP(RTL8365MB_EXT_RGMXF_TXDELAY_MASK, tx_delay) |
FIELD_PREP(RTL8365MB_EXT_RGMXF_RXDELAY_MASK, rx_delay));
if (ret)
return ret;
ret = regmap_update_bits(
priv->map, RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(extint->id),
RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(extint->id),
RTL8365MB_EXT_PORT_MODE_RGMII
<< RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(
extint->id));
if (ret)
return ret;
return 0;
}
static int rtl8365mb_ext_config_forcemode(struct realtek_priv *priv, int port,
bool link, int speed, int duplex,
bool tx_pause, bool rx_pause)
{
const struct rtl8365mb_extint *extint =
rtl8365mb_get_port_extint(priv, port);
u32 r_tx_pause;
u32 r_rx_pause;
u32 r_duplex;
u32 r_speed;
u32 r_link;
int val;
int ret;
if (!extint)
return -ENODEV;
if (link) {
/* Force the link up with the desired configuration */
r_link = 1;
r_rx_pause = rx_pause ? 1 : 0;
r_tx_pause = tx_pause ? 1 : 0;
if (speed == SPEED_1000) {
r_speed = RTL8365MB_PORT_SPEED_1000M;
} else if (speed == SPEED_100) {
r_speed = RTL8365MB_PORT_SPEED_100M;
} else if (speed == SPEED_10) {
r_speed = RTL8365MB_PORT_SPEED_10M;
} else {
dev_err(priv->dev, "unsupported port speed %s\n",
phy_speed_to_str(speed));
return -EINVAL;
}
if (duplex == DUPLEX_FULL) {
r_duplex = 1;
} else if (duplex == DUPLEX_HALF) {
r_duplex = 0;
} else {
dev_err(priv->dev, "unsupported duplex %s\n",
phy_duplex_to_str(duplex));
return -EINVAL;
}
} else {
/* Force the link down and reset any programmed configuration */
r_link = 0;
r_tx_pause = 0;
r_rx_pause = 0;
r_speed = 0;
r_duplex = 0;
}
val = FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK, 1) |
FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK,
r_tx_pause) |
FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK,
r_rx_pause) |
FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK, r_link) |
FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK,
r_duplex) |
FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK, r_speed);
ret = regmap_write(priv->map,
RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(extint->id),
val);
if (ret)
return ret;
return 0;
}
static void rtl8365mb_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
const struct rtl8365mb_extint *extint =
rtl8365mb_get_port_extint(ds->priv, port);
config->mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
MAC_10 | MAC_100 | MAC_1000FD;
if (!extint) {
__set_bit(PHY_INTERFACE_MODE_INTERNAL,
config->supported_interfaces);
/* GMII is the default interface mode for phylib, so
* we have to support it for ports with integrated PHY.
*/
__set_bit(PHY_INTERFACE_MODE_GMII,
config->supported_interfaces);
return;
}
/* Populate according to the modes supported by _this driver_,
* not necessarily the modes supported by the hardware, some of
* which remain unimplemented.
*/
if (extint->supported_interfaces & RTL8365MB_PHY_INTERFACE_MODE_RGMII)
phy_interface_set_rgmii(config->supported_interfaces);
}
static void rtl8365mb_phylink_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct realtek_priv *priv = ds->priv;
int ret;
if (mode != MLO_AN_PHY && mode != MLO_AN_FIXED) {
dev_err(priv->dev,
"port %d supports only conventional PHY or fixed-link\n",
port);
return;
}
if (phy_interface_mode_is_rgmii(state->interface)) {
ret = rtl8365mb_ext_config_rgmii(priv, port, state->interface);
if (ret)
dev_err(priv->dev,
"failed to configure RGMII mode on port %d: %d\n",
port, ret);
return;
}
/* TODO: Implement MII and RMII modes, which the RTL8365MB-VC also
* supports
*/
}
static void rtl8365mb_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_port *p;
struct rtl8365mb *mb;
int ret;
mb = priv->chip_data;
p = &mb->ports[port];
cancel_delayed_work_sync(&p->mib_work);
if (phy_interface_mode_is_rgmii(interface)) {
ret = rtl8365mb_ext_config_forcemode(priv, port, false, 0, 0,
false, false);
if (ret)
dev_err(priv->dev,
"failed to reset forced mode on port %d: %d\n",
port, ret);
return;
}
}
static void rtl8365mb_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause,
bool rx_pause)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_port *p;
struct rtl8365mb *mb;
int ret;
mb = priv->chip_data;
p = &mb->ports[port];
schedule_delayed_work(&p->mib_work, 0);
if (phy_interface_mode_is_rgmii(interface)) {
ret = rtl8365mb_ext_config_forcemode(priv, port, true, speed,
duplex, tx_pause,
rx_pause);
if (ret)
dev_err(priv->dev,
"failed to force mode on port %d: %d\n", port,
ret);
return;
}
}
static int rtl8365mb_port_change_mtu(struct dsa_switch *ds, int port,
int new_mtu)
{
struct realtek_priv *priv = ds->priv;
int frame_size;
/* When a new MTU is set, DSA always sets the CPU port's MTU to the
* largest MTU of the user ports. Because the switch only has a global
* RX length register, only allowing CPU port here is enough.
