| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "bkey_methods.h" |
| #include "bkey_buf.h" |
| #include "btree_cache.h" |
| #include "btree_iter.h" |
| #include "btree_key_cache.h" |
| #include "btree_locking.h" |
| #include "btree_update.h" |
| #include "debug.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "journal.h" |
| #include "recovery.h" |
| #include "replicas.h" |
| #include "subvolume.h" |
| #include "trace.h" |
| |
| #include <linux/prefetch.h> |
| |
| static inline void btree_path_list_remove(struct btree_trans *, struct btree_path *); |
| static inline void btree_path_list_add(struct btree_trans *, struct btree_path *, |
| struct btree_path *); |
| |
| static struct btree_path *btree_path_alloc(struct btree_trans *, struct btree_path *); |
| |
| /* |
| * Unlocks before scheduling |
| * Note: does not revalidate iterator |
| */ |
| static inline int bch2_trans_cond_resched(struct btree_trans *trans) |
| { |
| if (need_resched() || race_fault()) { |
| bch2_trans_unlock(trans); |
| schedule(); |
| return bch2_trans_relock(trans) ? 0 : -EINTR; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline int __btree_path_cmp(const struct btree_path *l, |
| enum btree_id r_btree_id, |
| bool r_cached, |
| struct bpos r_pos, |
| unsigned r_level) |
| { |
| /* |
| * Must match lock ordering as defined by __bch2_btree_node_lock: |
| */ |
| return cmp_int(l->btree_id, r_btree_id) ?: |
| cmp_int((int) l->cached, (int) r_cached) ?: |
| bpos_cmp(l->pos, r_pos) ?: |
| -cmp_int(l->level, r_level); |
| } |
| |
| static inline int btree_path_cmp(const struct btree_path *l, |
| const struct btree_path *r) |
| { |
| return __btree_path_cmp(l, r->btree_id, r->cached, r->pos, r->level); |
| } |
| |
| static inline struct bpos bkey_successor(struct btree_iter *iter, struct bpos p) |
| { |
| /* Are we iterating over keys in all snapshots? */ |
| if (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) { |
| p = bpos_successor(p); |
| } else { |
| p = bpos_nosnap_successor(p); |
| p.snapshot = iter->snapshot; |
| } |
| |
| return p; |
| } |
| |
| static inline struct bpos bkey_predecessor(struct btree_iter *iter, struct bpos p) |
| { |
| /* Are we iterating over keys in all snapshots? */ |
| if (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) { |
| p = bpos_predecessor(p); |
| } else { |
| p = bpos_nosnap_predecessor(p); |
| p.snapshot = iter->snapshot; |
| } |
| |
| return p; |
| } |
| |
| static inline bool is_btree_node(struct btree_path *path, unsigned l) |
| { |
| return l < BTREE_MAX_DEPTH && |
| (unsigned long) path->l[l].b >= 128; |
| } |
| |
| static inline struct bpos btree_iter_search_key(struct btree_iter *iter) |
| { |
| struct bpos pos = iter->pos; |
| |
| if ((iter->flags & BTREE_ITER_IS_EXTENTS) && |
| bkey_cmp(pos, POS_MAX)) |
| pos = bkey_successor(iter, pos); |
| return pos; |
| } |
| |
| static inline bool btree_path_pos_before_node(struct btree_path *path, |
| struct btree *b) |
| { |
| return bpos_cmp(path->pos, b->data->min_key) < 0; |
| } |
| |
| static inline bool btree_path_pos_after_node(struct btree_path *path, |
| struct btree *b) |
| { |
| return bpos_cmp(b->key.k.p, path->pos) < 0; |
| } |
| |
| static inline bool btree_path_pos_in_node(struct btree_path *path, |
| struct btree *b) |
| { |
| return path->btree_id == b->c.btree_id && |
| !btree_path_pos_before_node(path, b) && |
| !btree_path_pos_after_node(path, b); |
| } |
| |
| /* Btree node locking: */ |
| |
| void bch2_btree_node_unlock_write(struct btree_trans *trans, |
| struct btree_path *path, struct btree *b) |
| { |
| bch2_btree_node_unlock_write_inlined(trans, path, b); |
| } |
| |
| void __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree *b) |
| { |
| struct btree_path *linked; |
| unsigned readers = 0; |
| |
| trans_for_each_path(trans, linked) |
| if (linked->l[b->c.level].b == b && |
| btree_node_read_locked(linked, b->c.level)) |
| readers++; |
| |
| /* |
| * Must drop our read locks before calling six_lock_write() - |
| * six_unlock() won't do wakeups until the reader count |
| * goes to 0, and it's safe because we have the node intent |
| * locked: |
| */ |
| if (!b->c.lock.readers) |
| atomic64_sub(__SIX_VAL(read_lock, readers), |
| &b->c.lock.state.counter); |
| else |
| this_cpu_sub(*b->c.lock.readers, readers); |
| |
| six_lock_write(&b->c.lock, NULL, NULL); |
| |
| if (!b->c.lock.readers) |
| atomic64_add(__SIX_VAL(read_lock, readers), |
| &b->c.lock.state.counter); |
| else |
| this_cpu_add(*b->c.lock.readers, readers); |
| } |
| |
| bool __bch2_btree_node_relock(struct btree_trans *trans, |
| struct btree_path *path, unsigned level) |
| { |
| struct btree *b = btree_path_node(path, level); |
| int want = __btree_lock_want(path, level); |
| |
| if (!is_btree_node(path, level)) |
| goto fail; |
| |
| if (race_fault()) |
| goto fail; |
| |
| if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) || |
| (btree_node_lock_seq_matches(path, b, level) && |
| btree_node_lock_increment(trans, b, level, want))) { |
| mark_btree_node_locked(path, level, want); |
| return true; |
| } |
| fail: |
| trace_btree_node_relock_fail(trans->fn, _RET_IP_, |
| path->btree_id, |
| &path->pos, |
| (unsigned long) b, |
| path->l[level].lock_seq, |
| is_btree_node(path, level) ? b->c.lock.state.seq : 0); |
| return false; |
| } |
| |
| bool bch2_btree_node_upgrade(struct btree_trans *trans, |
| struct btree_path *path, unsigned level) |
| { |
| struct btree *b = path->l[level].b; |
| |
| if (!is_btree_node(path, level)) |
| return false; |
| |
| switch (btree_lock_want(path, level)) { |
| case BTREE_NODE_UNLOCKED: |
| BUG_ON(btree_node_locked(path, level)); |
| return true; |
| case BTREE_NODE_READ_LOCKED: |
| BUG_ON(btree_node_intent_locked(path, level)); |
| return bch2_btree_node_relock(trans, path, level); |
| case BTREE_NODE_INTENT_LOCKED: |
| break; |
| } |
| |
| if (btree_node_intent_locked(path, level)) |
| return true; |
| |
| if (race_fault()) |
| return false; |
| |
| if (btree_node_locked(path, level) |
| ? six_lock_tryupgrade(&b->c.lock) |
| : six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq)) |
| goto success; |
| |
| if (btree_node_lock_seq_matches(path, b, level) && |
| btree_node_lock_increment(trans, b, level, BTREE_NODE_INTENT_LOCKED)) { |
| btree_node_unlock(path, level); |
| goto success; |
| } |
| |
| return false; |
| success: |
| mark_btree_node_intent_locked(path, level); |
| return true; |
| } |
| |
| static inline bool btree_path_get_locks(struct btree_trans *trans, |
| struct btree_path *path, |
| bool upgrade) |
| { |
| unsigned l = path->level; |
| int fail_idx = -1; |
| |
| do { |
| if (!btree_path_node(path, l)) |
| break; |
| |
| if (!(upgrade |
| ? bch2_btree_node_upgrade(trans, path, l) |
| : bch2_btree_node_relock(trans, path, l))) |
| fail_idx = l; |
| |
| l++; |
| } while (l < path->locks_want); |
| |
| /* |
| * When we fail to get a lock, we have to ensure that any child nodes |
| * can't be relocked so bch2_btree_path_traverse has to walk back up to |
| * the node that we failed to relock: |
| */ |
| if (fail_idx >= 0) { |
| __bch2_btree_path_unlock(path); |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| |
| do { |
| path->l[fail_idx].b = BTREE_ITER_NO_NODE_GET_LOCKS; |
| --fail_idx; |
| } while (fail_idx >= 0); |
| } |
| |
| if (path->uptodate == BTREE_ITER_NEED_RELOCK) |
| path->uptodate = BTREE_ITER_UPTODATE; |
| |
| bch2_trans_verify_locks(trans); |
| |
| return path->uptodate < BTREE_ITER_NEED_RELOCK; |
| } |
| |
| static struct bpos btree_node_pos(struct btree_bkey_cached_common *_b, |
| bool cached) |
| { |
| return !cached |
| ? container_of(_b, struct btree, c)->key.k.p |
| : container_of(_b, struct bkey_cached, c)->key.pos; |
| } |
| |
| /* Slowpath: */ |
| bool __bch2_btree_node_lock(struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b, |
| struct bpos pos, unsigned level, |
| enum six_lock_type type, |
| six_lock_should_sleep_fn should_sleep_fn, void *p, |
| unsigned long ip) |
| { |
| struct btree_path *linked; |
| unsigned reason; |
| |
| /* Check if it's safe to block: */ |
| trans_for_each_path(trans, linked) { |
| if (!linked->nodes_locked) |
| continue; |
| |
| /* |
| * Can't block taking an intent lock if we have _any_ nodes read |
| * locked: |
| * |
| * - Our read lock blocks another thread with an intent lock on |
| * the same node from getting a write lock, and thus from |
| * dropping its intent lock |
| * |
| * - And the other thread may have multiple nodes intent locked: |
| * both the node we want to intent lock, and the node we |
| * already have read locked - deadlock: |
| */ |
| if (type == SIX_LOCK_intent && |
| linked->nodes_locked != linked->nodes_intent_locked) { |
| reason = 1; |
| goto deadlock; |
| } |
| |
| if (linked->btree_id != path->btree_id) { |
| if (linked->btree_id < path->btree_id) |
| continue; |
| |
| reason = 3; |
| goto deadlock; |
| } |
| |
| /* |
| * Within the same btree, non-cached paths come before cached |
| * paths: |
| */ |
| if (linked->cached != path->cached) { |
| if (!linked->cached) |
| continue; |
| |
| reason = 4; |
| goto deadlock; |
| } |
| |
| /* |
| * Interior nodes must be locked before their descendants: if |
| * another path has possible descendants locked of the node |
| * we're about to lock, it must have the ancestors locked too: |
| */ |
| if (level > __fls(linked->nodes_locked)) { |
| reason = 5; |
| goto deadlock; |
| } |
| |
| /* Must lock btree nodes in key order: */ |
| if (btree_node_locked(linked, level) && |
| bpos_cmp(pos, btree_node_pos((void *) linked->l[level].b, |
| linked->cached)) <= 0) { |
| reason = 7; |
| goto deadlock; |
| } |
| } |
| |
| return btree_node_lock_type(trans, path, b, pos, level, |
| type, should_sleep_fn, p); |
| deadlock: |
| trace_trans_restart_would_deadlock(trans->fn, ip, |
| trans->in_traverse_all, reason, |
| linked->btree_id, |
| linked->cached, |
| &linked->pos, |
| path->btree_id, |
| path->cached, |
| &pos); |
| btree_trans_restart(trans); |
| return false; |
| } |
| |
| /* Btree iterator locking: */ |
| |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| |
| static void bch2_btree_path_verify_locks(struct btree_path *path) |
| { |
| unsigned l; |
| |
| if (!path->nodes_locked) { |
| BUG_ON(path->uptodate == BTREE_ITER_UPTODATE && |
| btree_path_node(path, path->level)); |
| return; |
| } |
| |
| for (l = 0; btree_path_node(path, l); l++) |
| BUG_ON(btree_lock_want(path, l) != |
| btree_node_locked_type(path, l)); |
| } |
| |
| void bch2_trans_verify_locks(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| bch2_btree_path_verify_locks(path); |
| } |
| #else |
| static inline void bch2_btree_path_verify_locks(struct btree_path *path) {} |
| #endif |
| |
| /* Btree path locking: */ |
| |
| /* |
| * Only for btree_cache.c - only relocks intent locks |
| */ |
| bool bch2_btree_path_relock_intent(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| unsigned l; |
| |
| for (l = path->level; |
| l < path->locks_want && btree_path_node(path, l); |
| l++) { |
| if (!bch2_btree_node_relock(trans, path, l)) { |
| __bch2_btree_path_unlock(path); |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| trace_trans_restart_relock_path_intent(trans->fn, _RET_IP_, |
| path->btree_id, &path->pos); |
| btree_trans_restart(trans); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| noinline __flatten |
| static bool __bch2_btree_path_relock(struct btree_trans *trans, |
| struct btree_path *path, unsigned long trace_ip) |
| { |
| bool ret = btree_path_get_locks(trans, path, false); |
| |
| if (!ret) { |
| trace_trans_restart_relock_path(trans->fn, trace_ip, |
| path->btree_id, &path->pos); |
| btree_trans_restart(trans); |
| } |
| return ret; |
| } |
| |
| static inline bool bch2_btree_path_relock(struct btree_trans *trans, |
| struct btree_path *path, unsigned long trace_ip) |
