| |
| #include "bcachefs.h" |
| #include "btree_cache.h" |
| #include "btree_iter.h" |
| #include "btree_key_cache.h" |
| #include "btree_locking.h" |
| #include "btree_update.h" |
| #include "error.h" |
| #include "journal.h" |
| #include "journal_reclaim.h" |
| #include "trace.h" |
| |
| #include <linux/sched/mm.h> |
| |
| static struct kmem_cache *bch2_key_cache; |
| |
| static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, |
| const void *obj) |
| { |
| const struct bkey_cached *ck = obj; |
| const struct bkey_cached_key *key = arg->key; |
| |
| return cmp_int(ck->key.btree_id, key->btree_id) ?: |
| bpos_cmp(ck->key.pos, key->pos); |
| } |
| |
| static const struct rhashtable_params bch2_btree_key_cache_params = { |
| .head_offset = offsetof(struct bkey_cached, hash), |
| .key_offset = offsetof(struct bkey_cached, key), |
| .key_len = sizeof(struct bkey_cached_key), |
| .obj_cmpfn = bch2_btree_key_cache_cmp_fn, |
| }; |
| |
| __flatten |
| inline struct bkey_cached * |
| bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) |
| { |
| struct bkey_cached_key key = { |
| .btree_id = btree_id, |
| .pos = pos, |
| }; |
| |
| return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, |
| bch2_btree_key_cache_params); |
| } |
| |
| static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) |
| { |
| if (!six_trylock_intent(&ck->c.lock)) |
| return false; |
| |
| if (!six_trylock_write(&ck->c.lock)) { |
| six_unlock_intent(&ck->c.lock); |
| return false; |
| } |
| |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| six_unlock_write(&ck->c.lock); |
| six_unlock_intent(&ck->c.lock); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void bkey_cached_evict(struct btree_key_cache *c, |
| struct bkey_cached *ck) |
| { |
| BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash, |
| bch2_btree_key_cache_params)); |
| memset(&ck->key, ~0, sizeof(ck->key)); |
| |
| atomic_long_dec(&c->nr_keys); |
| } |
| |
| static void bkey_cached_free(struct btree_key_cache *bc, |
| struct bkey_cached *ck) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| |
| BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); |
| |
| ck->btree_trans_barrier_seq = |
| start_poll_synchronize_srcu(&c->btree_trans_barrier); |
| |
| list_move_tail(&ck->list, &bc->freed); |
| bc->nr_freed++; |
| |
| kfree(ck->k); |
| ck->k = NULL; |
| ck->u64s = 0; |
| |
| six_unlock_write(&ck->c.lock); |
| six_unlock_intent(&ck->c.lock); |
| } |
| |
| static struct bkey_cached * |
| bkey_cached_alloc(struct btree_key_cache *c) |
| { |
| struct bkey_cached *ck; |
| |
| ck = kmem_cache_alloc(bch2_key_cache, GFP_NOFS|__GFP_ZERO); |
| if (likely(ck)) { |
| INIT_LIST_HEAD(&ck->list); |
| six_lock_init(&ck->c.lock); |
| lockdep_set_novalidate_class(&ck->c.lock); |
| BUG_ON(!six_trylock_intent(&ck->c.lock)); |
| BUG_ON(!six_trylock_write(&ck->c.lock)); |
| return ck; |
| } |
| |
| return NULL; |
| } |
| |
| static struct bkey_cached * |
| bkey_cached_reuse(struct btree_key_cache *c) |
| { |
| struct bucket_table *tbl; |
| struct rhash_head *pos; |
| struct bkey_cached *ck; |
| unsigned i; |
| |
| mutex_lock(&c->lock); |
| list_for_each_entry_reverse(ck, &c->freed, list) |
| if (bkey_cached_lock_for_evict(ck)) { |
| c->nr_freed--; |
| list_del(&ck->list); |
| mutex_unlock(&c->lock); |
| return ck; |
| } |
| mutex_unlock(&c->lock); |
