| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Davicom DM9000 Fast Ethernet driver for Linux. |
| * Copyright (C) 1997 Sten Wang |
| * |
| * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. |
| * |
| * Additional updates, Copyright: |
| * Ben Dooks <ben@simtec.co.uk> |
| * Sascha Hauer <s.hauer@pengutronix.de> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/ioport.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/crc32.h> |
| #include <linux/mii.h> |
| #include <linux/of.h> |
| #include <linux/of_net.h> |
| #include <linux/ethtool.h> |
| #include <linux/dm9000.h> |
| #include <linux/delay.h> |
| #include <linux/platform_device.h> |
| #include <linux/irq.h> |
| #include <linux/slab.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/gpio.h> |
| #include <linux/of_gpio.h> |
| |
| #include <asm/delay.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| |
| #include "dm9000.h" |
| |
| /* Board/System/Debug information/definition ---------------- */ |
| |
| #define DM9000_PHY 0x40 /* PHY address 0x01 */ |
| |
| #define CARDNAME "dm9000" |
| |
| /* |
| * Transmit timeout, default 5 seconds. |
| */ |
| static int watchdog = 5000; |
| module_param(watchdog, int, 0400); |
| MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); |
| |
| /* |
| * Debug messages level |
| */ |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)"); |
| |
| /* DM9000 register address locking. |
| * |
| * The DM9000 uses an address register to control where data written |
| * to the data register goes. This means that the address register |
| * must be preserved over interrupts or similar calls. |
| * |
| * During interrupt and other critical calls, a spinlock is used to |
| * protect the system, but the calls themselves save the address |
| * in the address register in case they are interrupting another |
| * access to the device. |
| * |
| * For general accesses a lock is provided so that calls which are |
| * allowed to sleep are serialised so that the address register does |
| * not need to be saved. This lock also serves to serialise access |
| * to the EEPROM and PHY access registers which are shared between |
| * these two devices. |
| */ |
| |
| /* The driver supports the original DM9000E, and now the two newer |
| * devices, DM9000A and DM9000B. |
| */ |
| |
| enum dm9000_type { |
| TYPE_DM9000E, /* original DM9000 */ |
| TYPE_DM9000A, |
| TYPE_DM9000B |
| }; |
| |
| /* Structure/enum declaration ------------------------------- */ |
| struct board_info { |
| |
| void __iomem *io_addr; /* Register I/O base address */ |
| void __iomem *io_data; /* Data I/O address */ |
| u16 irq; /* IRQ */ |
| |
| u16 tx_pkt_cnt; |
| u16 queue_pkt_len; |
| u16 queue_start_addr; |
| u16 queue_ip_summed; |
| u16 dbug_cnt; |
| u8 io_mode; /* 0:word, 2:byte */ |
| u8 phy_addr; |
| u8 imr_all; |
| |
| unsigned int flags; |
| unsigned int in_timeout:1; |
| unsigned int in_suspend:1; |
| unsigned int wake_supported:1; |
| |
| enum dm9000_type type; |
| |
| void (*inblk)(void __iomem *port, void *data, int length); |
| void (*outblk)(void __iomem *port, void *data, int length); |
| void (*dumpblk)(void __iomem *port, int length); |
| |
| struct device *dev; /* parent device */ |
| |
| struct resource *addr_res; /* resources found */ |
| struct resource *data_res; |
| struct resource *addr_req; /* resources requested */ |
| struct resource *data_req; |
| |
| int irq_wake; |
| |
| struct mutex addr_lock; /* phy and eeprom access lock */ |
| |
| struct delayed_work phy_poll; |
| struct net_device *ndev; |
| |
| spinlock_t lock; |
| |
| struct mii_if_info mii; |
| u32 msg_enable; |
| u32 wake_state; |
| |
| int ip_summed; |
| }; |
| |
| /* debug code */ |
| |
| #define dm9000_dbg(db, lev, msg...) do { \ |
| if ((lev) < debug) { \ |
| dev_dbg(db->dev, msg); \ |
| } \ |
| } while (0) |
| |
| static inline struct board_info *to_dm9000_board(struct net_device *dev) |
| { |
| return netdev_priv(dev); |
| } |
| |
| /* DM9000 network board routine ---------------------------- */ |
| |
| /* |
| * Read a byte from I/O port |
| */ |
| static u8 |
| ior(struct board_info *db, int reg) |
| { |
| writeb(reg, db->io_addr); |
| return readb(db->io_data); |
| } |
| |
| /* |
| * Write a byte to I/O port |
| */ |
| |
| static void |
| iow(struct board_info *db, int reg, int value) |
| { |
| writeb(reg, db->io_addr); |
| writeb(value, db->io_data); |
| } |
| |
| static void |
| dm9000_reset(struct board_info *db) |
| { |
| dev_dbg(db->dev, "resetting device\n"); |
| |
| /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29 |
| * The essential point is that we have to do a double reset, and the |
| * instruction is to set LBK into MAC internal loopback mode. |
| */ |
| iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); |
| udelay(100); /* Application note says at least 20 us */ |
| if (ior(db, DM9000_NCR) & 1) |
| dev_err(db->dev, "dm9000 did not respond to first reset\n"); |
| |
| iow(db, DM9000_NCR, 0); |
| iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); |
| udelay(100); |
| if (ior(db, DM9000_NCR) & 1) |
| dev_err(db->dev, "dm9000 did not respond to second reset\n"); |
| } |
| |
| /* routines for sending block to chip */ |
| |
| static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) |
| { |
| iowrite8_rep(reg, data, count); |
| } |
| |
| static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) |
| { |
| iowrite16_rep(reg, data, (count+1) >> 1); |
| } |
| |
| static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) |
| { |
| iowrite32_rep(reg, data, (count+3) >> 2); |
| } |
| |
| /* input block from chip to memory */ |
| |
| static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) |