*/
if (!dsa_is_cpu_port(ds, port))
return 0;
frame_size = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
dev_dbg(priv->dev, "changing mtu to %d (frame size: %d)\n",
new_mtu, frame_size);
return regmap_update_bits(priv->map, RTL8365MB_CFG0_MAX_LEN_REG,
RTL8365MB_CFG0_MAX_LEN_MASK,
FIELD_PREP(RTL8365MB_CFG0_MAX_LEN_MASK,
frame_size));
}
static int rtl8365mb_port_max_mtu(struct dsa_switch *ds, int port)
{
return RTL8365MB_CFG0_MAX_LEN_MAX - VLAN_ETH_HLEN - ETH_FCS_LEN;
}
static void rtl8365mb_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct realtek_priv *priv = ds->priv;
enum rtl8365mb_stp_state val;
int msti = 0;
switch (state) {
case BR_STATE_DISABLED:
val = RTL8365MB_STP_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
val = RTL8365MB_STP_STATE_BLOCKING;
break;
case BR_STATE_LEARNING:
val = RTL8365MB_STP_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
val = RTL8365MB_STP_STATE_FORWARDING;
break;
default:
dev_err(priv->dev, "invalid STP state: %u\n", state);
return;
}
regmap_update_bits(priv->map, RTL8365MB_MSTI_CTRL_REG(msti, port),
RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(port),
val << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(port));
}
static int rtl8365mb_port_set_learning(struct realtek_priv *priv, int port,
bool enable)
{
/* Enable/disable learning by limiting the number of L2 addresses the
* port can learn. Realtek documentation states that a limit of zero
* disables learning. When enabling learning, set it to the chip's
* maximum.
*/
return regmap_write(priv->map, RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(port),
enable ? RTL8365MB_LEARN_LIMIT_MAX : 0);
}
static int rtl8365mb_port_set_isolation(struct realtek_priv *priv, int port,
u32 mask)
{
return regmap_write(priv->map, RTL8365MB_PORT_ISOLATION_REG(port), mask);
}
static int rtl8365mb_mib_counter_read(struct realtek_priv *priv, int port,
u32 offset, u32 length, u64 *mibvalue)
{
u64 tmpvalue = 0;
u32 val;
int ret;
int i;
/* The MIB address is an SRAM address. We request a particular address
* and then poll the control register before reading the value from some
* counter registers.
*/
ret = regmap_write(priv->map, RTL8365MB_MIB_ADDRESS_REG,
RTL8365MB_MIB_ADDRESS(port, offset));
if (ret)
return ret;
/* Poll for completion */
ret = regmap_read_poll_timeout(priv->map, RTL8365MB_MIB_CTRL0_REG, val,
!(val & RTL8365MB_MIB_CTRL0_BUSY_MASK),
10, 100);
if (ret)
return ret;
/* Presumably this indicates a MIB counter read failure */
if (val & RTL8365MB_MIB_CTRL0_RESET_MASK)
return -EIO;
/* There are four MIB counter registers each holding a 16 bit word of a
* MIB counter. Depending on the offset, we should read from the upper
* two or lower two registers. In case the MIB counter is 4 words, we
* read from all four registers.