| |
| rcu_read_lock(); |
| tbl = rht_dereference_rcu(c->table.tbl, &c->table); |
| for (i = 0; i < tbl->size; i++) |
| rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { |
| if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && |
| bkey_cached_lock_for_evict(ck)) { |
| bkey_cached_evict(c, ck); |
| rcu_read_unlock(); |
| return ck; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return NULL; |
| } |
| |
| static struct bkey_cached * |
| btree_key_cache_create(struct bch_fs *c, |
| enum btree_id btree_id, |
| struct bpos pos) |
| { |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| struct bkey_cached *ck; |
| bool was_new = true; |
| |
| ck = bkey_cached_alloc(bc); |
| |
| if (unlikely(!ck)) { |
| ck = bkey_cached_reuse(bc); |
| if (unlikely(!ck)) { |
| bch_err(c, "error allocating memory for key cache item, btree %s", |
| bch2_btree_ids[btree_id]); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| was_new = false; |
| } else { |
| if (btree_id == BTREE_ID_subvolumes) |
| six_lock_pcpu_alloc(&ck->c.lock); |
| else |
| six_lock_pcpu_free(&ck->c.lock); |
| } |
| |
| ck->c.level = 0; |
| ck->c.btree_id = btree_id; |
| ck->key.btree_id = btree_id; |
| ck->key.pos = pos; |
| ck->valid = false; |
| ck->flags = 1U << BKEY_CACHED_ACCESSED; |
| |
| if (unlikely(rhashtable_lookup_insert_fast(&bc->table, |
| &ck->hash, |
| bch2_btree_key_cache_params))) { |
| /* We raced with another fill: */ |
| |
| if (likely(was_new)) { |
| six_unlock_write(&ck->c.lock); |
| six_unlock_intent(&ck->c.lock); |
| kfree(ck); |
| } else { |
| mutex_lock(&bc->lock); |
| bkey_cached_free(bc, ck); |
| mutex_unlock(&bc->lock); |
| } |
| |
| return NULL; |
| } |
| |
| atomic_long_inc(&bc->nr_keys); |
| |
| six_unlock_write(&ck->c.lock); |
| |
| return ck; |
| } |
| |
| static int btree_key_cache_fill(struct btree_trans *trans, |
| struct btree_path *ck_path, |
| struct bkey_cached *ck) |
| { |
| struct btree_path *path; |
| struct bkey_s_c k; |
| unsigned new_u64s = 0; |
| struct bkey_i *new_k = NULL; |
| struct bkey u; |
| int ret; |
| |
| path = bch2_path_get(trans, ck->key.btree_id, ck->key.pos, 0, 0, 0); |
| ret = bch2_btree_path_traverse(trans, path, 0); |
| if (ret) |
| goto err; |
| |
| k = bch2_btree_path_peek_slot(path, &u); |
| |
| if (!bch2_btree_node_relock(trans, ck_path, 0)) { |
| trace_trans_restart_relock_key_cache_fill(trans->fn, |
| _THIS_IP_, ck_path->btree_id, &ck_path->pos); |
| ret = btree_trans_restart(trans); |
| goto err; |
| } |
| |
| /* |
| * bch2_varint_decode can read past the end of the buffer by at |
| * most 7 bytes (it won't be used): |
| */ |
| new_u64s = k.k->u64s + 1; |
| |
| /* |
| * Allocate some extra space so that the transaction commit path is less |
| * likely to have to reallocate, since that requires a transaction |
| * restart: |
| */ |
| new_u64s = min(256U, (new_u64s * 3) / 2); |
| |
| if (new_u64s > ck->u64s) { |
| new_u64s = roundup_pow_of_two(new_u64s); |
| new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOFS); |
| if (!new_k) { |
| bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u", |
| bch2_btree_ids[ck->key.btree_id], new_u64s); |
| ret = -ENOMEM; |
| goto err; |
| } |
| } |
| |
| /* |
| * XXX: not allowed to be holding read locks when we take a write lock, |
| * currently |
| */ |
| bch2_btree_node_lock_write(trans, ck_path, ck_path->l[0].b); |