| { |
| ioread8_rep(reg, data, count); |
| } |
| |
| |
| static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) |
| { |
| ioread16_rep(reg, data, (count+1) >> 1); |
| } |
| |
| static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) |
| { |
| ioread32_rep(reg, data, (count+3) >> 2); |
| } |
| |
| /* dump block from chip to null */ |
| |
| static void dm9000_dumpblk_8bit(void __iomem *reg, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| readb(reg); |
| } |
| |
| static void dm9000_dumpblk_16bit(void __iomem *reg, int count) |
| { |
| int i; |
| |
| count = (count + 1) >> 1; |
| |
| for (i = 0; i < count; i++) |
| readw(reg); |
| } |
| |
| static void dm9000_dumpblk_32bit(void __iomem *reg, int count) |
| { |
| int i; |
| |
| count = (count + 3) >> 2; |
| |
| for (i = 0; i < count; i++) |
| readl(reg); |
| } |
| |
| /* |
| * Sleep, either by using msleep() or if we are suspending, then |
| * use mdelay() to sleep. |
| */ |
| static void dm9000_msleep(struct board_info *db, unsigned int ms) |
| { |
| if (db->in_suspend || db->in_timeout) |
| mdelay(ms); |
| else |
| msleep(ms); |
| } |
| |
| /* Read a word from phyxcer */ |
| static int |
| dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg) |
| { |
| struct board_info *db = netdev_priv(dev); |
| unsigned long flags; |
| unsigned int reg_save; |
| int ret; |
| |
| mutex_lock(&db->addr_lock); |
| |
| spin_lock_irqsave(&db->lock, flags); |
| |
| /* Save previous register address */ |
| reg_save = readb(db->io_addr); |
| |
| /* Fill the phyxcer register into REG_0C */ |
| iow(db, DM9000_EPAR, DM9000_PHY | reg); |
| |
| /* Issue phyxcer read command */ |
| iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); |
| |
| writeb(reg_save, db->io_addr); |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| dm9000_msleep(db, 1); /* Wait read complete */ |
| |
| spin_lock_irqsave(&db->lock, flags); |
| reg_save = readb(db->io_addr); |
| |
| iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ |
| |
| /* The read data keeps on REG_0D & REG_0E */ |
| ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL); |
| |
| /* restore the previous address */ |
| writeb(reg_save, db->io_addr); |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| mutex_unlock(&db->addr_lock); |
| |
| dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret); |
| return ret; |
| } |
| |
| /* Write a word to phyxcer */ |
| static void |
| dm9000_phy_write(struct net_device *dev, |
| int phyaddr_unused, int reg, int value) |
| { |
| struct board_info *db = netdev_priv(dev); |
| unsigned long flags; |
| unsigned long reg_save; |
| |
| dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value); |
| if (!db->in_timeout) |
| mutex_lock(&db->addr_lock); |
| |
| spin_lock_irqsave(&db->lock, flags); |
| |
| /* Save previous register address */ |
| reg_save = readb(db->io_addr); |
| |
| /* Fill the phyxcer register into REG_0C */ |
| iow(db, DM9000_EPAR, DM9000_PHY | reg); |
| |
| /* Fill the written data into REG_0D & REG_0E */ |
| iow(db, DM9000_EPDRL, value); |
| iow(db, DM9000_EPDRH, value >> 8); |
| |
| /* Issue phyxcer write command */ |
| iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); |
| |
| writeb(reg_save, db->io_addr); |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| dm9000_msleep(db, 1); /* Wait write complete */ |
| |
| spin_lock_irqsave(&db->lock, flags); |
| reg_save = readb(db->io_addr); |
| |
| iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ |
| |
| /* restore the previous address */ |
| writeb(reg_save, db->io_addr); |
| |
| spin_unlock_irqrestore(&db->lock, flags); |
| if (!db->in_timeout) |
| mutex_unlock(&db->addr_lock); |
| } |
| |
| /* dm9000_set_io |
| * |
| * select the specified set of io routines to use with the |
| * device |
| */ |
| |
| static void dm9000_set_io(struct board_info *db, int byte_width) |
| { |
| /* use the size of the data resource to work out what IO |
| * routines we want to use |
| */ |
| |
| switch (byte_width) { |
| case 1: |
| db->dumpblk = dm9000_dumpblk_8bit; |
| db->outblk = dm9000_outblk_8bit; |
| db->inblk = dm9000_inblk_8bit; |
| break; |
| |
| |
| case 3: |
| dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n"); |
| fallthrough; |
| case 2: |
| db->dumpblk = dm9000_dumpblk_16bit; |
| db->outblk = dm9000_outblk_16bit; |
| db->inblk = dm9000_inblk_16bit; |
| break; |
| |
| case 4: |
| default: |
| db->dumpblk = dm9000_dumpblk_32bit; |
| db->outblk = dm9000_outblk_32bit; |
| db->inblk = dm9000_inblk_32bit; |
| break; |
| } |
| } |
| |
| static void dm9000_schedule_poll(struct board_info *db) |
| { |
| if (db->type == TYPE_DM9000E) |
| schedule_delayed_work(&db->phy_poll, HZ * 2); |
| } |
| |
| static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL); |
| } |
| |
| static unsigned int |
| dm9000_read_locked(struct board_info *db, int reg) |
| { |
| unsigned long flags; |
| unsigned int ret; |
| |
| spin_lock_irqsave(&db->lock, flags); |
| ret = ior(db, reg); |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| return ret; |
| } |
| |
| static int dm9000_wait_eeprom(struct board_info *db) |
| { |
| unsigned int status; |
| int timeout = 8; /* wait max 8msec */ |
| |
| /* The DM9000 data sheets say we should be able to |
| * poll the ERRE bit in EPCR to wait for the EEPROM |
| * operation. From testing several chips, this bit |
| * does not seem to work. |
| * |
| * We attempt to use the bit, but fall back to the |
| * timeout (which is why we do not return an error |
| * on expiry) to say that the EEPROM operation has |
| * completed. |
| */ |
| |
| while (1) { |
| status = dm9000_read_locked(db, DM9000_EPCR); |
| |
| if ((status & EPCR_ERRE) == 0) |
| break; |