| { |
| return btree_node_locked(path, path->level) |
| ? true |
| : __bch2_btree_path_relock(trans, path, trace_ip); |
| } |
| |
| bool __bch2_btree_path_upgrade(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned new_locks_want) |
| { |
| struct btree_path *linked; |
| |
| EBUG_ON(path->locks_want >= new_locks_want); |
| |
| path->locks_want = new_locks_want; |
| |
| if (btree_path_get_locks(trans, path, true)) |
| return true; |
| |
| /* |
| * XXX: this is ugly - we'd prefer to not be mucking with other |
| * iterators in the btree_trans here. |
| * |
| * On failure to upgrade the iterator, setting iter->locks_want and |
| * calling get_locks() is sufficient to make bch2_btree_path_traverse() |
| * get the locks we want on transaction restart. |
| * |
| * But if this iterator was a clone, on transaction restart what we did |
| * to this iterator isn't going to be preserved. |
| * |
| * Possibly we could add an iterator field for the parent iterator when |
| * an iterator is a copy - for now, we'll just upgrade any other |
| * iterators with the same btree id. |
| * |
| * The code below used to be needed to ensure ancestor nodes get locked |
| * before interior nodes - now that's handled by |
| * bch2_btree_path_traverse_all(). |
| */ |
| if (!path->cached && !trans->in_traverse_all) |
| trans_for_each_path(trans, linked) |
| if (linked != path && |
| linked->cached == path->cached && |
| linked->btree_id == path->btree_id && |
| linked->locks_want < new_locks_want) { |
| linked->locks_want = new_locks_want; |
| btree_path_get_locks(trans, linked, true); |
| } |
| |
| return false; |
| } |
| |
| void __bch2_btree_path_downgrade(struct btree_path *path, |
| unsigned new_locks_want) |
| { |
| unsigned l; |
| |
| EBUG_ON(path->locks_want < new_locks_want); |
| |
| path->locks_want = new_locks_want; |
| |
| while (path->nodes_locked && |
| (l = __fls(path->nodes_locked)) >= path->locks_want) { |
| if (l > path->level) { |
| btree_node_unlock(path, l); |
| } else { |
| if (btree_node_intent_locked(path, l)) { |
| six_lock_downgrade(&path->l[l].b->c.lock); |
| path->nodes_intent_locked ^= 1 << l; |
| } |
| break; |
| } |
| } |
| |
| bch2_btree_path_verify_locks(path); |
| } |
| |
| void bch2_trans_downgrade(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| bch2_btree_path_downgrade(path); |
| } |
| |
| /* Btree transaction locking: */ |
| |
| bool bch2_trans_relock(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| if (unlikely(trans->restarted)) |
| return false; |
| |
| trans_for_each_path(trans, path) |
| if (path->should_be_locked && |
| !bch2_btree_path_relock(trans, path, _RET_IP_)) { |
| trace_trans_restart_relock(trans->fn, _RET_IP_, |
| path->btree_id, &path->pos); |
| BUG_ON(!trans->restarted); |
| return false; |
| } |
| return true; |
| } |
| |
| void bch2_trans_unlock(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| __bch2_btree_path_unlock(path); |
| } |
| |
| /* Btree iterator: */ |
| |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| |
| static void bch2_btree_path_verify_cached(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| struct bkey_cached *ck; |
| bool locked = btree_node_locked(path, 0); |
| |
| if (!bch2_btree_node_relock(trans, path, 0)) |
| return; |
| |
| ck = (void *) path->l[0].b; |
| BUG_ON(ck->key.btree_id != path->btree_id || |
| bkey_cmp(ck->key.pos, path->pos)); |
| |
| if (!locked) |
| btree_node_unlock(path, 0); |
| } |
| |
| static void bch2_btree_path_verify_level(struct btree_trans *trans, |
| struct btree_path *path, unsigned level) |
| { |
| struct btree_path_level *l; |
| struct btree_node_iter tmp; |
| bool locked; |
| struct bkey_packed *p, *k; |
| struct printbuf buf1 = PRINTBUF; |
| struct printbuf buf2 = PRINTBUF; |
| struct printbuf buf3 = PRINTBUF; |
| const char *msg; |
| |
| if (!bch2_debug_check_iterators) |
| return; |
| |
| l = &path->l[level]; |
| tmp = l->iter; |
| locked = btree_node_locked(path, level); |
| |
| if (path->cached) { |
| if (!level) |
| bch2_btree_path_verify_cached(trans, path); |
| return; |
| } |
| |
| if (!btree_path_node(path, level)) |
| return; |
| |
| if (!bch2_btree_node_relock(trans, path, level)) |
| return; |
| |
| BUG_ON(!btree_path_pos_in_node(path, l->b)); |
| |
| bch2_btree_node_iter_verify(&l->iter, l->b); |
| |
| /* |
| * For interior nodes, the iterator will have skipped past deleted keys: |
| */ |
| p = level |
| ? bch2_btree_node_iter_prev(&tmp, l->b) |
| : bch2_btree_node_iter_prev_all(&tmp, l->b); |
| k = bch2_btree_node_iter_peek_all(&l->iter, l->b); |
| |
| if (p && bkey_iter_pos_cmp(l->b, p, &path->pos) >= 0) { |
| msg = "before"; |
| goto err; |
| } |
| |
| if (k && bkey_iter_pos_cmp(l->b, k, &path->pos) < 0) { |
| msg = "after"; |
| goto err; |
| } |
| |
| if (!locked) |
| btree_node_unlock(path, level); |
| return; |
| err: |
| bch2_bpos_to_text(&buf1, path->pos); |
| |
| if (p) { |
| struct bkey uk = bkey_unpack_key(l->b, p); |
| bch2_bkey_to_text(&buf2, &uk); |
| } else { |
| prt_printf(&buf2, "(none)"); |
| } |
| |
| if (k) { |
| struct bkey uk = bkey_unpack_key(l->b, k); |
| bch2_bkey_to_text(&buf3, &uk); |
| } else { |
| prt_printf(&buf3, "(none)"); |
| } |
| |
| panic("path should be %s key at level %u:\n" |
| "path pos %s\n" |
| "prev key %s\n" |
| "cur key %s\n", |
| msg, level, buf1.buf, buf2.buf, buf3.buf); |
| } |
| |
| static void bch2_btree_path_verify(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| struct bch_fs *c = trans->c; |
| unsigned i; |
| |
| EBUG_ON(path->btree_id >= BTREE_ID_NR); |
| |
| for (i = 0; i < (!path->cached ? BTREE_MAX_DEPTH : 1); i++) { |
| if (!path->l[i].b) { |
| BUG_ON(!path->cached && |
| c->btree_roots[path->btree_id].b->c.level > i); |
| break; |
| } |
| |
| bch2_btree_path_verify_level(trans, path, i); |
| } |
| |
| bch2_btree_path_verify_locks(path); |
| } |
| |
| void bch2_trans_verify_paths(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| bch2_btree_path_verify(trans, path); |
| } |
| |
| static void bch2_btree_iter_verify(struct btree_iter *iter) |
| { |
| struct btree_trans *trans = iter->trans; |
| |
| BUG_ON(iter->btree_id >= BTREE_ID_NR); |
| |
| BUG_ON(!!(iter->flags & BTREE_ITER_CACHED) != iter->path->cached); |
| |
| BUG_ON((iter->flags & BTREE_ITER_IS_EXTENTS) && |
| (iter->flags & BTREE_ITER_ALL_SNAPSHOTS)); |
| |
| BUG_ON(!(iter->flags & __BTREE_ITER_ALL_SNAPSHOTS) && |
| (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && |
| !btree_type_has_snapshots(iter->btree_id)); |
| |
| if (iter->update_path) |
| bch2_btree_path_verify(trans, iter->update_path); |
| bch2_btree_path_verify(trans, iter->path); |
| } |
| |
| static void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) |
| { |
| BUG_ON((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && |
| !iter->pos.snapshot); |
| |
| BUG_ON(!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && |
| iter->pos.snapshot != iter->snapshot); |
| |
| BUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&iter->k)) < 0 || |
| bkey_cmp(iter->pos, iter->k.p) > 0); |
| } |
| |
| static int bch2_btree_iter_verify_ret(struct btree_iter *iter, struct bkey_s_c k) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct btree_iter copy; |
| struct bkey_s_c prev; |
| int ret = 0; |
| |
| if (!bch2_debug_check_iterators) |
| return 0; |
| |
| if (!(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) |
| return 0; |
| |
| if (bkey_err(k) || !k.k) |
| return 0; |
| |
| BUG_ON(!bch2_snapshot_is_ancestor(trans->c, |
| iter->snapshot, |
| k.k->p.snapshot)); |
| |
| bch2_trans_iter_init(trans, ©, iter->btree_id, iter->pos, |
| BTREE_ITER_NOPRESERVE| |
| BTREE_ITER_ALL_SNAPSHOTS); |
| prev = bch2_btree_iter_prev(©); |
| if (!prev.k) |
| goto out; |
| |
| ret = bkey_err(prev); |
| if (ret) |
| goto out; |
| |
| if (!bkey_cmp(prev.k->p, k.k->p) && |
| bch2_snapshot_is_ancestor(trans->c, iter->snapshot, |
| prev.k->p.snapshot) > 0) { |
| struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; |
| |
| bch2_bkey_to_text(&buf1, k.k); |
| bch2_bkey_to_text(&buf2, prev.k); |
| |
| panic("iter snap %u\n" |
| "k %s\n" |
| "prev %s\n", |
| iter->snapshot, |
| buf1.buf, buf2.buf); |
| } |
| out: |
| bch2_trans_iter_exit(trans, ©); |
| return ret; |
| } |
| |
| void bch2_assert_pos_locked(struct btree_trans *trans, enum btree_id id, |
| struct bpos pos, bool key_cache) |
| { |
| struct btree_path *path; |
| unsigned idx; |
| struct printbuf buf = PRINTBUF; |
| |
| trans_for_each_path_inorder(trans, path, idx) { |
| int cmp = cmp_int(path->btree_id, id) ?: |
| cmp_int(path->cached, key_cache); |
| |
| if (cmp > 0) |
| break; |
| if (cmp < 0) |
| continue; |
| |
| if (!(path->nodes_locked & 1) || |
| !path->should_be_locked) |
| continue; |
| |
| if (!key_cache) { |
| if (bkey_cmp(pos, path->l[0].b->data->min_key) >= 0 && |
| bkey_cmp(pos, path->l[0].b->key.k.p) <= 0) |
| return; |
| } else { |
| if (!bkey_cmp(pos, path->pos)) |
| return; |
| } |
| } |
| |
| bch2_dump_trans_paths_updates(trans); |
| bch2_bpos_to_text(&buf, pos); |
| |
| panic("not locked: %s %s%s\n", |
| bch2_btree_ids[id], buf.buf, |
| key_cache ? " cached" : ""); |
| } |
| |
| #else |
| |
| static inline void bch2_btree_path_verify_level(struct btree_trans *trans, |
| struct btree_path *path, unsigned l) {} |
| static inline void bch2_btree_path_verify(struct btree_trans *trans, |
| struct btree_path *path) {} |
| static inline void bch2_btree_iter_verify(struct btree_iter *iter) {} |
| static inline void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) {} |
| static inline int bch2_btree_iter_verify_ret(struct btree_iter *iter, struct bkey_s_c k) { return 0; } |
| |
| #endif |
| |
| /* Btree path: fixups after btree updates */ |
| |
| static void btree_node_iter_set_set_pos(struct btree_node_iter *iter, |
| struct btree *b, |
| struct bset_tree *t, |
| struct bkey_packed *k) |
| { |
| struct btree_node_iter_set *set; |
| |
| btree_node_iter_for_each(iter, set) |
| if (set->end == t->end_offset) { |
| set->k = __btree_node_key_to_offset(b, k); |
| bch2_btree_node_iter_sort(iter, b); |
| return; |
| } |
| |
| bch2_btree_node_iter_push(iter, b, k, btree_bkey_last(b, t)); |
| } |
| |
| static void __bch2_btree_path_fix_key_modified(struct btree_path *path, |
| struct btree *b, |
| struct bkey_packed *where) |
| { |
| struct btree_path_level *l = &path->l[b->c.level]; |
| |
| if (where != bch2_btree_node_iter_peek_all(&l->iter, l->b)) |
| return; |
| |
| if (bkey_iter_pos_cmp(l->b, where, &path->pos) < 0) |
| bch2_btree_node_iter_advance(&l->iter, l->b); |
| } |
| |
| void bch2_btree_path_fix_key_modified(struct btree_trans *trans, |
| struct btree *b, |
| struct bkey_packed *where) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path_with_node(trans, b, path) { |
| __bch2_btree_path_fix_key_modified(path, b, where); |
| bch2_btree_path_verify_level(trans, path, b->c.level); |
| } |
| } |
| |
| static void __bch2_btree_node_iter_fix(struct btree_path *path, |
| struct btree *b, |
| struct btree_node_iter *node_iter, |
| struct bset_tree *t, |
| struct bkey_packed *where, |
| unsigned clobber_u64s, |
| unsigned new_u64s) |
| { |
| const struct bkey_packed *end = btree_bkey_last(b, t); |
| struct btree_node_iter_set *set; |
| unsigned offset = __btree_node_key_to_offset(b, where); |
| int shift = new_u64s - clobber_u64s; |
| unsigned old_end = t->end_offset - shift; |
| unsigned orig_iter_pos = node_iter->data[0].k; |
| bool iter_current_key_modified = |
| orig_iter_pos >= offset && |
| orig_iter_pos <= offset + clobber_u64s; |
| |
| btree_node_iter_for_each(node_iter, set) |
| if (set->end == old_end) |
| goto found; |
| |
| /* didn't find the bset in the iterator - might have to readd it: */ |
| if (new_u64s && |
| bkey_iter_pos_cmp(b, where, &path->pos) >= 0) { |
| bch2_btree_node_iter_push(node_iter, b, where, end); |