| if (new_k) { |
| kfree(ck->k); |
| ck->u64s = new_u64s; |
| ck->k = new_k; |
| } |
| |
| bkey_reassemble(ck->k, k); |
| ck->valid = true; |
| bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b); |
| |
| /* We're not likely to need this iterator again: */ |
| path->preserve = false; |
| err: |
| bch2_path_put(trans, path, 0); |
| return ret; |
| } |
| |
| static int bkey_cached_check_fn(struct six_lock *lock, void *p) |
| { |
| struct bkey_cached *ck = container_of(lock, struct bkey_cached, c.lock); |
| const struct btree_path *path = p; |
| |
| return ck->key.btree_id == path->btree_id && |
| !bpos_cmp(ck->key.pos, path->pos) ? 0 : -1; |
| } |
| |
| __flatten |
| int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path, |
| unsigned flags) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_cached *ck; |
| int ret = 0; |
| |
| BUG_ON(path->level); |
| |
| path->l[1].b = NULL; |
| |
| if (bch2_btree_node_relock(trans, path, 0)) { |
| ck = (void *) path->l[0].b; |
| goto fill; |
| } |
| retry: |
| ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); |
| if (!ck) { |
| if (flags & BTREE_ITER_CACHED_NOCREATE) { |
| path->l[0].b = NULL; |
| return 0; |
| } |
| |
| ck = btree_key_cache_create(c, path->btree_id, path->pos); |
| ret = PTR_ERR_OR_ZERO(ck); |
| if (ret) |
| goto err; |
| if (!ck) |
| goto retry; |
| |
| mark_btree_node_locked(path, 0, SIX_LOCK_intent); |
| path->locks_want = 1; |
| } else { |
| enum six_lock_type lock_want = __btree_lock_want(path, 0); |
| |
| if (!btree_node_lock(trans, path, (void *) ck, path->pos, 0, |
| lock_want, |
| bkey_cached_check_fn, path, _THIS_IP_)) { |
| if (!trans->restarted) |
| goto retry; |
| |
| ret = -EINTR; |
| goto err; |
| } |
| |
| if (ck->key.btree_id != path->btree_id || |
| bpos_cmp(ck->key.pos, path->pos)) { |
| six_unlock_type(&ck->c.lock, lock_want); |
| goto retry; |
| } |
| |
| mark_btree_node_locked(path, 0, lock_want); |
| } |
| |
| path->l[0].lock_seq = ck->c.lock.state.seq; |
| path->l[0].b = (void *) ck; |
| fill: |
| if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) { |
| if (!path->locks_want && |
| !__bch2_btree_path_upgrade(trans, path, 1)) { |
| trace_transaction_restart_ip(trans->fn, _THIS_IP_); |
| ret = btree_trans_restart(trans); |
| goto err; |
| } |
| |
| ret = btree_key_cache_fill(trans, path, ck); |
| if (ret) |
| goto err; |
| } |
| |
| if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) |
| set_bit(BKEY_CACHED_ACCESSED, &ck->flags); |
| |
| path->uptodate = BTREE_ITER_UPTODATE; |
| BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0)); |
| |
| return ret; |
| err: |
| if (ret != -EINTR) { |
| btree_node_unlock(path, 0); |
| path->l[0].b = BTREE_ITER_NO_NODE_ERROR; |
| } |
| return ret; |
| } |
| |
| static int btree_key_cache_flush_pos(struct btree_trans *trans, |
| struct bkey_cached_key key, |
| u64 journal_seq, |
| unsigned commit_flags, |
| bool evict) |
| { |
| struct bch_fs *c = trans->c; |
| struct journal *j = &c->journal; |
| struct btree_iter c_iter, b_iter; |
| struct bkey_cached *ck = NULL; |
| int ret; |
| |
| bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos, |
| BTREE_ITER_SLOTS| |
| BTREE_ITER_INTENT| |
| BTREE_ITER_ALL_SNAPSHOTS); |
| bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos, |
| BTREE_ITER_CACHED| |
| BTREE_ITER_CACHED_NOFILL| |