| |
| msleep(1); |
| |
| if (timeout-- < 0) { |
| dev_dbg(db->dev, "timeout waiting EEPROM\n"); |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Read a word data from EEPROM |
| */ |
| static void |
| dm9000_read_eeprom(struct board_info *db, int offset, u8 *to) |
| { |
| unsigned long flags; |
| |
| if (db->flags & DM9000_PLATF_NO_EEPROM) { |
| to[0] = 0xff; |
| to[1] = 0xff; |
| return; |
| } |
| |
| mutex_lock(&db->addr_lock); |
| |
| spin_lock_irqsave(&db->lock, flags); |
| |
| iow(db, DM9000_EPAR, offset); |
| iow(db, DM9000_EPCR, EPCR_ERPRR); |
| |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| dm9000_wait_eeprom(db); |
| |
| /* delay for at-least 150uS */ |
| msleep(1); |
| |
| spin_lock_irqsave(&db->lock, flags); |
| |
| iow(db, DM9000_EPCR, 0x0); |
| |
| to[0] = ior(db, DM9000_EPDRL); |
| to[1] = ior(db, DM9000_EPDRH); |
| |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| mutex_unlock(&db->addr_lock); |
| } |
| |
| /* |
| * Write a word data to SROM |
| */ |
| static void |
| dm9000_write_eeprom(struct board_info *db, int offset, u8 *data) |
| { |
| unsigned long flags; |
| |
| if (db->flags & DM9000_PLATF_NO_EEPROM) |
| return; |
| |
| mutex_lock(&db->addr_lock); |
| |
| spin_lock_irqsave(&db->lock, flags); |
| iow(db, DM9000_EPAR, offset); |
| iow(db, DM9000_EPDRH, data[1]); |
| iow(db, DM9000_EPDRL, data[0]); |
| iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW); |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| dm9000_wait_eeprom(db); |
| |
| mdelay(1); /* wait at least 150uS to clear */ |
| |
| spin_lock_irqsave(&db->lock, flags); |
| iow(db, DM9000_EPCR, 0); |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| mutex_unlock(&db->addr_lock); |
| } |
| |
| /* ethtool ops */ |
| |
| static void dm9000_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| strlcpy(info->driver, CARDNAME, sizeof(info->driver)); |
| strlcpy(info->bus_info, to_platform_device(dm->dev)->name, |
| sizeof(info->bus_info)); |
| } |
| |
| static u32 dm9000_get_msglevel(struct net_device *dev) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| return dm->msg_enable; |
| } |
| |
| static void dm9000_set_msglevel(struct net_device *dev, u32 value) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| dm->msg_enable = value; |
| } |
| |
| static int dm9000_get_link_ksettings(struct net_device *dev, |
| struct ethtool_link_ksettings *cmd) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| mii_ethtool_get_link_ksettings(&dm->mii, cmd); |
| return 0; |
| } |
| |
| static int dm9000_set_link_ksettings(struct net_device *dev, |
| const struct ethtool_link_ksettings *cmd) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| return mii_ethtool_set_link_ksettings(&dm->mii, cmd); |
| } |
| |
| static int dm9000_nway_reset(struct net_device *dev) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| return mii_nway_restart(&dm->mii); |
| } |
| |
| static int dm9000_set_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| netdev_features_t changed = dev->features ^ features; |
| unsigned long flags; |
| |
| if (!(changed & NETIF_F_RXCSUM)) |
| return 0; |
| |
| spin_lock_irqsave(&dm->lock, flags); |
| iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); |
| spin_unlock_irqrestore(&dm->lock, flags); |
| |
| return 0; |
| } |
| |
| static u32 dm9000_get_link(struct net_device *dev) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| u32 ret; |
| |
| if (dm->flags & DM9000_PLATF_EXT_PHY) |
| ret = mii_link_ok(&dm->mii); |
| else |
| ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0; |
| |
| return ret; |
| } |
| |
| #define DM_EEPROM_MAGIC (0x444D394B) |
| |
| static int dm9000_get_eeprom_len(struct net_device *dev) |
| { |
| return 128; |
| } |
| |
| static int dm9000_get_eeprom(struct net_device *dev, |
| struct ethtool_eeprom *ee, u8 *data) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| int offset = ee->offset; |
| int len = ee->len; |
| int i; |
| |
| /* EEPROM access is aligned to two bytes */ |
| |
| if ((len & 1) != 0 || (offset & 1) != 0) |
| return -EINVAL; |
| |
| if (dm->flags & DM9000_PLATF_NO_EEPROM) |
| return -ENOENT; |
| |
| ee->magic = DM_EEPROM_MAGIC; |
| |
| for (i = 0; i < len; i += 2) |
| dm9000_read_eeprom(dm, (offset + i) / 2, data + i); |
| |
| return 0; |
| } |
| |
| static int dm9000_set_eeprom(struct net_device *dev, |
| struct ethtool_eeprom *ee, u8 *data) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| int offset = ee->offset; |
| int len = ee->len; |
| int done; |
| |
| /* EEPROM access is aligned to two bytes */ |
| |
| if (dm->flags & DM9000_PLATF_NO_EEPROM) |
| return -ENOENT; |
| |
| if (ee->magic != DM_EEPROM_MAGIC) |
| return -EINVAL; |
| |
| while (len > 0) { |
| if (len & 1 || offset & 1) { |
| int which = offset & 1; |
| u8 tmp[2]; |
| |
| dm9000_read_eeprom(dm, offset / 2, tmp); |
| tmp[which] = *data; |
| dm9000_write_eeprom(dm, offset / 2, tmp); |
| |
| done = 1; |
| } else { |
| dm9000_write_eeprom(dm, offset / 2, data); |
| done = 2; |
| } |
| |
| data += done; |
| offset += done; |
| len -= done; |
| } |
| |
| return 0; |
| } |
| |
| static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| memset(w, 0, sizeof(struct ethtool_wolinfo)); |
| |
| /* note, we could probably support wake-phy too */ |
| w->supported = dm->wake_supported ? WAKE_MAGIC : 0; |
| w->wolopts = dm->wake_state; |
| } |
| |
| static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| unsigned long flags; |
| u32 opts = w->wolopts; |
| u32 wcr = 0; |
| |
| if (!dm->wake_supported) |
| return -EOPNOTSUPP; |
| |
| if (opts & ~WAKE_MAGIC) |
| return -EINVAL; |
| |
| if (opts & WAKE_MAGIC) |
| wcr |= WCR_MAGICEN; |
| |