| goto fixup_done; |
| } else { |
| /* Iterator is after key that changed */ |
| return; |
| } |
| found: |
| set->end = t->end_offset; |
| |
| /* Iterator hasn't gotten to the key that changed yet: */ |
| if (set->k < offset) |
| return; |
| |
| if (new_u64s && |
| bkey_iter_pos_cmp(b, where, &path->pos) >= 0) { |
| set->k = offset; |
| } else if (set->k < offset + clobber_u64s) { |
| set->k = offset + new_u64s; |
| if (set->k == set->end) |
| bch2_btree_node_iter_set_drop(node_iter, set); |
| } else { |
| /* Iterator is after key that changed */ |
| set->k = (int) set->k + shift; |
| return; |
| } |
| |
| bch2_btree_node_iter_sort(node_iter, b); |
| fixup_done: |
| if (node_iter->data[0].k != orig_iter_pos) |
| iter_current_key_modified = true; |
| |
| /* |
| * When a new key is added, and the node iterator now points to that |
| * key, the iterator might have skipped past deleted keys that should |
| * come after the key the iterator now points to. We have to rewind to |
| * before those deleted keys - otherwise |
| * bch2_btree_node_iter_prev_all() breaks: |
| */ |
| if (!bch2_btree_node_iter_end(node_iter) && |
| iter_current_key_modified && |
| b->c.level) { |
| struct bset_tree *t; |
| struct bkey_packed *k, *k2, *p; |
| |
| k = bch2_btree_node_iter_peek_all(node_iter, b); |
| |
| for_each_bset(b, t) { |
| bool set_pos = false; |
| |
| if (node_iter->data[0].end == t->end_offset) |
| continue; |
| |
| k2 = bch2_btree_node_iter_bset_pos(node_iter, b, t); |
| |
| while ((p = bch2_bkey_prev_all(b, t, k2)) && |
| bkey_iter_cmp(b, k, p) < 0) { |
| k2 = p; |
| set_pos = true; |
| } |
| |
| if (set_pos) |
| btree_node_iter_set_set_pos(node_iter, |
| b, t, k2); |
| } |
| } |
| } |
| |
| void bch2_btree_node_iter_fix(struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b, |
| struct btree_node_iter *node_iter, |
| struct bkey_packed *where, |
| unsigned clobber_u64s, |
| unsigned new_u64s) |
| { |
| struct bset_tree *t = bch2_bkey_to_bset_inlined(b, where); |
| struct btree_path *linked; |
| |
| if (node_iter != &path->l[b->c.level].iter) { |
| __bch2_btree_node_iter_fix(path, b, node_iter, t, |
| where, clobber_u64s, new_u64s); |
| |
| if (bch2_debug_check_iterators) |
| bch2_btree_node_iter_verify(node_iter, b); |
| } |
| |
| trans_for_each_path_with_node(trans, b, linked) { |
| __bch2_btree_node_iter_fix(linked, b, |
| &linked->l[b->c.level].iter, t, |
| where, clobber_u64s, new_u64s); |
| bch2_btree_path_verify_level(trans, linked, b->c.level); |
| } |
| } |
| |
| /* Btree path level: pointer to a particular btree node and node iter */ |
| |
| static inline struct bkey_s_c __btree_iter_unpack(struct bch_fs *c, |
| struct btree_path_level *l, |
| struct bkey *u, |
| struct bkey_packed *k) |
| { |
| if (unlikely(!k)) { |
| /* |
| * signal to bch2_btree_iter_peek_slot() that we're currently at |
| * a hole |
| */ |
| u->type = KEY_TYPE_deleted; |
| return bkey_s_c_null; |
| } |
| |
| return bkey_disassemble(l->b, k, u); |
| } |
| |
| static inline struct bkey_s_c btree_path_level_peek_all(struct bch_fs *c, |
| struct btree_path_level *l, |
| struct bkey *u) |
| { |
| return __btree_iter_unpack(c, l, u, |
| bch2_btree_node_iter_peek_all(&l->iter, l->b)); |
| } |
| |
| static inline struct bkey_s_c btree_path_level_peek(struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree_path_level *l, |
| struct bkey *u) |
| { |
| struct bkey_s_c k = __btree_iter_unpack(trans->c, l, u, |
| bch2_btree_node_iter_peek(&l->iter, l->b)); |
| |
| path->pos = k.k ? k.k->p : l->b->key.k.p; |
| trans->paths_sorted = false; |
| return k; |
| } |
| |
| static inline struct bkey_s_c btree_path_level_prev(struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree_path_level *l, |
| struct bkey *u) |
| { |
| struct bkey_s_c k = __btree_iter_unpack(trans->c, l, u, |
| bch2_btree_node_iter_prev(&l->iter, l->b)); |
| |
| path->pos = k.k ? k.k->p : l->b->data->min_key; |
| trans->paths_sorted = false; |
| return k; |
| } |
| |
| static inline bool btree_path_advance_to_pos(struct btree_path *path, |
| struct btree_path_level *l, |
| int max_advance) |
| { |
| struct bkey_packed *k; |
| int nr_advanced = 0; |
| |
| while ((k = bch2_btree_node_iter_peek_all(&l->iter, l->b)) && |
| bkey_iter_pos_cmp(l->b, k, &path->pos) < 0) { |
| if (max_advance > 0 && nr_advanced >= max_advance) |
| return false; |
| |
| bch2_btree_node_iter_advance(&l->iter, l->b); |
| nr_advanced++; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Verify that iterator for parent node points to child node: |
| */ |
| static void btree_path_verify_new_node(struct btree_trans *trans, |
| struct btree_path *path, struct btree *b) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path_level *l; |
| unsigned plevel; |
| bool parent_locked; |
| struct bkey_packed *k; |
| |
| if (!IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) |
| return; |
| |
| if (trans->journal_replay_not_finished) |
| return; |
| |
| plevel = b->c.level + 1; |
| if (!btree_path_node(path, plevel)) |
| return; |
| |
| parent_locked = btree_node_locked(path, plevel); |
| |
| if (!bch2_btree_node_relock(trans, path, plevel)) |
| return; |
| |
| l = &path->l[plevel]; |
| k = bch2_btree_node_iter_peek_all(&l->iter, l->b); |
| if (!k || |
| bkey_deleted(k) || |
| bkey_cmp_left_packed(l->b, k, &b->key.k.p)) { |
| struct printbuf buf1 = PRINTBUF; |
| struct printbuf buf2 = PRINTBUF; |
| struct printbuf buf3 = PRINTBUF; |
| struct printbuf buf4 = PRINTBUF; |
| struct bkey uk = bkey_unpack_key(b, k); |
| |
| bch2_dump_btree_node(c, l->b); |
| bch2_bpos_to_text(&buf1, path->pos); |
| bch2_bkey_to_text(&buf2, &uk); |
| bch2_bpos_to_text(&buf3, b->data->min_key); |
| bch2_bpos_to_text(&buf3, b->data->max_key); |
| panic("parent iter doesn't point to new node:\n" |
| "iter pos %s %s\n" |
| "iter key %s\n" |
| "new node %s-%s\n", |
| bch2_btree_ids[path->btree_id], |
| buf1.buf, buf2.buf, buf3.buf, buf4.buf); |
| } |
| |
| if (!parent_locked) |
| btree_node_unlock(path, plevel); |
| } |
| |
| static inline void __btree_path_level_init(struct btree_path *path, |
| unsigned level) |
| { |
| struct btree_path_level *l = &path->l[level]; |
| |
| bch2_btree_node_iter_init(&l->iter, l->b, &path->pos); |
| |
| /* |
| * Iterators to interior nodes should always be pointed at the first non |
| * whiteout: |
| */ |
| if (level) |
| bch2_btree_node_iter_peek(&l->iter, l->b); |
| } |
| |
| static inline void btree_path_level_init(struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b) |
| { |
| BUG_ON(path->cached); |
| |
| btree_path_verify_new_node(trans, path, b); |
| |
| EBUG_ON(!btree_path_pos_in_node(path, b)); |
| EBUG_ON(b->c.lock.state.seq & 1); |
| |
| path->l[b->c.level].lock_seq = b->c.lock.state.seq; |
| path->l[b->c.level].b = b; |
| __btree_path_level_init(path, b->c.level); |
| } |
| |
| /* Btree path: fixups after btree node updates: */ |
| |
| /* |
| * A btree node is being replaced - update the iterator to point to the new |
| * node: |
| */ |
| void bch2_trans_node_add(struct btree_trans *trans, struct btree *b) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| if (!path->cached && |
| btree_path_pos_in_node(path, b)) { |
| enum btree_node_locked_type t = |
| btree_lock_want(path, b->c.level); |
| |
| if (path->nodes_locked && |
| t != BTREE_NODE_UNLOCKED) { |
| btree_node_unlock(path, b->c.level); |
| six_lock_increment(&b->c.lock, (enum six_lock_type) t); |
| mark_btree_node_locked(path, b->c.level, (enum six_lock_type) t); |
| } |
| |
| btree_path_level_init(trans, path, b); |
| } |
| } |
| |
| /* |
| * A btree node has been modified in such a way as to invalidate iterators - fix |
| * them: |
| */ |
| void bch2_trans_node_reinit_iter(struct btree_trans *trans, struct btree *b) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path_with_node(trans, b, path) |
| __btree_path_level_init(path, b->c.level); |
| } |
| |
| /* Btree path: traverse, set_pos: */ |
| |
| static int lock_root_check_fn(struct six_lock *lock, void *p) |
| { |
| struct btree *b = container_of(lock, struct btree, c.lock); |
| struct btree **rootp = p; |
| |
| return b == *rootp ? 0 : -1; |
| } |
| |
| static inline int btree_path_lock_root(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned depth_want, |
| unsigned long trace_ip) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree *b, **rootp = &c->btree_roots[path->btree_id].b; |
| enum six_lock_type lock_type; |
| unsigned i; |
| |
| EBUG_ON(path->nodes_locked); |
| |
| while (1) { |
| b = READ_ONCE(*rootp); |
| path->level = READ_ONCE(b->c.level); |
| |
| if (unlikely(path->level < depth_want)) { |
| /* |
| * the root is at a lower depth than the depth we want: |
| * got to the end of the btree, or we're walking nodes |
| * greater than some depth and there are no nodes >= |
| * that depth |
| */ |
| path->level = depth_want; |
| for (i = path->level; i < BTREE_MAX_DEPTH; i++) |
| path->l[i].b = NULL; |
| return 1; |
| } |
| |
| lock_type = __btree_lock_want(path, path->level); |
| if (unlikely(!btree_node_lock(trans, path, b, SPOS_MAX, |
| path->level, lock_type, |
| lock_root_check_fn, rootp, |
| trace_ip))) { |
| if (trans->restarted) |
| return -EINTR; |
| continue; |
| } |
| |
| if (likely(b == READ_ONCE(*rootp) && |
| b->c.level == path->level && |
| !race_fault())) { |
| for (i = 0; i < path->level; i++) |
| path->l[i].b = BTREE_ITER_NO_NODE_LOCK_ROOT; |
| path->l[path->level].b = b; |
| for (i = path->level + 1; i < BTREE_MAX_DEPTH; i++) |
| path->l[i].b = NULL; |
| |
| mark_btree_node_locked(path, path->level, lock_type); |
| btree_path_level_init(trans, path, b); |
| return 0; |
| } |
| |
| six_unlock_type(&b->c.lock, lock_type); |
| } |
| } |
| |
| noinline |
| static int btree_path_prefetch(struct btree_trans *trans, struct btree_path *path) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path_level *l = path_l(path); |
| struct btree_node_iter node_iter = l->iter; |
| struct bkey_packed *k; |
| struct bkey_buf tmp; |
| unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) |
| ? (path->level > 1 ? 0 : 2) |
| : (path->level > 1 ? 1 : 16); |
| bool was_locked = btree_node_locked(path, path->level); |
| int ret = 0; |
| |
| bch2_bkey_buf_init(&tmp); |
| |
| while (nr && !ret) { |
| if (!bch2_btree_node_relock(trans, path, path->level)) |
| break; |
| |
| bch2_btree_node_iter_advance(&node_iter, l->b); |
| k = bch2_btree_node_iter_peek(&node_iter, l->b); |
| if (!k) |
| break; |
| |
| bch2_bkey_buf_unpack(&tmp, c, l->b, k); |
| ret = bch2_btree_node_prefetch(c, trans, path, tmp.k, path->btree_id, |
| path->level - 1); |
| } |
| |
| if (!was_locked) |
| btree_node_unlock(path, path->level); |
| |
| bch2_bkey_buf_exit(&tmp, c); |
| return ret; |
| } |
| |
| static int btree_path_prefetch_j(struct btree_trans *trans, struct btree_path *path, |
| struct btree_and_journal_iter *jiter) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_s_c k; |
| struct bkey_buf tmp; |
| unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) |
| ? (path->level > 1 ? 0 : 2) |
| : (path->level > 1 ? 1 : 16); |
| bool was_locked = btree_node_locked(path, path->level); |
| int ret = 0; |
| |
| bch2_bkey_buf_init(&tmp); |
| |
| while (nr && !ret) { |
| if (!bch2_btree_node_relock(trans, path, path->level)) |
| break; |
| |
| bch2_btree_and_journal_iter_advance(jiter); |
| k = bch2_btree_and_journal_iter_peek(jiter); |
| if (!k.k) |
| break; |
| |
| bch2_bkey_buf_reassemble(&tmp, c, k); |
| ret = bch2_btree_node_prefetch(c, trans, path, tmp.k, path->btree_id, |
| path->level - 1); |
| } |
| |
| if (!was_locked) |
| btree_node_unlock(path, path->level); |
| |
| bch2_bkey_buf_exit(&tmp, c); |
| return ret; |
| } |
| |
| static noinline void btree_node_mem_ptr_set(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned plevel, struct btree *b) |
| { |