*/
if (length == 4)
offset = 3;
else
offset = (offset + 1) % 4;
/* Read the MIB counter 16 bits at a time */
for (i = 0; i < length; i++) {
ret = regmap_read(priv->map,
RTL8365MB_MIB_COUNTER_REG(offset - i), &val);
if (ret)
return ret;
tmpvalue = ((tmpvalue) << 16) | (val & 0xFFFF);
}
/* Only commit the result if no error occurred */
*mibvalue = tmpvalue;
return 0;
}
static void rtl8365mb_get_ethtool_stats(struct dsa_switch *ds, int port, u64 *data)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb *mb;
int ret;
int i;
mb = priv->chip_data;
mutex_lock(&mb->mib_lock);
for (i = 0; i < RTL8365MB_MIB_END; i++) {
struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
mib->length, &data[i]);
if (ret) {
dev_err(priv->dev,
"failed to read port %d counters: %d\n", port,
ret);
break;
}
}
mutex_unlock(&mb->mib_lock);
}
static void rtl8365mb_get_strings(struct dsa_switch *ds, int port, u32 stringset, u8 *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < RTL8365MB_MIB_END; i++) {
struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
ethtool_puts(&data, mib->name);
}
}
static int rtl8365mb_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return -EOPNOTSUPP;
return RTL8365MB_MIB_END;
}
static void rtl8365mb_get_phy_stats(struct dsa_switch *ds, int port,
struct ethtool_eth_phy_stats *phy_stats)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_mib_counter *mib;
struct rtl8365mb *mb;
mb = priv->chip_data;
mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3StatsSymbolErrors];
mutex_lock(&mb->mib_lock);
rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
&phy_stats->SymbolErrorDuringCarrier);
mutex_unlock(&mb->mib_lock);
}
static void rtl8365mb_get_mac_stats(struct dsa_switch *ds, int port,
struct ethtool_eth_mac_stats *mac_stats)
{
u64 cnt[RTL8365MB_MIB_END] = {
[RTL8365MB_MIB_ifOutOctets] = 1,
[RTL8365MB_MIB_ifOutUcastPkts] = 1,
[RTL8365MB_MIB_ifOutMulticastPkts] = 1,
[RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
[RTL8365MB_MIB_dot3OutPauseFrames] = 1,
[RTL8365MB_MIB_ifOutDiscards] = 1,
[RTL8365MB_MIB_ifInOctets] = 1,
[RTL8365MB_MIB_ifInUcastPkts] = 1,
[RTL8365MB_MIB_ifInMulticastPkts] = 1,
[RTL8365MB_MIB_ifInBroadcastPkts] = 1,
[RTL8365MB_MIB_dot3InPauseFrames] = 1,
[RTL8365MB_MIB_dot3StatsSingleCollisionFrames] = 1,
[RTL8365MB_MIB_dot3StatsMultipleCollisionFrames] = 1,
[RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
[RTL8365MB_MIB_dot3StatsDeferredTransmissions] = 1,
[RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
[RTL8365MB_MIB_dot3StatsExcessiveCollisions] = 1,
};
struct realtek_priv *priv = ds->priv;
struct rtl8365mb *mb;
int ret;
int i;
mb = priv->chip_data;
mutex_lock(&mb->mib_lock);
for (i = 0; i < RTL8365MB_MIB_END; i++) {
struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
/* Only fetch required MIB counters (marked = 1 above) */
if (!cnt[i])
continue;
ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
mib->length, &cnt[i]);
if (ret)
break;
}
mutex_unlock(&mb->mib_lock);
/* The RTL8365MB-VC exposes MIB objects, which we have to translate into
* IEEE 802.3 Managed Objects. This is not always completely faithful,
* but we try out best. See RFC 3635 for a detailed treatment of the
* subject.
*/
mac_stats->FramesTransmittedOK = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
cnt[RTL8365MB_MIB_ifOutBroadcastPkts] +
cnt[RTL8365MB_MIB_dot3OutPauseFrames] -
cnt[RTL8365MB_MIB_ifOutDiscards];
mac_stats->SingleCollisionFrames =
cnt[RTL8365MB_MIB_dot3StatsSingleCollisionFrames];
mac_stats->MultipleCollisionFrames =
cnt[RTL8365MB_MIB_dot3StatsMultipleCollisionFrames];
mac_stats->FramesReceivedOK = cnt[RTL8365MB_MIB_ifInUcastPkts] +
cnt[RTL8365MB_MIB_ifInMulticastPkts] +
cnt[RTL8365MB_MIB_ifInBroadcastPkts] +
cnt[RTL8365MB_MIB_dot3InPauseFrames];
mac_stats->FrameCheckSequenceErrors =
cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
mac_stats->OctetsTransmittedOK = cnt[RTL8365MB_MIB_ifOutOctets] -
18 * mac_stats->FramesTransmittedOK;
mac_stats->FramesWithDeferredXmissions =
cnt[RTL8365MB_MIB_dot3StatsDeferredTransmissions];
mac_stats->LateCollisions = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
mac_stats->FramesAbortedDueToXSColls =
cnt[RTL8365MB_MIB_dot3StatsExcessiveCollisions];
mac_stats->OctetsReceivedOK = cnt[RTL8365MB_MIB_ifInOctets] -
18 * mac_stats->FramesReceivedOK;
mac_stats->MulticastFramesXmittedOK =