| BTREE_ITER_CACHED_NOCREATE| |
| BTREE_ITER_INTENT); |
| b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE; |
| |
| ret = bch2_btree_iter_traverse(&c_iter); |
| if (ret) |
| goto out; |
| |
| ck = (void *) c_iter.path->l[0].b; |
| if (!ck) |
| goto out; |
| |
| if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| if (evict) |
| goto evict; |
| goto out; |
| } |
| |
| BUG_ON(!ck->valid); |
| |
| if (journal_seq && ck->journal.seq != journal_seq) |
| goto out; |
| |
| /* |
| * Since journal reclaim depends on us making progress here, and the |
| * allocator/copygc depend on journal reclaim making progress, we need |
| * to be using alloc reserves: |
| * */ |
| ret = bch2_btree_iter_traverse(&b_iter) ?: |
| bch2_trans_update(trans, &b_iter, ck->k, |
| BTREE_UPDATE_KEY_CACHE_RECLAIM| |
| BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| |
| BTREE_TRIGGER_NORUN) ?: |
| bch2_trans_commit(trans, NULL, NULL, |
| BTREE_INSERT_NOCHECK_RW| |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_USE_RESERVE| |
| (ck->journal.seq == journal_last_seq(j) |
| ? JOURNAL_WATERMARK_reserved |
| : 0)| |
| commit_flags); |
| if (ret) { |
| bch2_fs_fatal_err_on(ret != -EINTR && |
| ret != -EAGAIN && |
| !bch2_journal_error(j), c, |
| "error flushing key cache: %i", ret); |
| goto out; |
| } |
| |
| bch2_journal_pin_drop(j, &ck->journal); |
| bch2_journal_preres_put(j, &ck->res); |
| |
| BUG_ON(!btree_node_locked(c_iter.path, 0)); |
| |
| if (!evict) { |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| clear_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_dec(&c->btree_key_cache.nr_dirty); |
| } |
| } else { |
| evict: |
| BUG_ON(!btree_node_intent_locked(c_iter.path, 0)); |
| |
| mark_btree_node_unlocked(c_iter.path, 0); |
| c_iter.path->l[0].b = NULL; |
| |
| six_lock_write(&ck->c.lock, NULL, NULL); |
| |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| clear_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_dec(&c->btree_key_cache.nr_dirty); |
| } |
| |
| bkey_cached_evict(&c->btree_key_cache, ck); |
| |
| mutex_lock(&c->btree_key_cache.lock); |
| bkey_cached_free(&c->btree_key_cache, ck); |
| mutex_unlock(&c->btree_key_cache.lock); |
| } |
| out: |
| bch2_trans_iter_exit(trans, &b_iter); |
| bch2_trans_iter_exit(trans, &c_iter); |
| return ret; |
| } |
| |
| int bch2_btree_key_cache_journal_flush(struct journal *j, |
| struct journal_entry_pin *pin, u64 seq) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| struct bkey_cached *ck = |
| container_of(pin, struct bkey_cached, journal); |
| struct bkey_cached_key key; |
| int ret = 0; |
| |
| int srcu_idx = srcu_read_lock(&c->btree_trans_barrier); |
| |
| six_lock_read(&ck->c.lock, NULL, NULL); |
| key = ck->key; |
| |
| if (ck->journal.seq != seq || |
| !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| six_unlock_read(&ck->c.lock); |
| goto unlock; |
| } |
| |
| if (ck->seq != seq) { |
| bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal, |
| bch2_btree_key_cache_journal_flush); |
| six_unlock_read(&ck->c.lock); |
| goto unlock; |
| } |
| six_unlock_read(&ck->c.lock); |
| |
| ret = bch2_trans_do(c, NULL, NULL, 0, |
| btree_key_cache_flush_pos(&trans, key, seq, |
| BTREE_INSERT_JOURNAL_RECLAIM, false)); |
| unlock: |
| srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); |
| |
| return ret; |
| } |
| |