| struct btree_path_level *l = &path->l[plevel]; |
| bool locked = btree_node_locked(path, plevel); |
| struct bkey_packed *k; |
| struct bch_btree_ptr_v2 *bp; |
| |
| if (!bch2_btree_node_relock(trans, path, plevel)) |
| return; |
| |
| k = bch2_btree_node_iter_peek_all(&l->iter, l->b); |
| BUG_ON(k->type != KEY_TYPE_btree_ptr_v2); |
| |
| bp = (void *) bkeyp_val(&l->b->format, k); |
| bp->mem_ptr = (unsigned long)b; |
| |
| if (!locked) |
| btree_node_unlock(path, plevel); |
| } |
| |
| static noinline int btree_node_iter_and_journal_peek(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned flags, |
| struct bkey_buf *out) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path_level *l = path_l(path); |
| struct btree_and_journal_iter jiter; |
| struct bkey_s_c k; |
| int ret = 0; |
| |
| __bch2_btree_and_journal_iter_init_node_iter(&jiter, c, l->b, l->iter, path->pos); |
| |
| k = bch2_btree_and_journal_iter_peek(&jiter); |
| |
| bch2_bkey_buf_reassemble(out, c, k); |
| |
| if (flags & BTREE_ITER_PREFETCH) |
| ret = btree_path_prefetch_j(trans, path, &jiter); |
| |
| bch2_btree_and_journal_iter_exit(&jiter); |
| return ret; |
| } |
| |
| static __always_inline int btree_path_down(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned flags, |
| unsigned long trace_ip) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path_level *l = path_l(path); |
| struct btree *b; |
| unsigned level = path->level - 1; |
| enum six_lock_type lock_type = __btree_lock_want(path, level); |
| struct bkey_buf tmp; |
| int ret; |
| |
| EBUG_ON(!btree_node_locked(path, path->level)); |
| |
| bch2_bkey_buf_init(&tmp); |
| |
| if (unlikely(trans->journal_replay_not_finished)) { |
| ret = btree_node_iter_and_journal_peek(trans, path, flags, &tmp); |
| if (ret) |
| goto err; |
| } else { |
| bch2_bkey_buf_unpack(&tmp, c, l->b, |
| bch2_btree_node_iter_peek(&l->iter, l->b)); |
| |
| if (flags & BTREE_ITER_PREFETCH) { |
| ret = btree_path_prefetch(trans, path); |
| if (ret) |
| goto err; |
| } |
| } |
| |
| b = bch2_btree_node_get(trans, path, tmp.k, level, lock_type, trace_ip); |
| ret = PTR_ERR_OR_ZERO(b); |
| if (unlikely(ret)) |
| goto err; |
| |
| mark_btree_node_locked(path, level, lock_type); |
| btree_path_level_init(trans, path, b); |
| |
| if (likely(!trans->journal_replay_not_finished && |
| tmp.k->k.type == KEY_TYPE_btree_ptr_v2) && |
| unlikely(b != btree_node_mem_ptr(tmp.k))) |
| btree_node_mem_ptr_set(trans, path, level + 1, b); |
| |
| if (btree_node_read_locked(path, level + 1)) |
| btree_node_unlock(path, level + 1); |
| path->level = level; |
| |
| bch2_btree_path_verify_locks(path); |
| err: |
| bch2_bkey_buf_exit(&tmp, c); |
| return ret; |
| } |
| |
| static int btree_path_traverse_one(struct btree_trans *, struct btree_path *, |
| unsigned, unsigned long); |
| |
| static int bch2_btree_path_traverse_all(struct btree_trans *trans) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path *path, *prev; |
| unsigned long trace_ip = _RET_IP_; |
| int i, ret = 0; |
| |
| if (trans->in_traverse_all) |
| return -EINTR; |
| |
| trans->in_traverse_all = true; |
| retry_all: |
| prev = NULL; |
| trans->restarted = false; |
| |
| trans_for_each_path(trans, path) |
| path->should_be_locked = false; |
| |
| btree_trans_sort_paths(trans); |
| |
| trans_for_each_path_inorder_reverse(trans, path, i) { |
| if (prev) { |
| if (path->btree_id == prev->btree_id && |
| path->locks_want < prev->locks_want) |
| __bch2_btree_path_upgrade(trans, path, prev->locks_want); |
| else if (!path->locks_want && prev->locks_want) |
| __bch2_btree_path_upgrade(trans, path, 1); |
| } |
| |
| prev = path; |
| } |
| |
| bch2_trans_unlock(trans); |
| cond_resched(); |
| |
| if (unlikely(trans->memory_allocation_failure)) { |
| struct closure cl; |
| |
| closure_init_stack(&cl); |
| |
| do { |
| ret = bch2_btree_cache_cannibalize_lock(c, &cl); |
| closure_sync(&cl); |
| } while (ret); |
| } |
| |
| /* Now, redo traversals in correct order: */ |
| i = 0; |
| while (i < trans->nr_sorted) { |
| path = trans->paths + trans->sorted[i]; |
| |
| /* |
| * Traversing a path can cause another path to be added at about |
| * the same position: |
| */ |
| if (path->uptodate) { |
| ret = btree_path_traverse_one(trans, path, 0, _THIS_IP_); |
| if (ret == -EINTR || ret == -ENOMEM) |
| goto retry_all; |
| if (ret) |
| goto err; |
| } else { |
| i++; |
| } |
| } |
| |
| /* |
| * BTREE_ITER_NEED_RELOCK is ok here - if we called bch2_trans_unlock() |
| * and relock(), relock() won't relock since path->should_be_locked |
| * isn't set yet, which is all fine |
| */ |
| trans_for_each_path(trans, path) |
| BUG_ON(path->uptodate >= BTREE_ITER_NEED_TRAVERSE); |
| err: |
| bch2_btree_cache_cannibalize_unlock(c); |
| |
| trans->in_traverse_all = false; |
| |
| trace_trans_traverse_all(trans->fn, trace_ip); |
| return ret; |
| } |
| |
| static inline bool btree_path_good_node(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned l, int check_pos) |
| { |
| if (!is_btree_node(path, l) || |
| !bch2_btree_node_relock(trans, path, l)) |
| return false; |
| |
| if (check_pos < 0 && btree_path_pos_before_node(path, path->l[l].b)) |
| return false; |
| if (check_pos > 0 && btree_path_pos_after_node(path, path->l[l].b)) |
| return false; |
| return true; |
| } |
| |
| static void btree_path_set_level_up(struct btree_path *path) |
| { |
| btree_node_unlock(path, path->level); |
| path->l[path->level].b = BTREE_ITER_NO_NODE_UP; |
| path->level++; |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| } |
| |
| static void btree_path_set_level_down(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned new_level) |
| { |
| unsigned l; |
| |
| path->level = new_level; |
| |
| for (l = path->level + 1; l < BTREE_MAX_DEPTH; l++) |
| if (btree_lock_want(path, l) == BTREE_NODE_UNLOCKED) |
| btree_node_unlock(path, l); |
| |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| bch2_btree_path_verify(trans, path); |
| } |
| |
| static inline unsigned btree_path_up_until_good_node(struct btree_trans *trans, |
| struct btree_path *path, |
| int check_pos) |
| { |
| unsigned i, l = path->level; |
| |
| while (btree_path_node(path, l) && |
| !btree_path_good_node(trans, path, l, check_pos)) { |
| btree_node_unlock(path, l); |
| path->l[l].b = BTREE_ITER_NO_NODE_UP; |
| l++; |
| } |
| |
| /* If we need intent locks, take them too: */ |
| for (i = l + 1; |
| i < path->locks_want && btree_path_node(path, i); |
| i++) |
| if (!bch2_btree_node_relock(trans, path, i)) |
| while (l <= i) { |
| btree_node_unlock(path, l); |
| path->l[l].b = BTREE_ITER_NO_NODE_UP; |
| l++; |
| } |
| |
| return l; |
| } |
| |
| /* |
| * This is the main state machine for walking down the btree - walks down to a |
| * specified depth |
| * |
| * Returns 0 on success, -EIO on error (error reading in a btree node). |
| * |
| * On error, caller (peek_node()/peek_key()) must return NULL; the error is |
| * stashed in the iterator and returned from bch2_trans_exit(). |
| */ |
| static int btree_path_traverse_one(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned flags, |
| unsigned long trace_ip) |
| { |
| unsigned depth_want = path->level; |
| int ret = 0; |
| |
| if (unlikely(trans->restarted)) { |
| ret = -EINTR; |
| goto out; |
| } |
| |
| /* |
| * Ensure we obey path->should_be_locked: if it's set, we can't unlock |
| * and re-traverse the path without a transaction restart: |
| */ |
| if (path->should_be_locked) { |
| ret = bch2_btree_path_relock(trans, path, trace_ip) ? 0 : -EINTR; |
| goto out; |
| } |
| |
| if (path->cached) { |
| ret = bch2_btree_path_traverse_cached(trans, path, flags); |
| goto out; |
| } |
| |
| if (unlikely(path->level >= BTREE_MAX_DEPTH)) |
| goto out; |
| |
| path->level = btree_path_up_until_good_node(trans, path, 0); |
| |
| /* |
| * Note: path->nodes[path->level] may be temporarily NULL here - that |
| * would indicate to other code that we got to the end of the btree, |
| * here it indicates that relocking the root failed - it's critical that |
| * btree_path_lock_root() comes next and that it can't fail |
| */ |
| while (path->level > depth_want) { |
| ret = btree_path_node(path, path->level) |
| ? btree_path_down(trans, path, flags, trace_ip) |
| : btree_path_lock_root(trans, path, depth_want, trace_ip); |
| if (unlikely(ret)) { |
| if (ret == 1) { |
| /* |
| * No nodes at this level - got to the end of |
| * the btree: |
| */ |
| ret = 0; |
| goto out; |
| } |
| |
| __bch2_btree_path_unlock(path); |
| path->level = depth_want; |
| |
| if (ret == -EIO) |
| path->l[path->level].b = |
| BTREE_ITER_NO_NODE_ERROR; |
| else |
| path->l[path->level].b = |
| BTREE_ITER_NO_NODE_DOWN; |
| goto out; |
| } |
| } |
| |
| path->uptodate = BTREE_ITER_UPTODATE; |
| out: |
| BUG_ON((ret == -EINTR) != !!trans->restarted); |
| bch2_btree_path_verify(trans, path); |
| return ret; |
| } |
| |
| int __must_check bch2_btree_path_traverse(struct btree_trans *trans, |
| struct btree_path *path, unsigned flags) |
| { |
| if (path->uptodate < BTREE_ITER_NEED_RELOCK) |
| return 0; |
| |
| return bch2_trans_cond_resched(trans) ?: |
| btree_path_traverse_one(trans, path, flags, _RET_IP_); |
| } |
| |
| static void btree_path_copy(struct btree_trans *trans, struct btree_path *dst, |
| struct btree_path *src) |
| { |
| unsigned i, offset = offsetof(struct btree_path, pos); |
| |
| memcpy((void *) dst + offset, |
| (void *) src + offset, |
| sizeof(struct btree_path) - offset); |
| |
| for (i = 0; i < BTREE_MAX_DEPTH; i++) |
| if (btree_node_locked(dst, i)) |
| six_lock_increment(&dst->l[i].b->c.lock, |
| __btree_lock_want(dst, i)); |
| |
| trans->paths_sorted = false; |
| } |
| |
| static struct btree_path *btree_path_clone(struct btree_trans *trans, struct btree_path *src, |
| bool intent) |
| { |
| struct btree_path *new = btree_path_alloc(trans, src); |
| |
| btree_path_copy(trans, new, src); |
| __btree_path_get(new, intent); |
| return new; |
| } |
| |
| struct btree_path *__bch2_btree_path_make_mut(struct btree_trans *trans, |
| struct btree_path *path, bool intent) |
| { |
| __btree_path_put(path, intent); |
| path = btree_path_clone(trans, path, intent); |
| path->preserve = false; |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| path->ip_allocated = _RET_IP_; |
| #endif |
| path->should_be_locked = false; |
| return path; |
| } |
| |
| struct btree_path * __must_check |
| __bch2_btree_path_set_pos(struct btree_trans *trans, |
| struct btree_path *path, struct bpos new_pos, |
| bool intent, int cmp) |
| { |
| unsigned l = path->level; |
| |
| EBUG_ON(trans->restarted); |
| EBUG_ON(!path->ref); |
| |
| path = bch2_btree_path_make_mut(trans, path, intent); |
| |
| path->pos = new_pos; |
| trans->paths_sorted = false; |
| |
| if (unlikely(path->cached)) { |
| btree_node_unlock(path, 0); |
| path->l[0].b = BTREE_ITER_NO_NODE_CACHED; |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| goto out; |
| } |
| |
| l = btree_path_up_until_good_node(trans, path, cmp); |
| |
| if (btree_path_node(path, l)) { |
| BUG_ON(!btree_node_locked(path, l)); |
| /* |
| * We might have to skip over many keys, or just a few: try |
| * advancing the node iterator, and if we have to skip over too |
| * many keys just reinit it (or if we're rewinding, since that |
| * is expensive). |
| */ |
| if (cmp < 0 || |
| !btree_path_advance_to_pos(path, &path->l[l], 8)) |
| __btree_path_level_init(path, l); |
| } |
| |
| if (l != path->level) { |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| __bch2_btree_path_unlock(path); |
| } |
| out: |
| bch2_btree_path_verify(trans, path); |
| return path; |
| } |
| |
| /* Btree path: main interface: */ |
| |
| static struct btree_path *have_path_at_pos(struct btree_trans *trans, struct btree_path *path) |
| { |
| struct btree_path *next; |
| |
| next = prev_btree_path(trans, path); |