cnt[RTL8365MB_MIB_ifOutMulticastPkts];
mac_stats->BroadcastFramesXmittedOK =
cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
mac_stats->MulticastFramesReceivedOK =
cnt[RTL8365MB_MIB_ifInMulticastPkts];
mac_stats->BroadcastFramesReceivedOK =
cnt[RTL8365MB_MIB_ifInBroadcastPkts];
}
static void rtl8365mb_get_ctrl_stats(struct dsa_switch *ds, int port,
struct ethtool_eth_ctrl_stats *ctrl_stats)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_mib_counter *mib;
struct rtl8365mb *mb;
mb = priv->chip_data;
mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3ControlInUnknownOpcodes];
mutex_lock(&mb->mib_lock);
rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
&ctrl_stats->UnsupportedOpcodesReceived);
mutex_unlock(&mb->mib_lock);
}
static void rtl8365mb_stats_update(struct realtek_priv *priv, int port)
{
u64 cnt[RTL8365MB_MIB_END] = {
[RTL8365MB_MIB_ifOutOctets] = 1,
[RTL8365MB_MIB_ifOutUcastPkts] = 1,
[RTL8365MB_MIB_ifOutMulticastPkts] = 1,
[RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
[RTL8365MB_MIB_ifOutDiscards] = 1,
[RTL8365MB_MIB_ifInOctets] = 1,
[RTL8365MB_MIB_ifInUcastPkts] = 1,
[RTL8365MB_MIB_ifInMulticastPkts] = 1,
[RTL8365MB_MIB_ifInBroadcastPkts] = 1,
[RTL8365MB_MIB_etherStatsDropEvents] = 1,
[RTL8365MB_MIB_etherStatsCollisions] = 1,
[RTL8365MB_MIB_etherStatsFragments] = 1,
[RTL8365MB_MIB_etherStatsJabbers] = 1,
[RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
[RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
};
struct rtl8365mb *mb = priv->chip_data;
struct rtnl_link_stats64 *stats;
int ret;
int i;
stats = &mb->ports[port].stats;
mutex_lock(&mb->mib_lock);
for (i = 0; i < RTL8365MB_MIB_END; i++) {
struct rtl8365mb_mib_counter *c = &rtl8365mb_mib_counters[i];
/* Only fetch required MIB counters (marked = 1 above) */
if (!cnt[i])
continue;
ret = rtl8365mb_mib_counter_read(priv, port, c->offset,
c->length, &cnt[i]);
if (ret)
break;
}
mutex_unlock(&mb->mib_lock);
/* Don't update statistics if there was an error reading the counters */
if (ret)
return;
spin_lock(&mb->ports[port].stats_lock);
stats->rx_packets = cnt[RTL8365MB_MIB_ifInUcastPkts] +
cnt[RTL8365MB_MIB_ifInMulticastPkts] +
cnt[RTL8365MB_MIB_ifInBroadcastPkts] -
cnt[RTL8365MB_MIB_ifOutDiscards];
stats->tx_packets = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
/* if{In,Out}Octets includes FCS - remove it */
stats->rx_bytes = cnt[RTL8365MB_MIB_ifInOctets] - 4 * stats->rx_packets;
stats->tx_bytes =
cnt[RTL8365MB_MIB_ifOutOctets] - 4 * stats->tx_packets;
stats->rx_dropped = cnt[RTL8365MB_MIB_etherStatsDropEvents];
stats->tx_dropped = cnt[RTL8365MB_MIB_ifOutDiscards];
stats->multicast = cnt[RTL8365MB_MIB_ifInMulticastPkts];
stats->collisions = cnt[RTL8365MB_MIB_etherStatsCollisions];
stats->rx_length_errors = cnt[RTL8365MB_MIB_etherStatsFragments] +
cnt[RTL8365MB_MIB_etherStatsJabbers];
stats->rx_crc_errors = cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors;
stats->tx_aborted_errors = cnt[RTL8365MB_MIB_ifOutDiscards];
stats->tx_window_errors = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
stats->tx_errors = stats->tx_aborted_errors + stats->tx_window_errors;
spin_unlock(&mb->ports[port].stats_lock);
}
static void rtl8365mb_stats_poll(struct work_struct *work)
{
struct rtl8365mb_port *p = container_of(to_delayed_work(work),
struct rtl8365mb_port,
mib_work);
struct realtek_priv *priv = p->priv;
rtl8365mb_stats_update(priv, p->index);
schedule_delayed_work(&p->mib_work, RTL8365MB_STATS_INTERVAL_JIFFIES);
}
static void rtl8365mb_get_stats64(struct dsa_switch *ds, int port,
struct rtnl_link_stats64 *s)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_port *p;
struct rtl8365mb *mb;
mb = priv->chip_data;
p = &mb->ports[port];
spin_lock(&p->stats_lock);
memcpy(s, &p->stats, sizeof(*s));
spin_unlock(&p->stats_lock);
}
static void rtl8365mb_stats_setup(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
int i;
/* Per-chip global mutex to protect MIB counter access, since doing
* so requires accessing a series of registers in a particular order.
*/
mutex_init(&mb->mib_lock);
for (i = 0; i < priv->num_ports; i++) {
struct rtl8365mb_port *p = &mb->ports[i];
if (dsa_is_unused_port(priv->ds, i))
continue;
/* Per-port spinlock to protect the stats64 data */
spin_lock_init(&p->stats_lock);
/* This work polls the MIB counters and keeps the stats64 data
* up-to-date.