| mutex_lock(&dm->addr_lock); |
| |
| spin_lock_irqsave(&dm->lock, flags); |
| iow(dm, DM9000_WCR, wcr); |
| spin_unlock_irqrestore(&dm->lock, flags); |
| |
| mutex_unlock(&dm->addr_lock); |
| |
| if (dm->wake_state != opts) { |
| /* change in wol state, update IRQ state */ |
| |
| if (!dm->wake_state) |
| irq_set_irq_wake(dm->irq_wake, 1); |
| else if (dm->wake_state && !opts) |
| irq_set_irq_wake(dm->irq_wake, 0); |
| } |
| |
| dm->wake_state = opts; |
| return 0; |
| } |
| |
| static const struct ethtool_ops dm9000_ethtool_ops = { |
| .get_drvinfo = dm9000_get_drvinfo, |
| .get_msglevel = dm9000_get_msglevel, |
| .set_msglevel = dm9000_set_msglevel, |
| .nway_reset = dm9000_nway_reset, |
| .get_link = dm9000_get_link, |
| .get_wol = dm9000_get_wol, |
| .set_wol = dm9000_set_wol, |
| .get_eeprom_len = dm9000_get_eeprom_len, |
| .get_eeprom = dm9000_get_eeprom, |
| .set_eeprom = dm9000_set_eeprom, |
| .get_link_ksettings = dm9000_get_link_ksettings, |
| .set_link_ksettings = dm9000_set_link_ksettings, |
| }; |
| |
| static void dm9000_show_carrier(struct board_info *db, |
| unsigned carrier, unsigned nsr) |
| { |
| int lpa; |
| struct net_device *ndev = db->ndev; |
| struct mii_if_info *mii = &db->mii; |
| unsigned ncr = dm9000_read_locked(db, DM9000_NCR); |
| |
| if (carrier) { |
| lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA); |
| dev_info(db->dev, |
| "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n", |
| ndev->name, (nsr & NSR_SPEED) ? 10 : 100, |
| (ncr & NCR_FDX) ? "full" : "half", lpa); |
| } else { |
| dev_info(db->dev, "%s: link down\n", ndev->name); |
| } |
| } |
| |
| static void |
| dm9000_poll_work(struct work_struct *w) |
| { |
| struct delayed_work *dw = to_delayed_work(w); |
| struct board_info *db = container_of(dw, struct board_info, phy_poll); |
| struct net_device *ndev = db->ndev; |
| |
| if (db->flags & DM9000_PLATF_SIMPLE_PHY && |
| !(db->flags & DM9000_PLATF_EXT_PHY)) { |
| unsigned nsr = dm9000_read_locked(db, DM9000_NSR); |
| unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0; |
| unsigned new_carrier; |
| |
| new_carrier = (nsr & NSR_LINKST) ? 1 : 0; |
| |
| if (old_carrier != new_carrier) { |
| if (netif_msg_link(db)) |
| dm9000_show_carrier(db, new_carrier, nsr); |
| |
| if (!new_carrier) |
| netif_carrier_off(ndev); |
| else |
| netif_carrier_on(ndev); |
| } |
| } else |
| mii_check_media(&db->mii, netif_msg_link(db), 0); |
| |
| if (netif_running(ndev)) |
| dm9000_schedule_poll(db); |
| } |
| |
| /* dm9000_release_board |
| * |
| * release a board, and any mapped resources |
| */ |
| |
| static void |
| dm9000_release_board(struct platform_device *pdev, struct board_info *db) |
| { |
| /* unmap our resources */ |
| |
| iounmap(db->io_addr); |
| iounmap(db->io_data); |
| |
| /* release the resources */ |
| |
| if (db->data_req) |
| release_resource(db->data_req); |
| kfree(db->data_req); |
| |
| if (db->addr_req) |
| release_resource(db->addr_req); |
| kfree(db->addr_req); |
| } |
| |
| static unsigned char dm9000_type_to_char(enum dm9000_type type) |
| { |
| switch (type) { |
| case TYPE_DM9000E: return 'e'; |
| case TYPE_DM9000A: return 'a'; |
| case TYPE_DM9000B: return 'b'; |
| } |
| |
| return '?'; |
| } |
| |
| /* |
| * Set DM9000 multicast address |
| */ |
| static void |
| dm9000_hash_table_unlocked(struct net_device *dev) |
| { |
| struct board_info *db = netdev_priv(dev); |
| struct netdev_hw_addr *ha; |
| int i, oft; |
| u32 hash_val; |
| u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */ |
| u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; |
| |
| dm9000_dbg(db, 1, "entering %s\n", __func__); |
| |
| for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) |
| iow(db, oft, dev->dev_addr[i]); |
| |
| if (dev->flags & IFF_PROMISC) |
| rcr |= RCR_PRMSC; |
| |
| if (dev->flags & IFF_ALLMULTI) |
| rcr |= RCR_ALL; |
| |
| /* the multicast address in Hash Table : 64 bits */ |
| netdev_for_each_mc_addr(ha, dev) { |
| hash_val = ether_crc_le(6, ha->addr) & 0x3f; |
| hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); |
| } |
| |
| /* Write the hash table to MAC MD table */ |
| for (i = 0, oft = DM9000_MAR; i < 4; i++) { |
| iow(db, oft++, hash_table[i]); |
| iow(db, oft++, hash_table[i] >> 8); |
| } |
| |
| iow(db, DM9000_RCR, rcr); |
| } |
| |
| static void |
| dm9000_hash_table(struct net_device *dev) |
| { |
| struct board_info *db = netdev_priv(dev); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&db->lock, flags); |
| dm9000_hash_table_unlocked(dev); |
| spin_unlock_irqrestore(&db->lock, flags); |
| } |
| |
| static void |
| dm9000_mask_interrupts(struct board_info *db) |
| { |
| iow(db, DM9000_IMR, IMR_PAR); |
| } |
| |
| static void |
| dm9000_unmask_interrupts(struct board_info *db) |
| { |
| iow(db, DM9000_IMR, db->imr_all); |
| } |
| |
| /* |
| * Initialize dm9000 board |
| */ |
| static void |
| dm9000_init_dm9000(struct net_device *dev) |
| { |
| struct board_info *db = netdev_priv(dev); |
| unsigned int imr; |
| unsigned int ncr; |
| |
| dm9000_dbg(db, 1, "entering %s\n", __func__); |
| |
| dm9000_reset(db); |
| dm9000_mask_interrupts(db); |
| |
| /* I/O mode */ |
| db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ |
| |
| /* Checksum mode */ |
| if (dev->hw_features & NETIF_F_RXCSUM) |
| iow(db, DM9000_RCSR, |
| (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); |
| |
| iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ |
| iow(db, DM9000_GPR, 0); |
| |
| /* If we are dealing with DM9000B, some extra steps are required: a |
| * manual phy reset, and setting init params. |
| */ |
| if (db->type == TYPE_DM9000B) { |
| dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); |
| dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); |
| } |
| |
| ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0; |
| |
| /* if wol is needed, then always set NCR_WAKEEN otherwise we end |
| * up dumping the wake events if we disable this. There is already |
| * a wake-mask in DM9000_WCR */ |
| if (db->wake_supported) |
| ncr |= NCR_WAKEEN; |
| |
| iow(db, DM9000_NCR, ncr); |
| |
| /* Program operating register */ |
| iow(db, DM9000_TCR, 0); /* TX Polling clear */ |
| iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ |
| iow(db, DM9000_FCR, 0xff); /* Flow Control */ |
| iow(db, DM9000_SMCR, 0); /* Special Mode */ |
| /* clear TX status */ |
| iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); |
| iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ |
| |
| /* Set address filter table */ |
| dm9000_hash_table_unlocked(dev); |
| |
| imr = IMR_PAR | IMR_PTM | IMR_PRM; |
| if (db->type != TYPE_DM9000E) |
| imr |= IMR_LNKCHNG; |
| |
| db->imr_all = imr; |
| |
| /* Init Driver variable */ |
| db->tx_pkt_cnt = 0; |
| db->queue_pkt_len = 0; |
| netif_trans_update(dev); |
| } |
| |
| /* Our watchdog timed out. Called by the networking layer */ |
| static void dm9000_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct board_info *db = netdev_priv(dev); |
| u8 reg_save; |
| unsigned long flags; |
| |
| /* Save previous register address */ |
| spin_lock_irqsave(&db->lock, flags); |
| db->in_timeout = 1; |
| reg_save = readb(db->io_addr); |
| |
| netif_stop_queue(dev); |
| dm9000_init_dm9000(dev); |
| dm9000_unmask_interrupts(db); |
| /* We can accept TX packets again */ |
| netif_trans_update(dev); /* prevent tx timeout */ |
| netif_wake_queue(dev); |
| |
| /* Restore previous register address */ |
| writeb(reg_save, db->io_addr); |
| db->in_timeout = 0; |
| spin_unlock_irqrestore(&db->lock, flags); |
| } |
| |
| static void dm9000_send_packet(struct net_device *dev, |
| int ip_summed, |
| u16 pkt_len) |
| { |
| struct board_info *dm = to_dm9000_board(dev); |
| |
| /* The DM9000 is not smart enough to leave fragmented packets alone. */ |
| if (dm->ip_summed != ip_summed) { |
| if (ip_summed == CHECKSUM_NONE) |
| iow(dm, DM9000_TCCR, 0); |
| else |
| iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP); |
| dm->ip_summed = ip_summed; |
| } |
| |
| /* Set TX length to DM9000 */ |
| iow(dm, DM9000_TXPLL, pkt_len); |
| iow(dm, DM9000_TXPLH, pkt_len >> 8); |
| |
| /* Issue TX polling command */ |
| iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ |
| } |
| |
| /* |
| * Hardware start transmission. |
| * Send a packet to media from the upper layer. |
| */ |
| static int |
| dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| unsigned long flags; |
| struct board_info *db = netdev_priv(dev); |
| |
| dm9000_dbg(db, 3, "%s:\n", __func__); |
| |
| if (db->tx_pkt_cnt > 1) |
| return NETDEV_TX_BUSY; |
| |
| spin_lock_irqsave(&db->lock, flags); |
| |
| /* Move data to DM9000 TX RAM */ |
| writeb(DM9000_MWCMD, db->io_addr); |
| |
| (db->outblk)(db->io_data, skb->data, skb->len); |
| dev->stats.tx_bytes += skb->len; |
| |
| db->tx_pkt_cnt++; |
| /* TX control: First packet immediately send, second packet queue */ |
| if (db->tx_pkt_cnt == 1) { |
| dm9000_send_packet(dev, skb->ip_summed, skb->len); |
| } else { |
| /* Second packet */ |
| db->queue_pkt_len = skb->len; |
| db->queue_ip_summed = skb->ip_summed; |
| netif_stop_queue(dev); |
| } |
| |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| /* free this SKB */ |
| dev_consume_skb_any(skb); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * DM9000 interrupt handler |
| * receive the packet to upper layer, free the transmitted packet |
| */ |
| |
| static void dm9000_tx_done(struct net_device *dev, struct board_info *db) |
| { |
| int tx_status = ior(db, DM9000_NSR); /* Got TX status */ |
| |
| if (tx_status & (NSR_TX2END | NSR_TX1END)) { |
| /* One packet sent complete */ |
| db->tx_pkt_cnt--; |
| dev->stats.tx_packets++; |
| |
| if (netif_msg_tx_done(db)) |
| dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); |
| |
| /* Queue packet check & send */ |
| if (db->tx_pkt_cnt > 0) |
| dm9000_send_packet(dev, db->queue_ip_summed, |
| db->queue_pkt_len); |
| netif_wake_queue(dev); |
| } |
| } |
| |
| struct dm9000_rxhdr { |
| u8 RxPktReady; |
| u8 RxStatus; |
| __le16 RxLen; |
| } __packed; |
| |
| /* |
| * Received a packet and pass to upper layer |
| */ |
| static void |
| dm9000_rx(struct net_device *dev) |
| { |
| struct board_info *db = netdev_priv(dev); |
| struct dm9000_rxhdr rxhdr; |
| struct sk_buff *skb; |
| u8 rxbyte, *rdptr; |
| bool GoodPacket; |
| int RxLen; |
| |
| /* Check packet ready or not */ |
| do { |
| ior(db, DM9000_MRCMDX); /* Dummy read */ |
| |
| /* Get most updated data */ |
| rxbyte = readb(db->io_data); |
| |
| /* Status check: this byte must be 0 or 1 */ |
| if (rxbyte & DM9000_PKT_ERR) { |
| dev_warn(db->dev, "status check fail: %d\n", rxbyte); |
| iow(db, DM9000_RCR, 0x00); /* Stop Device */ |
| return; |
| } |
| |
| if (!(rxbyte & DM9000_PKT_RDY)) |
| return; |
| |
| /* A packet ready now & Get status/length */ |
| GoodPacket = true; |
| writeb(DM9000_MRCMD, db->io_addr); |
| |
| (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); |
| |
| RxLen = le16_to_cpu(rxhdr.RxLen); |
| |
| if (netif_msg_rx_status(db)) |
| dev_dbg(db->dev, "RX: status %02x, length %04x\n", |
| rxhdr.RxStatus, RxLen); |
| |
| /* Packet Status check */ |
| if (RxLen < 0x40) { |
| GoodPacket = false; |
| if (netif_msg_rx_err(db)) |
| dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); |
| } |
| |
| if (RxLen > DM9000_PKT_MAX) { |
| dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); |