| if (next && !btree_path_cmp(next, path)) |
| return next; |
| |
| next = next_btree_path(trans, path); |
| if (next && !btree_path_cmp(next, path)) |
| return next; |
| |
| return NULL; |
| } |
| |
| static struct btree_path *have_node_at_pos(struct btree_trans *trans, struct btree_path *path) |
| { |
| struct btree_path *next; |
| |
| next = prev_btree_path(trans, path); |
| if (next && next->level == path->level && path_l(next)->b == path_l(path)->b) |
| return next; |
| |
| next = next_btree_path(trans, path); |
| if (next && next->level == path->level && path_l(next)->b == path_l(path)->b) |
| return next; |
| |
| return NULL; |
| } |
| |
| static inline void __bch2_path_free(struct btree_trans *trans, struct btree_path *path) |
| { |
| __bch2_btree_path_unlock(path); |
| btree_path_list_remove(trans, path); |
| trans->paths_allocated &= ~(1ULL << path->idx); |
| } |
| |
| void bch2_path_put(struct btree_trans *trans, struct btree_path *path, bool intent) |
| { |
| struct btree_path *dup; |
| |
| EBUG_ON(trans->paths + path->idx != path); |
| EBUG_ON(!path->ref); |
| |
| if (!__btree_path_put(path, intent)) |
| return; |
| |
| /* |
| * Perhaps instead we should check for duplicate paths in traverse_all: |
| */ |
| if (path->preserve && |
| (dup = have_path_at_pos(trans, path))) { |
| dup->preserve = true; |
| path->preserve = false; |
| goto free; |
| } |
| |
| if (!path->preserve && |
| (dup = have_node_at_pos(trans, path))) |
| goto free; |
| return; |
| free: |
| if (path->should_be_locked && |
| !btree_node_locked(dup, path->level)) |
| return; |
| |
| dup->should_be_locked |= path->should_be_locked; |
| __bch2_path_free(trans, path); |
| } |
| |
| void bch2_trans_updates_to_text(struct printbuf *buf, struct btree_trans *trans) |
| { |
| struct btree_insert_entry *i; |
| |
| prt_printf(buf, "transaction updates for %s journal seq %llu", |
| trans->fn, trans->journal_res.seq); |
| prt_newline(buf); |
| printbuf_indent_add(buf, 2); |
| |
| trans_for_each_update(trans, i) { |
| struct bkey_s_c old = { &i->old_k, i->old_v }; |
| |
| prt_printf(buf, "update: btree=%s cached=%u %pS", |
| bch2_btree_ids[i->btree_id], |
| i->cached, |
| (void *) i->ip_allocated); |
| prt_newline(buf); |
| |
| prt_printf(buf, " old "); |
| bch2_bkey_val_to_text(buf, trans->c, old); |
| prt_newline(buf); |
| |
| prt_printf(buf, " new "); |
| bch2_bkey_val_to_text(buf, trans->c, bkey_i_to_s_c(i->k)); |
| prt_newline(buf); |
| } |
| |
| printbuf_indent_sub(buf, 2); |
| } |
| |
| noinline __cold |
| void bch2_dump_trans_updates(struct btree_trans *trans) |
| { |
| struct printbuf buf = PRINTBUF; |
| |
| bch2_trans_updates_to_text(&buf, trans); |
| bch_err(trans->c, "%s", buf.buf); |
| printbuf_exit(&buf); |
| } |
| |
| noinline __cold |
| void bch2_dump_trans_paths_updates(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| struct printbuf buf = PRINTBUF; |
| unsigned idx; |
| |
| btree_trans_sort_paths(trans); |
| |
| trans_for_each_path_inorder(trans, path, idx) { |
| printbuf_reset(&buf); |
| |
| bch2_bpos_to_text(&buf, path->pos); |
| |
| printk(KERN_ERR "path: idx %u ref %u:%u%s%s btree=%s l=%u pos %s locks %u %pS\n", |
| path->idx, path->ref, path->intent_ref, |
| path->should_be_locked ? " S" : "", |
| path->preserve ? " P" : "", |
| bch2_btree_ids[path->btree_id], |
| path->level, |
| buf.buf, |
| path->nodes_locked, |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| (void *) path->ip_allocated |
| #else |
| NULL |
| #endif |
| ); |
| } |
| |
| printbuf_exit(&buf); |
| |
| bch2_dump_trans_updates(trans); |
| } |
| |
| static struct btree_path *btree_path_alloc(struct btree_trans *trans, |
| struct btree_path *pos) |
| { |
| struct btree_path *path; |
| unsigned idx; |
| |
| if (unlikely(trans->paths_allocated == |
| ~((~0ULL << 1) << (BTREE_ITER_MAX - 1)))) { |
| bch2_dump_trans_paths_updates(trans); |
| panic("trans path oveflow\n"); |
| } |
| |
| idx = __ffs64(~trans->paths_allocated); |
| trans->paths_allocated |= 1ULL << idx; |
| |
| path = &trans->paths[idx]; |
| |
| path->idx = idx; |
| path->ref = 0; |
| path->intent_ref = 0; |
| path->nodes_locked = 0; |
| path->nodes_intent_locked = 0; |
| |
| btree_path_list_add(trans, pos, path); |
| return path; |
| } |
| |
| struct btree_path *bch2_path_get(struct btree_trans *trans, |
| enum btree_id btree_id, struct bpos pos, |
| unsigned locks_want, unsigned level, |
| unsigned flags) |
| { |
| struct btree_path *path, *path_pos = NULL; |
| bool cached = flags & BTREE_ITER_CACHED; |
| bool intent = flags & BTREE_ITER_INTENT; |
| int i; |
| |
| BUG_ON(trans->restarted); |
| bch2_trans_verify_locks(trans); |
| |
| btree_trans_sort_paths(trans); |
| |
| btree_trans_sort_paths(trans); |
| |
| trans_for_each_path_inorder(trans, path, i) { |
| if (__btree_path_cmp(path, |
| btree_id, |
| cached, |
| pos, |
| level) > 0) |
| break; |
| |
| path_pos = path; |
| } |
| |
| if (path_pos && |
| path_pos->cached == cached && |
| path_pos->btree_id == btree_id && |
| path_pos->level == level) { |
| __btree_path_get(path_pos, intent); |
| path = bch2_btree_path_set_pos(trans, path_pos, pos, intent); |
| } else { |
| path = btree_path_alloc(trans, path_pos); |
| path_pos = NULL; |
| |
| __btree_path_get(path, intent); |
| path->pos = pos; |
| path->btree_id = btree_id; |
| path->cached = cached; |
| path->uptodate = BTREE_ITER_NEED_TRAVERSE; |
| path->should_be_locked = false; |
| path->level = level; |
| path->locks_want = locks_want; |
| path->nodes_locked = 0; |
| path->nodes_intent_locked = 0; |
| for (i = 0; i < ARRAY_SIZE(path->l); i++) |
| path->l[i].b = BTREE_ITER_NO_NODE_INIT; |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| path->ip_allocated = _RET_IP_; |
| #endif |
| trans->paths_sorted = false; |
| } |
| |
| if (!(flags & BTREE_ITER_NOPRESERVE)) |
| path->preserve = true; |
| |
| if (path->intent_ref) |
| locks_want = max(locks_want, level + 1); |
| |
| /* |
| * If the path has locks_want greater than requested, we don't downgrade |
| * it here - on transaction restart because btree node split needs to |
| * upgrade locks, we might be putting/getting the iterator again. |
| * Downgrading iterators only happens via bch2_trans_downgrade(), after |
| * a successful transaction commit. |
| */ |
| |
| locks_want = min(locks_want, BTREE_MAX_DEPTH); |
| if (locks_want > path->locks_want) { |
| path->locks_want = locks_want; |
| btree_path_get_locks(trans, path, true); |
| } |
| |
| return path; |
| } |
| |
| inline struct bkey_s_c bch2_btree_path_peek_slot(struct btree_path *path, struct bkey *u) |
| { |
| |
| struct bkey_s_c k; |
| |
| if (!path->cached) { |
| struct btree_path_level *l = path_l(path); |
| struct bkey_packed *_k; |
| |
| EBUG_ON(path->uptodate != BTREE_ITER_UPTODATE); |
| |
| _k = bch2_btree_node_iter_peek_all(&l->iter, l->b); |
| k = _k ? bkey_disassemble(l->b, _k, u) : bkey_s_c_null; |
| |
| EBUG_ON(k.k && bkey_deleted(k.k) && bpos_cmp(k.k->p, path->pos) == 0); |
| |
| if (!k.k || bpos_cmp(path->pos, k.k->p)) |
| goto hole; |
| } else { |
| struct bkey_cached *ck = (void *) path->l[0].b; |
| |
| EBUG_ON(ck && |
| (path->btree_id != ck->key.btree_id || |
| bkey_cmp(path->pos, ck->key.pos))); |
| |
| /* BTREE_ITER_CACHED_NOFILL|BTREE_ITER_CACHED_NOCREATE? */ |
| if (unlikely(!ck || !ck->valid)) |
| return bkey_s_c_null; |
| |
| EBUG_ON(path->uptodate != BTREE_ITER_UPTODATE); |
| |
| *u = ck->k->k; |
| k = bkey_i_to_s_c(ck->k); |
| } |
| |
| return k; |
| hole: |
| bkey_init(u); |
| u->p = path->pos; |
| return (struct bkey_s_c) { u, NULL }; |
| } |
| |
| /* Btree iterators: */ |
| |
| int __must_check |
| __bch2_btree_iter_traverse(struct btree_iter *iter) |
| { |
| return bch2_btree_path_traverse(iter->trans, iter->path, iter->flags); |
| } |
| |
| int __must_check |
| bch2_btree_iter_traverse(struct btree_iter *iter) |
| { |
| int ret; |
| |
| iter->path = bch2_btree_path_set_pos(iter->trans, iter->path, |
| btree_iter_search_key(iter), |
| iter->flags & BTREE_ITER_INTENT); |
| |
| ret = bch2_btree_path_traverse(iter->trans, iter->path, iter->flags); |
| if (ret) |
| return ret; |
| |
| iter->path->should_be_locked = true; |
| return 0; |
| } |
| |
| /* Iterate across nodes (leaf and interior nodes) */ |
| |
| struct btree *bch2_btree_iter_peek_node(struct btree_iter *iter) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct btree *b = NULL; |
| int ret; |
| |
| EBUG_ON(iter->path->cached); |
| bch2_btree_iter_verify(iter); |
| |
| ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); |
| if (ret) |
| goto err; |
| |
| b = btree_path_node(iter->path, iter->path->level); |
| if (!b) |
| goto out; |
| |
| BUG_ON(bpos_cmp(b->key.k.p, iter->pos) < 0); |
| |
| bkey_init(&iter->k); |
| iter->k.p = iter->pos = b->key.k.p; |
| |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, b->key.k.p, |
| iter->flags & BTREE_ITER_INTENT); |
| iter->path->should_be_locked = true; |
| BUG_ON(iter->path->uptodate); |
| out: |
| bch2_btree_iter_verify_entry_exit(iter); |
| bch2_btree_iter_verify(iter); |
| |
| return b; |
| err: |
| b = ERR_PTR(ret); |
| goto out; |
| } |
| |
| struct btree *bch2_btree_iter_next_node(struct btree_iter *iter) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct btree_path *path = iter->path; |
| struct btree *b = NULL; |
| int ret; |
| |
| BUG_ON(trans->restarted); |
| EBUG_ON(iter->path->cached); |
| bch2_btree_iter_verify(iter); |
| |
| /* already at end? */ |
| if (!btree_path_node(path, path->level)) |
| return NULL; |
| |
| /* got to end? */ |
| if (!btree_path_node(path, path->level + 1)) { |
| btree_path_set_level_up(path); |
| return NULL; |
| } |
| |
| if (!bch2_btree_node_relock(trans, path, path->level + 1)) { |
| __bch2_btree_path_unlock(path); |
| path->l[path->level].b = BTREE_ITER_NO_NODE_GET_LOCKS; |
| path->l[path->level + 1].b = BTREE_ITER_NO_NODE_GET_LOCKS; |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| trace_trans_restart_relock_next_node(trans->fn, _THIS_IP_, |
| path->btree_id, &path->pos); |
| btree_trans_restart(trans); |
| ret = -EINTR; |
| goto err; |
| } |
| |
| b = btree_path_node(path, path->level + 1); |
| |
| if (!bpos_cmp(iter->pos, b->key.k.p)) { |
| btree_node_unlock(path, path->level); |
| path->l[path->level].b = BTREE_ITER_NO_NODE_UP; |
| path->level++; |
| } else { |
| /* |
| * Haven't gotten to the end of the parent node: go back down to |
| * the next child node |
| */ |
| path = iter->path = |
| bch2_btree_path_set_pos(trans, path, bpos_successor(iter->pos), |
| iter->flags & BTREE_ITER_INTENT); |
| |
| btree_path_set_level_down(trans, path, iter->min_depth); |
| |
| ret = bch2_btree_path_traverse(trans, path, iter->flags); |
| if (ret) |
| goto err; |
| |
| b = path->l[path->level].b; |
| } |
| |
| bkey_init(&iter->k); |
| iter->k.p = iter->pos = b->key.k.p; |
| |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, b->key.k.p, |
| iter->flags & BTREE_ITER_INTENT); |
| iter->path->should_be_locked = true; |
| BUG_ON(iter->path->uptodate); |
| out: |
| bch2_btree_iter_verify_entry_exit(iter); |
| bch2_btree_iter_verify(iter); |
| |
| return b; |
| err: |
| b = ERR_PTR(ret); |
| goto out; |
| } |
| |
| /* Iterate across keys (in leaf nodes only) */ |
| |
| inline bool bch2_btree_iter_advance(struct btree_iter *iter) |
| { |
| if (likely(!(iter->flags & BTREE_ITER_ALL_LEVELS))) { |
| struct bpos pos = iter->k.p; |
| bool ret = (iter->flags & BTREE_ITER_ALL_SNAPSHOTS |
| ? bpos_cmp(pos, SPOS_MAX) |
| : bkey_cmp(pos, SPOS_MAX)) != 0; |
| |
| if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) |
| pos = bkey_successor(iter, pos); |
| bch2_btree_iter_set_pos(iter, pos); |
| return ret; |
| } else { |
| if (!btree_path_node(iter->path, iter->path->level)) |
| return true; |
| |
| iter->advanced = true; |
| return false; |
| } |
| } |
| |
| inline bool bch2_btree_iter_rewind(struct btree_iter *iter) |