*/
INIT_DELAYED_WORK(&p->mib_work, rtl8365mb_stats_poll);
}
}
static void rtl8365mb_stats_teardown(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
int i;
for (i = 0; i < priv->num_ports; i++) {
struct rtl8365mb_port *p = &mb->ports[i];
if (dsa_is_unused_port(priv->ds, i))
continue;
cancel_delayed_work_sync(&p->mib_work);
}
}
static int rtl8365mb_get_and_clear_status_reg(struct realtek_priv *priv, u32 reg,
u32 *val)
{
int ret;
ret = regmap_read(priv->map, reg, val);
if (ret)
return ret;
return regmap_write(priv->map, reg, *val);
}
static irqreturn_t rtl8365mb_irq(int irq, void *data)
{
struct realtek_priv *priv = data;
unsigned long line_changes = 0;
u32 stat;
int line;
int ret;
ret = rtl8365mb_get_and_clear_status_reg(priv, RTL8365MB_INTR_STATUS_REG,
&stat);
if (ret)
goto out_error;
if (stat & RTL8365MB_INTR_LINK_CHANGE_MASK) {
u32 linkdown_ind;
u32 linkup_ind;
u32 val;
ret = rtl8365mb_get_and_clear_status_reg(
priv, RTL8365MB_PORT_LINKUP_IND_REG, &val);
if (ret)
goto out_error;
linkup_ind = FIELD_GET(RTL8365MB_PORT_LINKUP_IND_MASK, val);
ret = rtl8365mb_get_and_clear_status_reg(
priv, RTL8365MB_PORT_LINKDOWN_IND_REG, &val);
if (ret)
goto out_error;
linkdown_ind = FIELD_GET(RTL8365MB_PORT_LINKDOWN_IND_MASK, val);
line_changes = linkup_ind | linkdown_ind;
}
if (!line_changes)
goto out_none;
for_each_set_bit(line, &line_changes, priv->num_ports) {
int child_irq = irq_find_mapping(priv->irqdomain, line);
handle_nested_irq(child_irq);
}
return IRQ_HANDLED;
out_error:
dev_err(priv->dev, "failed to read interrupt status: %d\n", ret);
out_none:
return IRQ_NONE;
}
static struct irq_chip rtl8365mb_irq_chip = {
.name = "rtl8365mb",
/* The hardware doesn't support masking IRQs on a per-port basis */
};
static int rtl8365mb_irq_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, domain->host_data);
irq_set_chip_and_handler(irq, &rtl8365mb_irq_chip, handle_simple_irq);
irq_set_nested_thread(irq, 1);
irq_set_noprobe(irq);
return 0;
}
static void rtl8365mb_irq_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_nested_thread(irq, 0);
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops rtl8365mb_irqdomain_ops = {
.map = rtl8365mb_irq_map,
.unmap = rtl8365mb_irq_unmap,
.xlate = irq_domain_xlate_onecell,
};
static int rtl8365mb_set_irq_enable(struct realtek_priv *priv, bool enable)
{
return regmap_update_bits(priv->map, RTL8365MB_INTR_CTRL_REG,
RTL8365MB_INTR_LINK_CHANGE_MASK,
FIELD_PREP(RTL8365MB_INTR_LINK_CHANGE_MASK,
enable ? 1 : 0));
}
static int rtl8365mb_irq_enable(struct realtek_priv *priv)
{
return rtl8365mb_set_irq_enable(priv, true);
}
static int rtl8365mb_irq_disable(struct realtek_priv *priv)
{
return rtl8365mb_set_irq_enable(priv, false);
}
static int rtl8365mb_irq_setup(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
struct device_node *intc;
u32 irq_trig;
int virq;
int irq;
u32 val;
int ret;
int i;
intc = of_get_child_by_name(priv->dev->of_node, "interrupt-controller");
if (!intc) {
dev_err(priv->dev, "missing child interrupt-controller node\n");
return -EINVAL;
}
/* rtl8365mb IRQs cascade off this one */
irq = of_irq_get(intc, 0);
if (irq <= 0) {
if (irq != -EPROBE_DEFER)
dev_err(priv->dev, "failed to get parent irq: %d\n",
irq);
ret = irq ? irq : -EINVAL;
goto out_put_node;
}
priv->irqdomain = irq_domain_add_linear(intc, priv->num_ports,
&rtl8365mb_irqdomain_ops, priv);
if (!priv->irqdomain) {
dev_err(priv->dev, "failed to add irq domain\n");
ret = -ENOMEM;
goto out_put_node;
}
for (i = 0; i < priv->num_ports; i++) {
virq = irq_create_mapping(priv->irqdomain, i);
if (!virq) {
dev_err(priv->dev,
"failed to create irq domain mapping\n");
ret = -EINVAL;