| } |
| |
| /* rxhdr.RxStatus is identical to RSR register. */ |
| if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | |
| RSR_PLE | RSR_RWTO | |
| RSR_LCS | RSR_RF)) { |
| GoodPacket = false; |
| if (rxhdr.RxStatus & RSR_FOE) { |
| if (netif_msg_rx_err(db)) |
| dev_dbg(db->dev, "fifo error\n"); |
| dev->stats.rx_fifo_errors++; |
| } |
| if (rxhdr.RxStatus & RSR_CE) { |
| if (netif_msg_rx_err(db)) |
| dev_dbg(db->dev, "crc error\n"); |
| dev->stats.rx_crc_errors++; |
| } |
| if (rxhdr.RxStatus & RSR_RF) { |
| if (netif_msg_rx_err(db)) |
| dev_dbg(db->dev, "length error\n"); |
| dev->stats.rx_length_errors++; |
| } |
| } |
| |
| /* Move data from DM9000 */ |
| if (GoodPacket && |
| ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) { |
| skb_reserve(skb, 2); |
| rdptr = skb_put(skb, RxLen - 4); |
| |
| /* Read received packet from RX SRAM */ |
| |
| (db->inblk)(db->io_data, rdptr, RxLen); |
| dev->stats.rx_bytes += RxLen; |
| |
| /* Pass to upper layer */ |
| skb->protocol = eth_type_trans(skb, dev); |
| if (dev->features & NETIF_F_RXCSUM) { |
| if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| else |
| skb_checksum_none_assert(skb); |
| } |
| netif_rx(skb); |
| dev->stats.rx_packets++; |
| |
| } else { |
| /* need to dump the packet's data */ |
| |
| (db->dumpblk)(db->io_data, RxLen); |
| } |
| } while (rxbyte & DM9000_PKT_RDY); |
| } |
| |
| static irqreturn_t dm9000_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct board_info *db = netdev_priv(dev); |
| int int_status; |
| unsigned long flags; |
| u8 reg_save; |
| |
| dm9000_dbg(db, 3, "entering %s\n", __func__); |
| |
| /* A real interrupt coming */ |
| |
| /* holders of db->lock must always block IRQs */ |
| spin_lock_irqsave(&db->lock, flags); |
| |
| /* Save previous register address */ |
| reg_save = readb(db->io_addr); |
| |
| dm9000_mask_interrupts(db); |
| /* Got DM9000 interrupt status */ |
| int_status = ior(db, DM9000_ISR); /* Got ISR */ |
| iow(db, DM9000_ISR, int_status); /* Clear ISR status */ |
| |
| if (netif_msg_intr(db)) |
| dev_dbg(db->dev, "interrupt status %02x\n", int_status); |
| |
| /* Received the coming packet */ |
| if (int_status & ISR_PRS) |
| dm9000_rx(dev); |
| |
| /* Transmit Interrupt check */ |
| if (int_status & ISR_PTS) |
| dm9000_tx_done(dev, db); |
| |
| if (db->type != TYPE_DM9000E) { |
| if (int_status & ISR_LNKCHNG) { |
| /* fire a link-change request */ |
| schedule_delayed_work(&db->phy_poll, 1); |
| } |
| } |
| |
| dm9000_unmask_interrupts(db); |
| /* Restore previous register address */ |
| writeb(reg_save, db->io_addr); |
| |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct board_info *db = netdev_priv(dev); |
| unsigned long flags; |
| unsigned nsr, wcr; |
| |
| spin_lock_irqsave(&db->lock, flags); |
| |
| nsr = ior(db, DM9000_NSR); |
| wcr = ior(db, DM9000_WCR); |
| |
| dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr); |
| |
| if (nsr & NSR_WAKEST) { |
| /* clear, so we can avoid */ |
| iow(db, DM9000_NSR, NSR_WAKEST); |
| |
| if (wcr & WCR_LINKST) |
| dev_info(db->dev, "wake by link status change\n"); |
| if (wcr & WCR_SAMPLEST) |
| dev_info(db->dev, "wake by sample packet\n"); |
| if (wcr & WCR_MAGICST) |
| dev_info(db->dev, "wake by magic packet\n"); |
| if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST))) |
| dev_err(db->dev, "wake signalled with no reason? " |
| "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr); |
| } |
| |
| spin_unlock_irqrestore(&db->lock, flags); |
| |
| return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| *Used by netconsole |
| */ |
| static void dm9000_poll_controller(struct net_device *dev) |
| { |
| disable_irq(dev->irq); |
| dm9000_interrupt(dev->irq, dev); |
| enable_irq(dev->irq); |
| } |
| #endif |
| |
| /* |
| * Open the interface. |
| * The interface is opened whenever "ifconfig" actives it. |
| */ |
| static int |
| dm9000_open(struct net_device *dev) |
| { |
| struct board_info *db = netdev_priv(dev); |
| unsigned int irq_flags = irq_get_trigger_type(dev->irq); |
| |
| if (netif_msg_ifup(db)) |
| dev_dbg(db->dev, "enabling %s\n", dev->name); |
| |
| /* If there is no IRQ type specified, tell the user that this is a |
| * problem |
| */ |
| if (irq_flags == IRQF_TRIGGER_NONE) |
| dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n"); |
| |
| irq_flags |= IRQF_SHARED; |
| |
| /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */ |
| iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ |
| mdelay(1); /* delay needs by DM9000B */ |
| |
| /* Initialize DM9000 board */ |
| dm9000_init_dm9000(dev); |
| |
| if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev)) |
| return -EAGAIN; |
| /* Now that we have an interrupt handler hooked up we can unmask |
| * our interrupts |
| */ |
| dm9000_unmask_interrupts(db); |
| |
| /* Init driver variable */ |
| db->dbug_cnt = 0; |
| |
| mii_check_media(&db->mii, netif_msg_link(db), 1); |
| netif_start_queue(dev); |
| |
| /* Poll initial link status */ |
| schedule_delayed_work(&db->phy_poll, 1); |
| |
| return 0; |
| } |
| |
| static void |
| dm9000_shutdown(struct net_device *dev) |
| { |
| struct board_info *db = netdev_priv(dev); |
| |
| /* RESET device */ |
| dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ |
| iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ |
| dm9000_mask_interrupts(db); |
| iow(db, DM9000_RCR, 0x00); /* Disable RX */ |
| } |
| |
| /* |
| * Stop the interface. |
| * The interface is stopped when it is brought. |
| */ |
| static int |
| dm9000_stop(struct net_device *ndev) |
| { |
| struct board_info *db = netdev_priv(ndev); |
| |
| if (netif_msg_ifdown(db)) |
| dev_dbg(db->dev, "shutting down %s\n", ndev->name); |