| { |
| struct bpos pos = bkey_start_pos(&iter->k); |
| bool ret = (iter->flags & BTREE_ITER_ALL_SNAPSHOTS |
| ? bpos_cmp(pos, POS_MIN) |
| : bkey_cmp(pos, POS_MIN)) != 0; |
| |
| if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) |
| pos = bkey_predecessor(iter, pos); |
| bch2_btree_iter_set_pos(iter, pos); |
| return ret; |
| } |
| |
| static noinline |
| struct bkey_i *__bch2_btree_trans_peek_updates(struct btree_iter *iter) |
| { |
| struct btree_insert_entry *i; |
| struct bkey_i *ret = NULL; |
| |
| trans_for_each_update(iter->trans, i) { |
| if (i->btree_id < iter->btree_id) |
| continue; |
| if (i->btree_id > iter->btree_id) |
| break; |
| if (bpos_cmp(i->k->k.p, iter->path->pos) < 0) |
| continue; |
| if (i->key_cache_already_flushed) |
| continue; |
| if (!ret || bpos_cmp(i->k->k.p, ret->k.p) < 0) |
| ret = i->k; |
| } |
| |
| return ret; |
| } |
| |
| static inline struct bkey_i *btree_trans_peek_updates(struct btree_iter *iter) |
| { |
| return iter->flags & BTREE_ITER_WITH_UPDATES |
| ? __bch2_btree_trans_peek_updates(iter) |
| : NULL; |
| } |
| |
| struct bkey_i *bch2_btree_journal_peek(struct btree_trans *trans, |
| struct btree_iter *iter, |
| struct bpos end_pos) |
| { |
| struct bkey_i *k; |
| |
| if (bpos_cmp(iter->path->pos, iter->journal_pos) < 0) |
| iter->journal_idx = 0; |
| |
| k = bch2_journal_keys_peek_upto(trans->c, iter->btree_id, |
| iter->path->level, |
| iter->path->pos, |
| end_pos, |
| &iter->journal_idx); |
| |
| iter->journal_pos = k ? k->k.p : end_pos; |
| return k; |
| } |
| |
| static noinline |
| struct bkey_s_c btree_trans_peek_slot_journal(struct btree_trans *trans, |
| struct btree_iter *iter) |
| { |
| struct bkey_i *k = bch2_btree_journal_peek(trans, iter, iter->path->pos); |
| |
| if (k) { |
| iter->k = k->k; |
| return bkey_i_to_s_c(k); |
| } else { |
| return bkey_s_c_null; |
| } |
| } |
| |
| static noinline |
| struct bkey_s_c btree_trans_peek_journal(struct btree_trans *trans, |
| struct btree_iter *iter, |
| struct bkey_s_c k) |
| { |
| struct bkey_i *next_journal = |
| bch2_btree_journal_peek(trans, iter, |
| k.k ? k.k->p : iter->path->l[0].b->key.k.p); |
| |
| if (next_journal) { |
| iter->k = next_journal->k; |
| k = bkey_i_to_s_c(next_journal); |
| } |
| |
| return k; |
| } |
| |
| /* |
| * Checks btree key cache for key at iter->pos and returns it if present, or |
| * bkey_s_c_null: |
| */ |
| static noinline |
| struct bkey_s_c btree_trans_peek_key_cache(struct btree_iter *iter, struct bpos pos) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct bch_fs *c = trans->c; |
| struct bkey u; |
| int ret; |
| |
| if (!bch2_btree_key_cache_find(c, iter->btree_id, pos)) |
| return bkey_s_c_null; |
| |
| if (!iter->key_cache_path) |
| iter->key_cache_path = bch2_path_get(trans, iter->btree_id, pos, |
| iter->flags & BTREE_ITER_INTENT, 0, |
| iter->flags|BTREE_ITER_CACHED); |
| |
| iter->key_cache_path = bch2_btree_path_set_pos(trans, iter->key_cache_path, pos, |
| iter->flags & BTREE_ITER_INTENT); |
| |
| ret = bch2_btree_path_traverse(trans, iter->key_cache_path, iter->flags|BTREE_ITER_CACHED); |
| if (unlikely(ret)) |
| return bkey_s_c_err(ret); |
| |
| iter->key_cache_path->should_be_locked = true; |
| |
| return bch2_btree_path_peek_slot(iter->key_cache_path, &u); |
| } |
| |
| static struct bkey_s_c __bch2_btree_iter_peek(struct btree_iter *iter, struct bpos search_key) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct bkey_i *next_update; |
| struct bkey_s_c k, k2; |
| int ret; |
| |
| EBUG_ON(iter->path->cached || iter->path->level); |
| bch2_btree_iter_verify(iter); |
| |
| while (1) { |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, search_key, |
| iter->flags & BTREE_ITER_INTENT); |
| |
| ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); |
| if (unlikely(ret)) { |
| /* ensure that iter->k is consistent with iter->pos: */ |
| bch2_btree_iter_set_pos(iter, iter->pos); |
| k = bkey_s_c_err(ret); |
| goto out; |
| } |
| |
| iter->path->should_be_locked = true; |
| |
| k = btree_path_level_peek_all(trans->c, &iter->path->l[0], &iter->k); |
| |
| if (unlikely(iter->flags & BTREE_ITER_WITH_KEY_CACHE) && |
| k.k && |
| (k2 = btree_trans_peek_key_cache(iter, k.k->p)).k) { |
| ret = bkey_err(k2); |
| if (ret) { |
| k = k2; |
| bch2_btree_iter_set_pos(iter, iter->pos); |
| goto out; |
| } |
| |
| k = k2; |
| iter->k = *k.k; |
| } |
| |
| if (unlikely(iter->flags & BTREE_ITER_WITH_JOURNAL)) |
| k = btree_trans_peek_journal(trans, iter, k); |
| |
| next_update = btree_trans_peek_updates(iter); |
| |
| if (next_update && |
| bpos_cmp(next_update->k.p, |
| k.k ? k.k->p : iter->path->l[0].b->key.k.p) <= 0) { |
| iter->k = next_update->k; |
| k = bkey_i_to_s_c(next_update); |
| } |
| |
| if (k.k && bkey_deleted(k.k)) { |
| /* |
| * If we've got a whiteout, and it's after the search |
| * key, advance the search key to the whiteout instead |
| * of just after the whiteout - it might be a btree |
| * whiteout, with a real key at the same position, since |
| * in the btree deleted keys sort before non deleted. |
| */ |
| search_key = bpos_cmp(search_key, k.k->p) |
| ? k.k->p |
| : bpos_successor(k.k->p); |
| continue; |
| } |
| |
| if (likely(k.k)) { |
| break; |
| } else if (likely(bpos_cmp(iter->path->l[0].b->key.k.p, SPOS_MAX))) { |
| /* Advance to next leaf node: */ |
| search_key = bpos_successor(iter->path->l[0].b->key.k.p); |
| } else { |
| /* End of btree: */ |
| bch2_btree_iter_set_pos(iter, SPOS_MAX); |
| k = bkey_s_c_null; |
| goto out; |
| } |
| } |
| out: |
| bch2_btree_iter_verify(iter); |
| |
| return k; |
| } |
| |
| /** |
| * bch2_btree_iter_peek: returns first key greater than or equal to iterator's |
| * current position |
| */ |
| struct bkey_s_c bch2_btree_iter_peek_upto(struct btree_iter *iter, struct bpos end) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct bpos search_key = btree_iter_search_key(iter); |
| struct bkey_s_c k; |
| struct bpos iter_pos; |
| int ret; |
| |
| EBUG_ON(iter->flags & BTREE_ITER_ALL_LEVELS); |
| |
| if (iter->update_path) { |
| bch2_path_put(trans, iter->update_path, |
| iter->flags & BTREE_ITER_INTENT); |
| iter->update_path = NULL; |
| } |
| |
| bch2_btree_iter_verify_entry_exit(iter); |
| |
| while (1) { |
| k = __bch2_btree_iter_peek(iter, search_key); |
| if (!k.k || bkey_err(k)) |
| goto out; |
| |
| /* |
| * iter->pos should be mononotically increasing, and always be |
| * equal to the key we just returned - except extents can |
| * straddle iter->pos: |
| */ |
| if (!(iter->flags & BTREE_ITER_IS_EXTENTS)) |
| iter_pos = k.k->p; |
| else if (bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) |
| iter_pos = bkey_start_pos(k.k); |
| else |
| iter_pos = iter->pos; |
| |
| if (bkey_cmp(iter_pos, end) > 0) { |
| bch2_btree_iter_set_pos(iter, end); |
| k = bkey_s_c_null; |
| goto out; |
| } |
| |
| if (iter->update_path && |
| bkey_cmp(iter->update_path->pos, k.k->p)) { |
| bch2_path_put(trans, iter->update_path, |
| iter->flags & BTREE_ITER_INTENT); |
| iter->update_path = NULL; |
| } |
| |
| if ((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && |
| (iter->flags & BTREE_ITER_INTENT) && |
| !(iter->flags & BTREE_ITER_IS_EXTENTS) && |
| !iter->update_path) { |
| struct bpos pos = k.k->p; |
| |
| if (pos.snapshot < iter->snapshot) { |
| search_key = bpos_successor(k.k->p); |
| continue; |
| } |
| |
| pos.snapshot = iter->snapshot; |
| |
| /* |
| * advance, same as on exit for iter->path, but only up |
| * to snapshot |
| */ |
| __btree_path_get(iter->path, iter->flags & BTREE_ITER_INTENT); |
| iter->update_path = iter->path; |
| |
| iter->update_path = bch2_btree_path_set_pos(trans, |
| iter->update_path, pos, |
| iter->flags & BTREE_ITER_INTENT); |
| } |
| |
| /* |
| * We can never have a key in a leaf node at POS_MAX, so |
| * we don't have to check these successor() calls: |
| */ |
| if ((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && |
| !bch2_snapshot_is_ancestor(trans->c, |
| iter->snapshot, |
| k.k->p.snapshot)) { |
| search_key = bpos_successor(k.k->p); |
| continue; |
| } |
| |
| if (bkey_whiteout(k.k) && |
| !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) { |
| search_key = bkey_successor(iter, k.k->p); |
| continue; |
| } |
| |
| break; |
| } |
| |
| iter->pos = iter_pos; |
| |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, k.k->p, |
| iter->flags & BTREE_ITER_INTENT); |
| BUG_ON(!iter->path->nodes_locked); |
| out: |
| if (iter->update_path) { |
| if (unlikely(!bch2_btree_path_relock(trans, iter->update_path, _THIS_IP_))) { |
| k = bkey_s_c_err(-EINTR); |
| } else { |
| BUG_ON(!(iter->update_path->nodes_locked & 1)); |
| iter->update_path->should_be_locked = true; |
| } |
| } |
| iter->path->should_be_locked = true; |
| |
| if (!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) |
| iter->pos.snapshot = iter->snapshot; |
| |
| ret = bch2_btree_iter_verify_ret(iter, k); |
| if (unlikely(ret)) { |
| bch2_btree_iter_set_pos(iter, iter->pos); |
| k = bkey_s_c_err(ret); |
| } |
| |
| bch2_btree_iter_verify_entry_exit(iter); |
| |
| return k; |
| } |
| |
| /** |
| * bch2_btree_iter_peek_all_levels: returns the first key greater than or equal |
| * to iterator's current position, returning keys from every level of the btree. |
| * For keys at different levels of the btree that compare equal, the key from |
| * the lower level (leaf) is returned first. |
| */ |
| struct bkey_s_c bch2_btree_iter_peek_all_levels(struct btree_iter *iter) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct bkey_s_c k; |
| int ret; |
| |
| EBUG_ON(iter->path->cached); |
| bch2_btree_iter_verify(iter); |
| BUG_ON(iter->path->level < iter->min_depth); |
| BUG_ON(!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)); |
| EBUG_ON(!(iter->flags & BTREE_ITER_ALL_LEVELS)); |
| |
| while (1) { |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, iter->pos, |
| iter->flags & BTREE_ITER_INTENT); |
| |
| ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); |
| if (unlikely(ret)) { |
| /* ensure that iter->k is consistent with iter->pos: */ |
| bch2_btree_iter_set_pos(iter, iter->pos); |
| k = bkey_s_c_err(ret); |
| goto out; |
| } |
| |
| /* Already at end? */ |
| if (!btree_path_node(iter->path, iter->path->level)) { |
| k = bkey_s_c_null; |
| goto out; |
| } |
| |
| k = btree_path_level_peek_all(trans->c, |
| &iter->path->l[iter->path->level], &iter->k); |
| |
| /* Check if we should go up to the parent node: */ |
| if (!k.k || |
| (iter->advanced && |
| !bpos_cmp(path_l(iter->path)->b->key.k.p, iter->pos))) { |
| iter->pos = path_l(iter->path)->b->key.k.p; |
| btree_path_set_level_up(iter->path); |
| iter->advanced = false; |
| continue; |
| } |
| |
| /* |
| * Check if we should go back down to a leaf: |
| * If we're not in a leaf node, we only return the current key |
| * if it exactly matches iter->pos - otherwise we first have to |
| * go back to the leaf: |
| */ |
| if (iter->path->level != iter->min_depth && |
| (iter->advanced || |
| !k.k || |
| bpos_cmp(iter->pos, k.k->p))) { |
| btree_path_set_level_down(trans, iter->path, iter->min_depth); |
| iter->pos = bpos_successor(iter->pos); |
| iter->advanced = false; |
| continue; |
| } |
| |
| /* Check if we should go to the next key: */ |
| if (iter->path->level == iter->min_depth && |
| iter->advanced && |
| k.k && |
| !bpos_cmp(iter->pos, k.k->p)) { |
| iter->pos = bpos_successor(iter->pos); |
| iter->advanced = false; |
| continue; |
| } |
| |
| if (iter->advanced && |
| iter->path->level == iter->min_depth && |
| bpos_cmp(k.k->p, iter->pos)) |
| iter->advanced = false; |
| |
| BUG_ON(iter->advanced); |
| BUG_ON(!k.k); |
| break; |
| } |
| |
| iter->pos = k.k->p; |
| out: |
| iter->path->should_be_locked = true; |
| bch2_btree_iter_verify(iter); |
| |
| return k; |
| } |
| |
| /** |
| * bch2_btree_iter_next: returns first key greater than iterator's current |