goto out_remove_irqdomain;
}
irq_set_parent(virq, irq);
}
/* Configure chip interrupt signal polarity */
irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
switch (irq_trig) {
case IRQF_TRIGGER_RISING:
case IRQF_TRIGGER_HIGH:
val = RTL8365MB_INTR_POLARITY_HIGH;
break;
case IRQF_TRIGGER_FALLING:
case IRQF_TRIGGER_LOW:
val = RTL8365MB_INTR_POLARITY_LOW;
break;
default:
dev_err(priv->dev, "unsupported irq trigger type %u\n",
irq_trig);
ret = -EINVAL;
goto out_remove_irqdomain;
}
ret = regmap_update_bits(priv->map, RTL8365MB_INTR_POLARITY_REG,
RTL8365MB_INTR_POLARITY_MASK,
FIELD_PREP(RTL8365MB_INTR_POLARITY_MASK, val));
if (ret)
goto out_remove_irqdomain;
/* Disable the interrupt in case the chip has it enabled on reset */
ret = rtl8365mb_irq_disable(priv);
if (ret)
goto out_remove_irqdomain;
/* Clear the interrupt status register */
ret = regmap_write(priv->map, RTL8365MB_INTR_STATUS_REG,
RTL8365MB_INTR_ALL_MASK);
if (ret)
goto out_remove_irqdomain;
ret = request_threaded_irq(irq, NULL, rtl8365mb_irq, IRQF_ONESHOT,
"rtl8365mb", priv);
if (ret) {
dev_err(priv->dev, "failed to request irq: %d\n", ret);
goto out_remove_irqdomain;
}
/* Store the irq so that we know to free it during teardown */
mb->irq = irq;
ret = rtl8365mb_irq_enable(priv);
if (ret)
goto out_free_irq;
of_node_put(intc);
return 0;
out_free_irq:
free_irq(mb->irq, priv);
mb->irq = 0;
out_remove_irqdomain:
for (i = 0; i < priv->num_ports; i++) {
virq = irq_find_mapping(priv->irqdomain, i);
irq_dispose_mapping(virq);
}
irq_domain_remove(priv->irqdomain);
priv->irqdomain = NULL;
out_put_node:
of_node_put(intc);
return ret;
}
static void rtl8365mb_irq_teardown(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
int virq;
int i;
if (mb->irq) {
free_irq(mb->irq, priv);
mb->irq = 0;
}
if (priv->irqdomain) {
for (i = 0; i < priv->num_ports; i++) {
virq = irq_find_mapping(priv->irqdomain, i);
irq_dispose_mapping(virq);
}
irq_domain_remove(priv->irqdomain);
priv->irqdomain = NULL;
}
}
static int rtl8365mb_cpu_config(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
struct rtl8365mb_cpu *cpu = &mb->cpu;
u32 val;
int ret;
ret = regmap_update_bits(priv->map, RTL8365MB_CPU_PORT_MASK_REG,
RTL8365MB_CPU_PORT_MASK_MASK,
FIELD_PREP(RTL8365MB_CPU_PORT_MASK_MASK,
cpu->mask));
if (ret)
return ret;
val = FIELD_PREP(RTL8365MB_CPU_CTRL_EN_MASK, cpu->enable ? 1 : 0) |
FIELD_PREP(RTL8365MB_CPU_CTRL_INSERTMODE_MASK, cpu->insert) |
FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_POSITION_MASK, cpu->position) |
FIELD_PREP(RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK, cpu->rx_length) |
FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK, cpu->format) |
FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_MASK, cpu->trap_port & 0x7) |
FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK,
cpu->trap_port >> 3 & 0x1);
ret = regmap_write(priv->map, RTL8365MB_CPU_CTRL_REG, val);
if (ret)
return ret;
return 0;
}
static int rtl8365mb_change_tag_protocol(struct dsa_switch *ds,
enum dsa_tag_protocol proto)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_cpu *cpu;
struct rtl8365mb *mb;
mb = priv->chip_data;
cpu = &mb->cpu;
switch (proto) {
case DSA_TAG_PROTO_RTL8_4:
cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
cpu->position = RTL8365MB_CPU_POS_AFTER_SA;
break;
case DSA_TAG_PROTO_RTL8_4T:
cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
cpu->position = RTL8365MB_CPU_POS_BEFORE_CRC;
break;
/* The switch also supports a 4-byte format, similar to rtl4a but with
* the same 0x04 8-bit version and probably 8-bit port source/dest.
* There is no public doc about it. Not supported yet and it will probably
* never be.