| |
| cancel_delayed_work_sync(&db->phy_poll); |
| |
| netif_stop_queue(ndev); |
| netif_carrier_off(ndev); |
| |
| /* free interrupt */ |
| free_irq(ndev->irq, ndev); |
| |
| dm9000_shutdown(ndev); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops dm9000_netdev_ops = { |
| .ndo_open = dm9000_open, |
| .ndo_stop = dm9000_stop, |
| .ndo_start_xmit = dm9000_start_xmit, |
| .ndo_tx_timeout = dm9000_timeout, |
| .ndo_set_rx_mode = dm9000_hash_table, |
| .ndo_do_ioctl = dm9000_ioctl, |
| .ndo_set_features = dm9000_set_features, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = eth_mac_addr, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = dm9000_poll_controller, |
| #endif |
| }; |
| |
| static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev) |
| { |
| struct dm9000_plat_data *pdata; |
| struct device_node *np = dev->of_node; |
| const void *mac_addr; |
| |
| if (!IS_ENABLED(CONFIG_OF) || !np) |
| return ERR_PTR(-ENXIO); |
| |
| pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) |
| return ERR_PTR(-ENOMEM); |
| |
| if (of_find_property(np, "davicom,ext-phy", NULL)) |
| pdata->flags |= DM9000_PLATF_EXT_PHY; |
| if (of_find_property(np, "davicom,no-eeprom", NULL)) |
| pdata->flags |= DM9000_PLATF_NO_EEPROM; |
| |
| mac_addr = of_get_mac_address(np); |
| if (!IS_ERR(mac_addr)) |
| ether_addr_copy(pdata->dev_addr, mac_addr); |
| else if (PTR_ERR(mac_addr) == -EPROBE_DEFER) |
| return ERR_CAST(mac_addr); |
| |
| return pdata; |
| } |
| |
| /* |
| * Search DM9000 board, allocate space and register it |
| */ |
| static int |
| dm9000_probe(struct platform_device *pdev) |
| { |
| struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev); |
| struct board_info *db; /* Point a board information structure */ |
| struct net_device *ndev; |
| struct device *dev = &pdev->dev; |
| const unsigned char *mac_src; |
| int ret = 0; |
| int iosize; |
| int i; |
| u32 id_val; |
| int reset_gpios; |
| enum of_gpio_flags flags; |
| struct regulator *power; |
| bool inv_mac_addr = false; |
| |
| power = devm_regulator_get(dev, "vcc"); |
| if (IS_ERR(power)) { |
| if (PTR_ERR(power) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| dev_dbg(dev, "no regulator provided\n"); |
| } else { |
| ret = regulator_enable(power); |
| if (ret != 0) { |
| dev_err(dev, |
| "Failed to enable power regulator: %d\n", ret); |
| return ret; |
| } |
| dev_dbg(dev, "regulator enabled\n"); |
| } |
| |
| reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, |
| &flags); |
| if (gpio_is_valid(reset_gpios)) { |
| ret = devm_gpio_request_one(dev, reset_gpios, flags, |
| "dm9000_reset"); |
| if (ret) { |
| dev_err(dev, "failed to request reset gpio %d: %d\n", |
| reset_gpios, ret); |
| return -ENODEV; |
| } |
| |
| /* According to manual PWRST# Low Period Min 1ms */ |
| msleep(2); |
| gpio_set_value(reset_gpios, 1); |
| /* Needs 3ms to read eeprom when PWRST is deasserted */ |
| msleep(4); |
| } |
| |
| if (!pdata) { |
| pdata = dm9000_parse_dt(&pdev->dev); |
| if (IS_ERR(pdata)) |
| return PTR_ERR(pdata); |
| } |
| |
| /* Init network device */ |
| ndev = alloc_etherdev(sizeof(struct board_info)); |
| if (!ndev) |
| return -ENOMEM; |
| |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| |
| dev_dbg(&pdev->dev, "dm9000_probe()\n"); |
| |
| /* setup board info structure */ |
| db = netdev_priv(ndev); |
| |
| db->dev = &pdev->dev; |
| db->ndev = ndev; |
| |
| spin_lock_init(&db->lock); |
| mutex_init(&db->addr_lock); |
| |
| INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); |
| |
| db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| |
| if (!db->addr_res || !db->data_res) { |
| dev_err(db->dev, "insufficient resources addr=%p data=%p\n", |
| db->addr_res, db->data_res); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ndev->irq = platform_get_irq(pdev, 0); |
| if (ndev->irq < 0) { |
| ret = ndev->irq; |
| goto out; |
| } |
| |
| db->irq_wake = platform_get_irq(pdev, 1); |
| if (db->irq_wake >= 0) { |
| dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake); |
| |
| ret = request_irq(db->irq_wake, dm9000_wol_interrupt, |
| IRQF_SHARED, dev_name(db->dev), ndev); |
| if (ret) { |
| dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret); |
| } else { |
| |
| /* test to see if irq is really wakeup capable */ |
| ret = irq_set_irq_wake(db->irq_wake, 1); |
| if (ret) { |
| dev_err(db->dev, "irq %d cannot set wakeup (%d)\n", |
| db->irq_wake, ret); |
| ret = 0; |
| } else { |
| irq_set_irq_wake(db->irq_wake, 0); |
| db->wake_supported = 1; |
| } |
| } |
| } |
| |
| iosize = resource_size(db->addr_res); |
| db->addr_req = request_mem_region(db->addr_res->start, iosize, |
| pdev->name); |
| |
| if (db->addr_req == NULL) { |
| dev_err(db->dev, "cannot claim address reg area\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| db->io_addr = ioremap(db->addr_res->start, iosize); |
| |
| if (db->io_addr == NULL) { |
| dev_err(db->dev, "failed to ioremap address reg\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| iosize = resource_size(db->data_res); |
| db->data_req = request_mem_region(db->data_res->start, iosize, |
| pdev->name); |
| |
| if (db->data_req == NULL) { |
| dev_err(db->dev, "cannot claim data reg area\n"); |
| ret = -EIO; |
| goto out; |
| } |
| |
| db->io_data = ioremap(db->data_res->start, iosize); |
| |
| if (db->io_data == NULL) { |
| dev_err(db->dev, "failed to ioremap data reg\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* fill in parameters for net-dev structure */ |
| ndev->base_addr = (unsigned long)db->io_addr; |
| |
| /* ensure at least we have a default set of IO routines */ |
| dm9000_set_io(db, iosize); |
| |