| * position |
| */ |
| struct bkey_s_c bch2_btree_iter_next(struct btree_iter *iter) |
| { |
| if (!bch2_btree_iter_advance(iter)) |
| return bkey_s_c_null; |
| |
| return bch2_btree_iter_peek(iter); |
| } |
| |
| /** |
| * bch2_btree_iter_peek_prev: returns first key less than or equal to |
| * iterator's current position |
| */ |
| struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *iter) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct bpos search_key = iter->pos; |
| struct btree_path *saved_path = NULL; |
| struct bkey_s_c k; |
| struct bkey saved_k; |
| const struct bch_val *saved_v; |
| int ret; |
| |
| EBUG_ON(iter->path->cached || iter->path->level); |
| EBUG_ON(iter->flags & BTREE_ITER_WITH_UPDATES); |
| |
| if (iter->flags & BTREE_ITER_WITH_JOURNAL) |
| return bkey_s_c_err(-EIO); |
| |
| bch2_btree_iter_verify(iter); |
| bch2_btree_iter_verify_entry_exit(iter); |
| |
| if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) |
| search_key.snapshot = U32_MAX; |
| |
| while (1) { |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, search_key, |
| iter->flags & BTREE_ITER_INTENT); |
| |
| ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); |
| if (unlikely(ret)) { |
| /* ensure that iter->k is consistent with iter->pos: */ |
| bch2_btree_iter_set_pos(iter, iter->pos); |
| k = bkey_s_c_err(ret); |
| goto out; |
| } |
| |
| k = btree_path_level_peek(trans, iter->path, |
| &iter->path->l[0], &iter->k); |
| if (!k.k || |
| ((iter->flags & BTREE_ITER_IS_EXTENTS) |
| ? bpos_cmp(bkey_start_pos(k.k), search_key) >= 0 |
| : bpos_cmp(k.k->p, search_key) > 0)) |
| k = btree_path_level_prev(trans, iter->path, |
| &iter->path->l[0], &iter->k); |
| |
| if (likely(k.k)) { |
| if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) { |
| if (k.k->p.snapshot == iter->snapshot) |
| goto got_key; |
| |
| /* |
| * If we have a saved candidate, and we're no |
| * longer at the same _key_ (not pos), return |
| * that candidate |
| */ |
| if (saved_path && bkey_cmp(k.k->p, saved_k.p)) { |
| bch2_path_put(trans, iter->path, |
| iter->flags & BTREE_ITER_INTENT); |
| iter->path = saved_path; |
| saved_path = NULL; |
| iter->k = saved_k; |
| k.v = saved_v; |
| goto got_key; |
| } |
| |
| if (bch2_snapshot_is_ancestor(iter->trans->c, |
| iter->snapshot, |
| k.k->p.snapshot)) { |
| if (saved_path) |
| bch2_path_put(trans, saved_path, |
| iter->flags & BTREE_ITER_INTENT); |
| saved_path = btree_path_clone(trans, iter->path, |
| iter->flags & BTREE_ITER_INTENT); |
| saved_k = *k.k; |
| saved_v = k.v; |
| } |
| |
| search_key = bpos_predecessor(k.k->p); |
| continue; |
| } |
| got_key: |
| if (bkey_whiteout(k.k) && |
| !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) { |
| search_key = bkey_predecessor(iter, k.k->p); |
| if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) |
| search_key.snapshot = U32_MAX; |
| continue; |
| } |
| |
| break; |
| } else if (likely(bpos_cmp(iter->path->l[0].b->data->min_key, POS_MIN))) { |
| /* Advance to previous leaf node: */ |
| search_key = bpos_predecessor(iter->path->l[0].b->data->min_key); |
| } else { |
| /* Start of btree: */ |
| bch2_btree_iter_set_pos(iter, POS_MIN); |
| k = bkey_s_c_null; |
| goto out; |
| } |
| } |
| |
| EBUG_ON(bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0); |
| |
| /* Extents can straddle iter->pos: */ |
| if (bkey_cmp(k.k->p, iter->pos) < 0) |
| iter->pos = k.k->p; |
| |
| if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) |
| iter->pos.snapshot = iter->snapshot; |
| out: |
| if (saved_path) |
| bch2_path_put(trans, saved_path, iter->flags & BTREE_ITER_INTENT); |
| iter->path->should_be_locked = true; |
| |
| bch2_btree_iter_verify_entry_exit(iter); |
| bch2_btree_iter_verify(iter); |
| |
| return k; |
| } |
| |
| /** |
| * bch2_btree_iter_prev: returns first key less than iterator's current |
| * position |
| */ |
| struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *iter) |
| { |
| if (!bch2_btree_iter_rewind(iter)) |
| return bkey_s_c_null; |
| |
| return bch2_btree_iter_peek_prev(iter); |
| } |
| |
| struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *iter) |
| { |
| struct btree_trans *trans = iter->trans; |
| struct bpos search_key; |
| struct bkey_s_c k; |
| int ret; |
| |
| bch2_btree_iter_verify(iter); |
| bch2_btree_iter_verify_entry_exit(iter); |
| EBUG_ON(iter->flags & BTREE_ITER_ALL_LEVELS); |
| EBUG_ON(iter->path->level && (iter->flags & BTREE_ITER_WITH_KEY_CACHE)); |
| |
| /* extents can't span inode numbers: */ |
| if ((iter->flags & BTREE_ITER_IS_EXTENTS) && |
| unlikely(iter->pos.offset == KEY_OFFSET_MAX)) { |
| if (iter->pos.inode == KEY_INODE_MAX) |
| return bkey_s_c_null; |
| |
| bch2_btree_iter_set_pos(iter, bpos_nosnap_successor(iter->pos)); |
| } |
| |
| search_key = btree_iter_search_key(iter); |
| iter->path = bch2_btree_path_set_pos(trans, iter->path, search_key, |
| iter->flags & BTREE_ITER_INTENT); |
| |
| ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); |
| if (unlikely(ret)) |
| return bkey_s_c_err(ret); |
| |
| if ((iter->flags & BTREE_ITER_CACHED) || |
| !(iter->flags & (BTREE_ITER_IS_EXTENTS|BTREE_ITER_FILTER_SNAPSHOTS))) { |
| struct bkey_i *next_update; |
| |
| if ((next_update = btree_trans_peek_updates(iter)) && |
| !bpos_cmp(next_update->k.p, iter->pos)) { |
| iter->k = next_update->k; |
| k = bkey_i_to_s_c(next_update); |
| goto out; |
| } |
| |
| if (unlikely(iter->flags & BTREE_ITER_WITH_JOURNAL) && |
| (k = btree_trans_peek_slot_journal(trans, iter)).k) |
| goto out; |
| |
| if (unlikely(iter->flags & BTREE_ITER_WITH_KEY_CACHE) && |
| (k = btree_trans_peek_key_cache(iter, iter->pos)).k) { |
| if (!bkey_err(k)) |
| iter->k = *k.k; |
| goto out; |
| } |
| |
| k = bch2_btree_path_peek_slot(iter->path, &iter->k); |
| } else { |
| struct bpos next; |
| |
| EBUG_ON(iter->path->level); |
| |
| if (iter->flags & BTREE_ITER_INTENT) { |
| struct btree_iter iter2; |
| struct bpos end = iter->pos; |
| |
| if (iter->flags & BTREE_ITER_IS_EXTENTS) |
| end.offset = U64_MAX; |
| |
| bch2_trans_copy_iter(&iter2, iter); |
| k = bch2_btree_iter_peek_upto(&iter2, end); |
| |
| if (k.k && !bkey_err(k)) { |
| iter->k = iter2.k; |
| k.k = &iter->k; |
| } |
| bch2_trans_iter_exit(trans, &iter2); |
| } else { |
| struct bpos pos = iter->pos; |
| |
| k = bch2_btree_iter_peek(iter); |
| iter->pos = pos; |
| } |
| |
| if (unlikely(bkey_err(k))) |
| return k; |
| |
| next = k.k ? bkey_start_pos(k.k) : POS_MAX; |
| |
| if (bkey_cmp(iter->pos, next) < 0) { |
| bkey_init(&iter->k); |
| iter->k.p = iter->pos; |
| |
| if (iter->flags & BTREE_ITER_IS_EXTENTS) { |
| bch2_key_resize(&iter->k, |
| min_t(u64, KEY_SIZE_MAX, |
| (next.inode == iter->pos.inode |
| ? next.offset |
| : KEY_OFFSET_MAX) - |
| iter->pos.offset)); |
| EBUG_ON(!iter->k.size); |
| } |
| |
| k = (struct bkey_s_c) { &iter->k, NULL }; |
| } |
| } |
| out: |
| iter->path->should_be_locked = true; |
| |
| bch2_btree_iter_verify_entry_exit(iter); |
| bch2_btree_iter_verify(iter); |
| ret = bch2_btree_iter_verify_ret(iter, k); |
| if (unlikely(ret)) |
| return bkey_s_c_err(ret); |
| |
| return k; |
| } |
| |
| struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *iter) |
| { |
| if (!bch2_btree_iter_advance(iter)) |
| return bkey_s_c_null; |
| |
| return bch2_btree_iter_peek_slot(iter); |
| } |
| |
| struct bkey_s_c bch2_btree_iter_prev_slot(struct btree_iter *iter) |
| { |
| if (!bch2_btree_iter_rewind(iter)) |
| return bkey_s_c_null; |
| |
| return bch2_btree_iter_peek_slot(iter); |
| } |
| |
| /* new transactional stuff: */ |
| |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| static void btree_trans_verify_sorted_refs(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| unsigned i; |
| |
| BUG_ON(trans->nr_sorted != hweight64(trans->paths_allocated)); |
| |
| trans_for_each_path(trans, path) { |
| BUG_ON(path->sorted_idx >= trans->nr_sorted); |
| BUG_ON(trans->sorted[path->sorted_idx] != path->idx); |
| } |
| |
| for (i = 0; i < trans->nr_sorted; i++) { |
| unsigned idx = trans->sorted[i]; |
| |
| EBUG_ON(!(trans->paths_allocated & (1ULL << idx))); |
| BUG_ON(trans->paths[idx].sorted_idx != i); |
| } |
| } |
| |
| static void btree_trans_verify_sorted(struct btree_trans *trans) |
| { |
| struct btree_path *path, *prev = NULL; |
| unsigned i; |
| |
| if (!bch2_debug_check_iterators) |
| return; |
| |
| trans_for_each_path_inorder(trans, path, i) { |
| if (prev && btree_path_cmp(prev, path) > 0) { |
| bch2_dump_trans_paths_updates(trans); |
| panic("trans paths out of order!\n"); |
| } |
| prev = path; |
| } |
| } |
| #else |
| static inline void btree_trans_verify_sorted_refs(struct btree_trans *trans) {} |
| static inline void btree_trans_verify_sorted(struct btree_trans *trans) {} |
| #endif |
| |
| void __bch2_btree_trans_sort_paths(struct btree_trans *trans) |
| { |
| int i, l = 0, r = trans->nr_sorted, inc = 1; |
| bool swapped; |
| |
| btree_trans_verify_sorted_refs(trans); |
| |
| if (trans->paths_sorted) |
| goto out; |
| |
| /* |
| * Cocktail shaker sort: this is efficient because iterators will be |
| * mostly sorteda. |
| */ |
| do { |
| swapped = false; |
| |
| for (i = inc > 0 ? l : r - 2; |
| i + 1 < r && i >= l; |
| i += inc) { |
| if (btree_path_cmp(trans->paths + trans->sorted[i], |
| trans->paths + trans->sorted[i + 1]) > 0) { |
| swap(trans->sorted[i], trans->sorted[i + 1]); |
| trans->paths[trans->sorted[i]].sorted_idx = i; |
| trans->paths[trans->sorted[i + 1]].sorted_idx = i + 1; |
| swapped = true; |
| } |
| } |
| |
| if (inc > 0) |
| --r; |
| else |
| l++; |
| inc = -inc; |
| } while (swapped); |
| |
| trans->paths_sorted = true; |
| out: |
| btree_trans_verify_sorted(trans); |
| } |
| |
| static inline void btree_path_list_remove(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| unsigned i; |
| |
| EBUG_ON(path->sorted_idx >= trans->nr_sorted); |
| #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| trans->nr_sorted--; |
| memmove_u64s_down_small(trans->sorted + path->sorted_idx, |
| trans->sorted + path->sorted_idx + 1, |
| DIV_ROUND_UP(trans->nr_sorted - path->sorted_idx, 8)); |
| #else |
| array_remove_item(trans->sorted, trans->nr_sorted, path->sorted_idx); |
| #endif |
| for (i = path->sorted_idx; i < trans->nr_sorted; i++) |
| trans->paths[trans->sorted[i]].sorted_idx = i; |
| |
| path->sorted_idx = U8_MAX; |
| } |
| |
| static inline void btree_path_list_add(struct btree_trans *trans, |
| struct btree_path *pos, |
| struct btree_path *path) |
| { |
| unsigned i; |
| |
| path->sorted_idx = pos ? pos->sorted_idx + 1 : trans->nr_sorted; |
| |
| #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| memmove_u64s_up_small(trans->sorted + path->sorted_idx + 1, |
| trans->sorted + path->sorted_idx, |
| DIV_ROUND_UP(trans->nr_sorted - path->sorted_idx, 8)); |
| trans->nr_sorted++; |
| trans->sorted[path->sorted_idx] = path->idx; |
| #else |
| array_insert_item(trans->sorted, trans->nr_sorted, path->sorted_idx, path->idx); |
| #endif |
| |
| for (i = path->sorted_idx; i < trans->nr_sorted; i++) |
| trans->paths[trans->sorted[i]].sorted_idx = i; |
| |
| btree_trans_verify_sorted_refs(trans); |
| } |
| |
| void bch2_trans_iter_exit(struct btree_trans *trans, struct btree_iter *iter) |
| { |
| if (iter->path) |
| bch2_path_put(trans, iter->path, |
| iter->flags & BTREE_ITER_INTENT); |
| if (iter->update_path) |
| bch2_path_put(trans, iter->update_path, |
| iter->flags & BTREE_ITER_INTENT); |
| if (iter->key_cache_path) |
| bch2_path_put(trans, iter->key_cache_path, |
| iter->flags & BTREE_ITER_INTENT); |
| iter->path = NULL; |
| iter->update_path = NULL; |
| iter->key_cache_path = NULL; |
| } |
| |
| static void __bch2_trans_iter_init(struct btree_trans *trans, |
| struct btree_iter *iter, |
| enum btree_id btree_id, struct bpos pos, |
| unsigned locks_want, |