*/
default:
return -EPROTONOSUPPORT;
}
return rtl8365mb_cpu_config(priv);
}
static int rtl8365mb_switch_init(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
const struct rtl8365mb_chip_info *ci;
int ret;
int i;
ci = mb->chip_info;
/* Do any chip-specific init jam before getting to the common stuff */
if (ci->jam_table) {
for (i = 0; i < ci->jam_size; i++) {
ret = regmap_write(priv->map, ci->jam_table[i].reg,
ci->jam_table[i].val);
if (ret)
return ret;
}
}
/* Common init jam */
for (i = 0; i < ARRAY_SIZE(rtl8365mb_init_jam_common); i++) {
ret = regmap_write(priv->map, rtl8365mb_init_jam_common[i].reg,
rtl8365mb_init_jam_common[i].val);
if (ret)
return ret;
}
return 0;
}
static int rtl8365mb_reset_chip(struct realtek_priv *priv)
{
u32 val;
priv->write_reg_noack(priv, RTL8365MB_CHIP_RESET_REG,
FIELD_PREP(RTL8365MB_CHIP_RESET_HW_MASK, 1));
/* Realtek documentation says the chip needs 1 second to reset. Sleep
* for 100 ms before accessing any registers to prevent ACK timeouts.
*/
msleep(100);
return regmap_read_poll_timeout(priv->map, RTL8365MB_CHIP_RESET_REG, val,
!(val & RTL8365MB_CHIP_RESET_HW_MASK),
20000, 1e6);
}
static int rtl8365mb_setup(struct dsa_switch *ds)
{
struct realtek_priv *priv = ds->priv;
struct rtl8365mb_cpu *cpu;
struct dsa_port *cpu_dp;
struct rtl8365mb *mb;
int ret;
int i;
mb = priv->chip_data;
cpu = &mb->cpu;
ret = rtl8365mb_reset_chip(priv);
if (ret) {
dev_err(priv->dev, "failed to reset chip: %d\n", ret);
goto out_error;
}
/* Configure switch to vendor-defined initial state */
ret = rtl8365mb_switch_init(priv);
if (ret) {
dev_err(priv->dev, "failed to initialize switch: %d\n", ret);
goto out_error;
}
/* Set up cascading IRQs */
ret = rtl8365mb_irq_setup(priv);
if (ret == -EPROBE_DEFER)
return ret;
else if (ret)
dev_info(priv->dev, "no interrupt support\n");
/* Configure CPU tagging */
dsa_switch_for_each_cpu_port(cpu_dp, priv->ds) {
cpu->mask |= BIT(cpu_dp->index);
if (cpu->trap_port == RTL8365MB_MAX_NUM_PORTS)
cpu->trap_port = cpu_dp->index;
}
cpu->enable = cpu->mask > 0;
ret = rtl8365mb_cpu_config(priv);
if (ret)
goto out_teardown_irq;
/* Configure ports */
for (i = 0; i < priv->num_ports; i++) {
struct rtl8365mb_port *p = &mb->ports[i];
if (dsa_is_unused_port(priv->ds, i))
continue;
/* Forward only to the CPU */
ret = rtl8365mb_port_set_isolation(priv, i, cpu->mask);
if (ret)
goto out_teardown_irq;
/* Disable learning */
ret = rtl8365mb_port_set_learning(priv, i, false);
if (ret)
goto out_teardown_irq;
/* Set the initial STP state of all ports to DISABLED, otherwise
* ports will still forward frames to the CPU despite being
* administratively down by default.
*/
rtl8365mb_port_stp_state_set(priv->ds, i, BR_STATE_DISABLED);
/* Set up per-port private data */
p->priv = priv;
p->index = i;
}
ret = rtl8365mb_port_change_mtu(ds, cpu->trap_port, ETH_DATA_LEN);
if (ret)
goto out_teardown_irq;
if (priv->setup_interface) {
ret = priv->setup_interface(ds);
if (ret) {
dev_err(priv->dev, "could not set up MDIO bus\n");
goto out_teardown_irq;
}
}
/* Start statistics counter polling */
rtl8365mb_stats_setup(priv);
return 0;
out_teardown_irq:
rtl8365mb_irq_teardown(priv);
out_error:
return ret;
}
static void rtl8365mb_teardown(struct dsa_switch *ds)
{
struct realtek_priv *priv = ds->priv;
rtl8365mb_stats_teardown(priv);
rtl8365mb_irq_teardown(priv);
}
static int rtl8365mb_get_chip_id_and_ver(struct regmap *map, u32 *id, u32 *ver)
{
int ret;
/* For some reason we have to write a magic value to an arbitrary
* register whenever accessing the chip ID/version registers.