| /* check to see if anything is being over-ridden */ |
| if (pdata != NULL) { |
| /* check to see if the driver wants to over-ride the |
| * default IO width */ |
| |
| if (pdata->flags & DM9000_PLATF_8BITONLY) |
| dm9000_set_io(db, 1); |
| |
| if (pdata->flags & DM9000_PLATF_16BITONLY) |
| dm9000_set_io(db, 2); |
| |
| if (pdata->flags & DM9000_PLATF_32BITONLY) |
| dm9000_set_io(db, 4); |
| |
| /* check to see if there are any IO routine |
| * over-rides */ |
| |
| if (pdata->inblk != NULL) |
| db->inblk = pdata->inblk; |
| |
| if (pdata->outblk != NULL) |
| db->outblk = pdata->outblk; |
| |
| if (pdata->dumpblk != NULL) |
| db->dumpblk = pdata->dumpblk; |
| |
| db->flags = pdata->flags; |
| } |
| |
| #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL |
| db->flags |= DM9000_PLATF_SIMPLE_PHY; |
| #endif |
| |
| dm9000_reset(db); |
| |
| /* try multiple times, DM9000 sometimes gets the read wrong */ |
| for (i = 0; i < 8; i++) { |
| id_val = ior(db, DM9000_VIDL); |
| id_val |= (u32)ior(db, DM9000_VIDH) << 8; |
| id_val |= (u32)ior(db, DM9000_PIDL) << 16; |
| id_val |= (u32)ior(db, DM9000_PIDH) << 24; |
| |
| if (id_val == DM9000_ID) |
| break; |
| dev_err(db->dev, "read wrong id 0x%08x\n", id_val); |
| } |
| |
| if (id_val != DM9000_ID) { |
| dev_err(db->dev, "wrong id: 0x%08x\n", id_val); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| /* Identify what type of DM9000 we are working on */ |
| |
| id_val = ior(db, DM9000_CHIPR); |
| dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); |
| |
| switch (id_val) { |
| case CHIPR_DM9000A: |
| db->type = TYPE_DM9000A; |
| break; |
| case CHIPR_DM9000B: |
| db->type = TYPE_DM9000B; |
| break; |
| default: |
| dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); |
| db->type = TYPE_DM9000E; |
| } |
| |
| /* dm9000a/b are capable of hardware checksum offload */ |
| if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) { |
| ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; |
| ndev->features |= ndev->hw_features; |
| } |
| |
| /* from this point we assume that we have found a DM9000 */ |
| |
| ndev->netdev_ops = &dm9000_netdev_ops; |
| ndev->watchdog_timeo = msecs_to_jiffies(watchdog); |
| ndev->ethtool_ops = &dm9000_ethtool_ops; |
| |
| db->msg_enable = NETIF_MSG_LINK; |
| db->mii.phy_id_mask = 0x1f; |
| db->mii.reg_num_mask = 0x1f; |
| db->mii.force_media = 0; |
| db->mii.full_duplex = 0; |
| db->mii.dev = ndev; |
| db->mii.mdio_read = dm9000_phy_read; |
| db->mii.mdio_write = dm9000_phy_write; |
| |
| mac_src = "eeprom"; |
| |
| /* try reading the node address from the attached EEPROM */ |
| for (i = 0; i < 6; i += 2) |
| dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); |
| |
| if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { |
| mac_src = "platform data"; |
| memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN); |
| } |
| |
| if (!is_valid_ether_addr(ndev->dev_addr)) { |
| /* try reading from mac */ |
| |
| mac_src = "chip"; |
| for (i = 0; i < 6; i++) |
| ndev->dev_addr[i] = ior(db, i+DM9000_PAR); |
| } |
| |
| if (!is_valid_ether_addr(ndev->dev_addr)) { |
| inv_mac_addr = true; |
| eth_hw_addr_random(ndev); |
| mac_src = "random"; |
| } |
| |
| |
| platform_set_drvdata(pdev, ndev); |
| ret = register_netdev(ndev); |
| |
| if (ret == 0) { |
| if (inv_mac_addr) |
| dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n", |
| ndev->name); |
| printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", |
| ndev->name, dm9000_type_to_char(db->type), |
| db->io_addr, db->io_data, ndev->irq, |
| ndev->dev_addr, mac_src); |
| } |
| return 0; |
| |
| out: |
| dev_err(db->dev, "not found (%d).\n", ret); |
| |
| dm9000_release_board(pdev, db); |
| free_netdev(ndev); |
| |
| return ret; |
| } |
| |
| static int |
| dm9000_drv_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct board_info *db; |
| |
| if (ndev) { |
| db = netdev_priv(ndev); |
| db->in_suspend = 1; |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| netif_device_detach(ndev); |
| |
| /* only shutdown if not using WoL */ |
| if (!db->wake_state) |
| dm9000_shutdown(ndev); |
| } |
| return 0; |
| } |
| |
| static int |
| dm9000_drv_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct board_info *db = netdev_priv(ndev); |
| |
| if (ndev) { |
| if (netif_running(ndev)) { |
| /* reset if we were not in wake mode to ensure if |
| * the device was powered off it is in a known state */ |
| if (!db->wake_state) { |
| dm9000_init_dm9000(ndev); |
| dm9000_unmask_interrupts(db); |
| } |
| |
| netif_device_attach(ndev); |
| } |
| |
| db->in_suspend = 0; |
| } |
| return 0; |
| } |
| |
| static const struct dev_pm_ops dm9000_drv_pm_ops = { |
| .suspend = dm9000_drv_suspend, |
| .resume = dm9000_drv_resume, |
| }; |
| |
| static int |
| dm9000_drv_remove(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| |
| unregister_netdev(ndev); |
| dm9000_release_board(pdev, netdev_priv(ndev)); |
| free_netdev(ndev); /* free device structure */ |
| |
| dev_dbg(&pdev->dev, "released and freed device\n"); |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id dm9000_of_matches[] = { |
| { .compatible = "davicom,dm9000", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, dm9000_of_matches); |
| #endif |
| |
| static struct platform_driver dm9000_driver = { |
| .driver = { |
| .name = "dm9000", |
| .pm = &dm9000_drv_pm_ops, |
| .of_match_table = of_match_ptr(dm9000_of_matches), |
| }, |
| .probe = dm9000_probe, |
| .remove = dm9000_drv_remove, |
| }; |
| |
| module_platform_driver(dm9000_driver); |
| |
| MODULE_AUTHOR("Sascha Hauer, Ben Dooks"); |
| MODULE_DESCRIPTION("Davicom DM9000 network driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:dm9000"); |