| unsigned depth, |
| unsigned flags) |
| { |
| EBUG_ON(trans->restarted); |
| |
| if (flags & BTREE_ITER_ALL_LEVELS) |
| flags |= BTREE_ITER_ALL_SNAPSHOTS|__BTREE_ITER_ALL_SNAPSHOTS; |
| |
| if (!(flags & (BTREE_ITER_ALL_SNAPSHOTS|BTREE_ITER_NOT_EXTENTS)) && |
| btree_node_type_is_extents(btree_id)) |
| flags |= BTREE_ITER_IS_EXTENTS; |
| |
| if (!(flags & __BTREE_ITER_ALL_SNAPSHOTS) && |
| !btree_type_has_snapshots(btree_id)) |
| flags &= ~BTREE_ITER_ALL_SNAPSHOTS; |
| |
| if (!(flags & BTREE_ITER_ALL_SNAPSHOTS) && |
| btree_type_has_snapshots(btree_id)) |
| flags |= BTREE_ITER_FILTER_SNAPSHOTS; |
| |
| if (trans->journal_replay_not_finished) |
| flags |= BTREE_ITER_WITH_JOURNAL; |
| |
| iter->trans = trans; |
| iter->path = NULL; |
| iter->update_path = NULL; |
| iter->key_cache_path = NULL; |
| iter->btree_id = btree_id; |
| iter->min_depth = depth; |
| iter->flags = flags; |
| iter->snapshot = pos.snapshot; |
| iter->pos = pos; |
| iter->k.type = KEY_TYPE_deleted; |
| iter->k.p = pos; |
| iter->k.size = 0; |
| iter->journal_idx = 0; |
| iter->journal_pos = POS_MIN; |
| |
| iter->path = bch2_path_get(trans, btree_id, iter->pos, |
| locks_want, depth, flags); |
| } |
| |
| void bch2_trans_iter_init(struct btree_trans *trans, |
| struct btree_iter *iter, |
| unsigned btree_id, struct bpos pos, |
| unsigned flags) |
| { |
| if (!btree_id_cached(trans->c, btree_id)) { |
| flags &= ~BTREE_ITER_CACHED; |
| flags &= ~BTREE_ITER_WITH_KEY_CACHE; |
| } else if (!(flags & BTREE_ITER_CACHED)) |
| flags |= BTREE_ITER_WITH_KEY_CACHE; |
| |
| __bch2_trans_iter_init(trans, iter, btree_id, pos, |
| 0, 0, flags); |
| } |
| |
| void bch2_trans_node_iter_init(struct btree_trans *trans, |
| struct btree_iter *iter, |
| enum btree_id btree_id, |
| struct bpos pos, |
| unsigned locks_want, |
| unsigned depth, |
| unsigned flags) |
| { |
| __bch2_trans_iter_init(trans, iter, btree_id, pos, locks_want, depth, |
| BTREE_ITER_NOT_EXTENTS| |
| __BTREE_ITER_ALL_SNAPSHOTS| |
| BTREE_ITER_ALL_SNAPSHOTS| |
| flags); |
| BUG_ON(iter->path->locks_want < min(locks_want, BTREE_MAX_DEPTH)); |
| BUG_ON(iter->path->level != depth); |
| BUG_ON(iter->min_depth != depth); |
| } |
| |
| void bch2_trans_copy_iter(struct btree_iter *dst, struct btree_iter *src) |
| { |
| *dst = *src; |
| if (src->path) |
| __btree_path_get(src->path, src->flags & BTREE_ITER_INTENT); |
| if (src->update_path) |
| __btree_path_get(src->update_path, src->flags & BTREE_ITER_INTENT); |
| dst->key_cache_path = NULL; |
| } |
| |
| void *bch2_trans_kmalloc(struct btree_trans *trans, size_t size) |
| { |
| size_t new_top = trans->mem_top + size; |
| void *p; |
| |
| if (new_top > trans->mem_bytes) { |
| size_t old_bytes = trans->mem_bytes; |
| size_t new_bytes = roundup_pow_of_two(new_top); |
| void *new_mem; |
| |
| WARN_ON_ONCE(new_bytes > BTREE_TRANS_MEM_MAX); |
| |
| new_mem = krealloc(trans->mem, new_bytes, GFP_NOFS); |
| if (!new_mem && new_bytes <= BTREE_TRANS_MEM_MAX) { |
| new_mem = mempool_alloc(&trans->c->btree_trans_mem_pool, GFP_KERNEL); |
| new_bytes = BTREE_TRANS_MEM_MAX; |
| kfree(trans->mem); |
| } |
| |
| if (!new_mem) |
| return ERR_PTR(-ENOMEM); |
| |
| trans->mem = new_mem; |
| trans->mem_bytes = new_bytes; |
| |
| if (old_bytes) { |
| trace_trans_restart_mem_realloced(trans->fn, _RET_IP_, new_bytes); |
| btree_trans_restart(trans); |
| return ERR_PTR(-EINTR); |
| } |
| } |
| |
| p = trans->mem + trans->mem_top; |
| trans->mem_top += size; |
| memset(p, 0, size); |
| return p; |
| } |
| |
| /** |
| * bch2_trans_begin() - reset a transaction after a interrupted attempt |
| * @trans: transaction to reset |
| * |
| * While iterating over nodes or updating nodes a attempt to lock a btree |
| * node may return EINTR when the trylock fails. When this occurs |
| * bch2_trans_begin() should be called and the transaction retried. |
| */ |
| void bch2_trans_begin(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| bch2_trans_reset_updates(trans); |
| |
| trans->mem_top = 0; |
| |
| if (trans->fs_usage_deltas) { |
| trans->fs_usage_deltas->used = 0; |
| memset((void *) trans->fs_usage_deltas + |
| offsetof(struct replicas_delta_list, memset_start), 0, |
| (void *) &trans->fs_usage_deltas->memset_end - |
| (void *) &trans->fs_usage_deltas->memset_start); |
| } |
| |
| trans_for_each_path(trans, path) { |
| path->should_be_locked = false; |
| |
| /* |
| * If the transaction wasn't restarted, we're presuming to be |
| * doing something new: dont keep iterators excpt the ones that |
| * are in use - except for the subvolumes btree: |
| */ |
| if (!trans->restarted && path->btree_id != BTREE_ID_subvolumes) |
| path->preserve = false; |
| |
| /* |
| * XXX: we probably shouldn't be doing this if the transaction |
| * was restarted, but currently we still overflow transaction |
| * iterators if we do that |
| */ |
| if (!path->ref && !path->preserve) |
| __bch2_path_free(trans, path); |
| else |
| path->preserve = false; |
| } |
| |
| bch2_trans_cond_resched(trans); |
| |
| if (trans->restarted) |
| bch2_btree_path_traverse_all(trans); |
| |
| trans->restarted = false; |
| } |
| |
| static void bch2_trans_alloc_paths(struct btree_trans *trans, struct bch_fs *c) |
| { |
| size_t paths_bytes = sizeof(struct btree_path) * BTREE_ITER_MAX; |
| size_t updates_bytes = sizeof(struct btree_insert_entry) * BTREE_ITER_MAX; |
| void *p = NULL; |
| |
| BUG_ON(trans->used_mempool); |
| |
| #ifdef __KERNEL__ |
| p = this_cpu_xchg(c->btree_paths_bufs->path , NULL); |
| #endif |
| if (!p) |
| p = mempool_alloc(&trans->c->btree_paths_pool, GFP_NOFS); |
| |
| trans->paths = p; p += paths_bytes; |
| trans->updates = p; p += updates_bytes; |
| } |
| |
| void __bch2_trans_init(struct btree_trans *trans, struct bch_fs *c, |
| unsigned expected_nr_iters, |
| size_t expected_mem_bytes, |
| const char *fn) |
| __acquires(&c->btree_trans_barrier) |
| { |
| memset(trans, 0, sizeof(*trans)); |
| trans->c = c; |
| trans->fn = fn; |
| trans->journal_replay_not_finished = |
| !test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags); |
| |
| bch2_trans_alloc_paths(trans, c); |
| |
| if (expected_mem_bytes) { |
| expected_mem_bytes = roundup_pow_of_two(expected_mem_bytes); |
| trans->mem = kmalloc(expected_mem_bytes, GFP_KERNEL); |
| |
| if (!unlikely(trans->mem)) { |
| trans->mem = mempool_alloc(&c->btree_trans_mem_pool, GFP_KERNEL); |
| trans->mem_bytes = BTREE_TRANS_MEM_MAX; |
| } else { |
| trans->mem_bytes = expected_mem_bytes; |
| } |
| } |
| |
| trans->srcu_idx = srcu_read_lock(&c->btree_trans_barrier); |
| |
| if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG_TRANSACTIONS)) { |
| trans->pid = current->pid; |
| mutex_lock(&c->btree_trans_lock); |
| list_add(&trans->list, &c->btree_trans_list); |
| mutex_unlock(&c->btree_trans_lock); |
| } |
| } |
| |
| static void check_btree_paths_leaked(struct btree_trans *trans) |
| { |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| struct bch_fs *c = trans->c; |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| if (path->ref) |
| goto leaked; |
| return; |
| leaked: |
| bch_err(c, "btree paths leaked from %s!", trans->fn); |
| trans_for_each_path(trans, path) |
| if (path->ref) |
| printk(KERN_ERR " btree %s %pS\n", |
| bch2_btree_ids[path->btree_id], |
| (void *) path->ip_allocated); |
| /* Be noisy about this: */ |
| bch2_fatal_error(c); |
| #endif |
| } |
| |
| void bch2_trans_exit(struct btree_trans *trans) |
| __releases(&c->btree_trans_barrier) |
| { |
| struct btree_insert_entry *i; |
| struct bch_fs *c = trans->c; |
| |
| bch2_trans_unlock(trans); |
| |
| trans_for_each_update(trans, i) |
| __btree_path_put(i->path, true); |
| trans->nr_updates = 0; |
| |
| check_btree_paths_leaked(trans); |
| |
| if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG_TRANSACTIONS)) { |
| mutex_lock(&c->btree_trans_lock); |
| list_del(&trans->list); |
| mutex_unlock(&c->btree_trans_lock); |
| } |
| |
| srcu_read_unlock(&c->btree_trans_barrier, trans->srcu_idx); |
| |
| bch2_journal_preres_put(&c->journal, &trans->journal_preres); |
| |
| kfree(trans->extra_journal_entries.data); |
| |
| if (trans->fs_usage_deltas) { |
| if (trans->fs_usage_deltas->size + sizeof(trans->fs_usage_deltas) == |
| REPLICAS_DELTA_LIST_MAX) |
| mempool_free(trans->fs_usage_deltas, |
| &c->replicas_delta_pool); |
| else |
| kfree(trans->fs_usage_deltas); |
| } |
| |
| if (trans->mem_bytes == BTREE_TRANS_MEM_MAX) |
| mempool_free(trans->mem, &c->btree_trans_mem_pool); |
| else |
| kfree(trans->mem); |
| |
| #ifdef __KERNEL__ |
| /* |
| * Userspace doesn't have a real percpu implementation: |
| */ |
| trans->paths = this_cpu_xchg(c->btree_paths_bufs->path, trans->paths); |
| #endif |
| |
| if (trans->paths) |
| mempool_free(trans->paths, &c->btree_paths_pool); |
| |
| trans->mem = (void *) 0x1; |
| trans->paths = (void *) 0x1; |
| } |
| |
| static void __maybe_unused |
| bch2_btree_path_node_to_text(struct printbuf *out, |
| struct btree_bkey_cached_common *_b, |
| bool cached) |
| { |
| prt_printf(out, " l=%u %s:", |
| _b->level, bch2_btree_ids[_b->btree_id]); |
| bch2_bpos_to_text(out, btree_node_pos(_b, cached)); |
| } |
| |
| #ifdef CONFIG_BCACHEFS_DEBUG_TRANSACTIONS |
| static bool trans_has_locks(struct btree_trans *trans) |
| { |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| if (path->nodes_locked) |
| return true; |
| return false; |
| } |
| #endif |
| |
| void bch2_btree_trans_to_text(struct printbuf *out, struct bch_fs *c) |
| { |
| #ifdef CONFIG_BCACHEFS_DEBUG_TRANSACTIONS |
| struct btree_trans *trans; |
| struct btree_path *path; |
| struct btree *b; |
| static char lock_types[] = { 'r', 'i', 'w' }; |
| unsigned l; |
| |
| mutex_lock(&c->btree_trans_lock); |
| list_for_each_entry(trans, &c->btree_trans_list, list) { |
| if (!trans_has_locks(trans)) |
| continue; |
| |
| prt_printf(out, "%i %s\n", trans->pid, trans->fn); |
| |
| trans_for_each_path(trans, path) { |
| if (!path->nodes_locked) |
| continue; |
| |
| prt_printf(out, " path %u %c l=%u %s:", |
| path->idx, |
| path->cached ? 'c' : 'b', |
| path->level, |
| bch2_btree_ids[path->btree_id]); |
| bch2_bpos_to_text(out, path->pos); |
| prt_printf(out, "\n"); |
| |
| for (l = 0; l < BTREE_MAX_DEPTH; l++) { |
| if (btree_node_locked(path, l)) { |
| prt_printf(out, " %s l=%u ", |
| btree_node_intent_locked(path, l) ? "i" : "r", l); |
| bch2_btree_path_node_to_text(out, |
| (void *) path->l[l].b, |
| path->cached); |
| prt_printf(out, "\n"); |
| } |
| } |
| } |
| |
| b = READ_ONCE(trans->locking); |
| if (b) { |
| path = &trans->paths[trans->locking_path_idx]; |
| prt_printf(out, " locking path %u %c l=%u %c %s:", |
| trans->locking_path_idx, |
| path->cached ? 'c' : 'b', |
| trans->locking_level, |
| lock_types[trans->locking_lock_type], |
| bch2_btree_ids[trans->locking_btree_id]); |
| bch2_bpos_to_text(out, trans->locking_pos); |
| |
| prt_printf(out, " node "); |
| bch2_btree_path_node_to_text(out, |
| (void *) b, path->cached); |
| prt_printf(out, "\n"); |
| } |
| } |
| mutex_unlock(&c->btree_trans_lock); |
| #endif |
| } |
| |
| void bch2_fs_btree_iter_exit(struct bch_fs *c) |
| { |
| if (c->btree_trans_barrier_initialized) |
| cleanup_srcu_struct(&c->btree_trans_barrier); |
| mempool_exit(&c->btree_trans_mem_pool); |
| mempool_exit(&c->btree_paths_pool); |
| } |
| |
| int bch2_fs_btree_iter_init(struct bch_fs *c) |
| { |
| unsigned nr = BTREE_ITER_MAX; |
| int ret; |
| |
| INIT_LIST_HEAD(&c->btree_trans_list); |
| mutex_init(&c->btree_trans_lock); |
| |
| ret = mempool_init_kmalloc_pool(&c->btree_paths_pool, 1, |
| sizeof(struct btree_path) * nr + |
| sizeof(struct btree_insert_entry) * nr) ?: |
| mempool_init_kmalloc_pool(&c->btree_trans_mem_pool, 1, |
| BTREE_TRANS_MEM_MAX) ?: |
| init_srcu_struct(&c->btree_trans_barrier); |
| if (!ret) |
| c->btree_trans_barrier_initialized = true; |
| return ret; |
| } |