*/
ret = regmap_write(map, RTL8365MB_MAGIC_REG, RTL8365MB_MAGIC_VALUE);
if (ret)
return ret;
ret = regmap_read(map, RTL8365MB_CHIP_ID_REG, id);
if (ret)
return ret;
ret = regmap_read(map, RTL8365MB_CHIP_VER_REG, ver);
if (ret)
return ret;
/* Reset magic register */
ret = regmap_write(map, RTL8365MB_MAGIC_REG, 0);
if (ret)
return ret;
return 0;
}
static int rtl8365mb_detect(struct realtek_priv *priv)
{
struct rtl8365mb *mb = priv->chip_data;
u32 chip_id;
u32 chip_ver;
int ret;
int i;
ret = rtl8365mb_get_chip_id_and_ver(priv->map, &chip_id, &chip_ver);
if (ret) {
dev_err(priv->dev, "failed to read chip id and version: %d\n",
ret);
return ret;
}
for (i = 0; i < ARRAY_SIZE(rtl8365mb_chip_infos); i++) {
const struct rtl8365mb_chip_info *ci = &rtl8365mb_chip_infos[i];
if (ci->chip_id == chip_id && ci->chip_ver == chip_ver) {
mb->chip_info = ci;
break;
}
}
if (!mb->chip_info) {
dev_err(priv->dev,
"unrecognized switch (id=0x%04x, ver=0x%04x)", chip_id,
chip_ver);
return -ENODEV;
}
dev_info(priv->dev, "found an %s switch\n", mb->chip_info->name);
priv->num_ports = RTL8365MB_MAX_NUM_PORTS;
mb->priv = priv;
mb->cpu.trap_port = RTL8365MB_MAX_NUM_PORTS;
mb->cpu.insert = RTL8365MB_CPU_INSERT_TO_ALL;
mb->cpu.position = RTL8365MB_CPU_POS_AFTER_SA;
mb->cpu.rx_length = RTL8365MB_CPU_RXLEN_64BYTES;
mb->cpu.format = RTL8365MB_CPU_FORMAT_8BYTES;
return 0;
}
static const struct dsa_switch_ops rtl8365mb_switch_ops_smi = {
.get_tag_protocol = rtl8365mb_get_tag_protocol,
.change_tag_protocol = rtl8365mb_change_tag_protocol,
.setup = rtl8365mb_setup,
.teardown = rtl8365mb_teardown,
.phylink_get_caps = rtl8365mb_phylink_get_caps,
.phylink_mac_config = rtl8365mb_phylink_mac_config,
.phylink_mac_link_down = rtl8365mb_phylink_mac_link_down,
.phylink_mac_link_up = rtl8365mb_phylink_mac_link_up,
.port_stp_state_set = rtl8365mb_port_stp_state_set,
.get_strings = rtl8365mb_get_strings,
.get_ethtool_stats = rtl8365mb_get_ethtool_stats,
.get_sset_count = rtl8365mb_get_sset_count,
.get_eth_phy_stats = rtl8365mb_get_phy_stats,
.get_eth_mac_stats = rtl8365mb_get_mac_stats,
.get_eth_ctrl_stats = rtl8365mb_get_ctrl_stats,
.get_stats64 = rtl8365mb_get_stats64,
.port_change_mtu = rtl8365mb_port_change_mtu,
.port_max_mtu = rtl8365mb_port_max_mtu,
};
static const struct dsa_switch_ops rtl8365mb_switch_ops_mdio = {
.get_tag_protocol = rtl8365mb_get_tag_protocol,
.change_tag_protocol = rtl8365mb_change_tag_protocol,
.setup = rtl8365mb_setup,
.teardown = rtl8365mb_teardown,
.phylink_get_caps = rtl8365mb_phylink_get_caps,
.phylink_mac_config = rtl8365mb_phylink_mac_config,
.phylink_mac_link_down = rtl8365mb_phylink_mac_link_down,
.phylink_mac_link_up = rtl8365mb_phylink_mac_link_up,
.phy_read = rtl8365mb_dsa_phy_read,
.phy_write = rtl8365mb_dsa_phy_write,
.port_stp_state_set = rtl8365mb_port_stp_state_set,
.get_strings = rtl8365mb_get_strings,
.get_ethtool_stats = rtl8365mb_get_ethtool_stats,
.get_sset_count = rtl8365mb_get_sset_count,
.get_eth_phy_stats = rtl8365mb_get_phy_stats,
.get_eth_mac_stats = rtl8365mb_get_mac_stats,
.get_eth_ctrl_stats = rtl8365mb_get_ctrl_stats,
.get_stats64 = rtl8365mb_get_stats64,
.port_change_mtu = rtl8365mb_port_change_mtu,
.port_max_mtu = rtl8365mb_port_max_mtu,
};
static const struct realtek_ops rtl8365mb_ops = {
.detect = rtl8365mb_detect,
.phy_read = rtl8365mb_phy_read,
.phy_write = rtl8365mb_phy_write,
};
const struct realtek_variant rtl8365mb_variant = {
.ds_ops_smi = &rtl8365mb_switch_ops_smi,
.ds_ops_mdio = &rtl8365mb_switch_ops_mdio,
.ops = &rtl8365mb_ops,
.clk_delay = 10,
.cmd_read = 0xb9,
.cmd_write = 0xb8,
.chip_data_sz = sizeof(struct rtl8365mb),
};
EXPORT_SYMBOL_GPL(rtl8365mb_variant);
MODULE_AUTHOR("Alvin Šipraga <alsi@bang-olufsen.dk>");
MODULE_DESCRIPTION("Driver for RTL8365MB-VC ethernet switch");
MODULE_LICENSE("GPL");