| /* |
| * Flush and evict a key from the key cache: |
| */ |
| int bch2_btree_key_cache_flush(struct btree_trans *trans, |
| enum btree_id id, struct bpos pos) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_cached_key key = { id, pos }; |
| |
| /* Fastpath - assume it won't be found: */ |
| if (!bch2_btree_key_cache_find(c, id, pos)) |
| return 0; |
| |
| return btree_key_cache_flush_pos(trans, key, 0, 0, true); |
| } |
| |
| bool bch2_btree_insert_key_cached(struct btree_trans *trans, |
| struct btree_path *path, |
| struct bkey_i *insert) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_cached *ck = (void *) path->l[0].b; |
| bool kick_reclaim = false; |
| |
| BUG_ON(insert->u64s > ck->u64s); |
| |
| if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { |
| int difference; |
| |
| BUG_ON(jset_u64s(insert->u64s) > trans->journal_preres.u64s); |
| |
| difference = jset_u64s(insert->u64s) - ck->res.u64s; |
| if (difference > 0) { |
| trans->journal_preres.u64s -= difference; |
| ck->res.u64s += difference; |
| } |
| } |
| |
| bkey_copy(ck->k, insert); |
| ck->valid = true; |
| |
| if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| set_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_inc(&c->btree_key_cache.nr_dirty); |
| |
| if (bch2_nr_btree_keys_need_flush(c)) |
| kick_reclaim = true; |
| } |
| |
| bch2_journal_pin_add(&c->journal, trans->journal_res.seq, |
| &ck->journal, bch2_btree_key_cache_journal_flush); |
| ck->seq = trans->journal_res.seq; |
| |
| if (kick_reclaim) |
| journal_reclaim_kick(&c->journal); |
| return true; |
| } |
| |
| void bch2_btree_key_cache_drop(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| struct bkey_cached *ck = (void *) path->l[0].b; |
| |
| ck->valid = false; |
| |
| BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); |
| } |
| |
| static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct bch_fs *c = container_of(shrink, struct bch_fs, |
| btree_key_cache.shrink); |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| struct bucket_table *tbl; |
| struct bkey_cached *ck, *t; |
| size_t scanned = 0, freed = 0, nr = sc->nr_to_scan; |
| unsigned start, flags; |
| int srcu_idx; |
| |
| /* Return -1 if we can't do anything right now */ |
| if (sc->gfp_mask & __GFP_FS) |
| mutex_lock(&bc->lock); |
| else if (!mutex_trylock(&bc->lock)) |
| return -1; |
| |
| srcu_idx = srcu_read_lock(&c->btree_trans_barrier); |
| flags = memalloc_nofs_save(); |
| |
| /* |
| * Newest freed entries are at the end of the list - once we hit one |
| * that's too new to be freed, we can bail out: |
| */ |
| list_for_each_entry_safe(ck, t, &bc->freed, list) { |
| if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, |
| ck->btree_trans_barrier_seq)) |
| break; |
| |
| list_del(&ck->list); |
| kmem_cache_free(bch2_key_cache, ck); |
| bc->nr_freed--; |
| scanned++; |
| freed++; |
| } |
| |
| if (scanned >= nr) |
| goto out; |
| |
| rcu_read_lock(); |
| tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); |
| if (bc->shrink_iter >= tbl->size) |
| bc->shrink_iter = 0; |
| start = bc->shrink_iter; |
| |
| do { |
| struct rhash_head *pos, *next; |
| |
| pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter)); |
| |
| while (!rht_is_a_nulls(pos)) { |
| next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter); |
| ck = container_of(pos, struct bkey_cached, hash); |
| |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) |
| goto next; |
| |
| if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) |
| clear_bit(BKEY_CACHED_ACCESSED, &ck->flags); |
| else if (bkey_cached_lock_for_evict(ck)) { |
| bkey_cached_evict(bc, ck); |
| bkey_cached_free(bc, ck); |
| } |
| |
| scanned++; |
| if (scanned >= nr) |
| break; |
| next: |
| pos = next; |
| } |
| |
| bc->shrink_iter++; |
| if (bc->shrink_iter >= tbl->size) |
| bc->shrink_iter = 0; |
| } while (scanned < nr && bc->shrink_iter != start); |
| |
| rcu_read_unlock(); |
| out: |
| memalloc_nofs_restore(flags); |
| srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); |
| mutex_unlock(&bc->lock); |
| |
| return freed; |
| } |
| |
| static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct bch_fs *c = container_of(shrink, struct bch_fs, |
| btree_key_cache.shrink); |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| long nr = atomic_long_read(&bc->nr_keys) - |
| atomic_long_read(&bc->nr_dirty); |
| |
| return max(0L, nr); |
| } |
| |
| void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| struct bucket_table *tbl; |
| struct bkey_cached *ck, *n; |
| struct rhash_head *pos; |
| unsigned i; |
| |
| if (bc->shrink.list.next) |
| unregister_shrinker(&bc->shrink); |
| |
| mutex_lock(&bc->lock); |
| |
| rcu_read_lock(); |
| tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); |
| if (tbl) |
| for (i = 0; i < tbl->size; i++) |
| rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { |
| bkey_cached_evict(bc, ck); |
| list_add(&ck->list, &bc->freed); |
| } |
| rcu_read_unlock(); |
| |
| list_for_each_entry_safe(ck, n, &bc->freed, list) { |
| cond_resched(); |
| |
| bch2_journal_pin_drop(&c->journal, &ck->journal); |
| bch2_journal_preres_put(&c->journal, &ck->res); |
| |
| list_del(&ck->list); |
| kfree(ck->k); |
| kmem_cache_free(bch2_key_cache, ck); |
| } |
| |
| BUG_ON(atomic_long_read(&bc->nr_dirty) && |
| !bch2_journal_error(&c->journal) && |
| test_bit(BCH_FS_WAS_RW, &c->flags)); |
| BUG_ON(atomic_long_read(&bc->nr_keys)); |
| |
| mutex_unlock(&bc->lock); |
| |
| if (bc->table_init_done) |
| rhashtable_destroy(&bc->table); |
| } |
| |
| void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) |
| { |
| mutex_init(&c->lock); |
| INIT_LIST_HEAD(&c->freed); |
| } |
| |
| int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| int ret; |
| |
| ret = rhashtable_init(&bc->table, &bch2_btree_key_cache_params); |
| if (ret) |
| return ret; |
| |
| bc->table_init_done = true; |
| |
| bc->shrink.seeks = 1; |
| bc->shrink.count_objects = bch2_btree_key_cache_count; |
| bc->shrink.scan_objects = bch2_btree_key_cache_scan; |
| return register_shrinker(&bc->shrink, "%s/btree_key_cache", c->name); |
| } |
| |
| void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c) |
| { |
| prt_printf(out, "nr_freed:\t%zu\n", c->nr_freed); |
| prt_printf(out, "nr_keys:\t%lu\n", atomic_long_read(&c->nr_keys)); |
| prt_printf(out, "nr_dirty:\t%lu\n", atomic_long_read(&c->nr_dirty)); |
| } |
| |
| void bch2_btree_key_cache_exit(void) |
| { |
| if (bch2_key_cache) |
| kmem_cache_destroy(bch2_key_cache); |
| } |
| |
| int __init bch2_btree_key_cache_init(void) |
| { |
| bch2_key_cache = KMEM_CACHE(bkey_cached, 0); |
| if (!bch2_key_cache) |
| return -ENOMEM; |
| |
| return 0; |
| } |