blob: 39d321e2b7f98aa1d581693939b6520ac9811c4d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Omnivision OV2680 CMOS Image Sensor driver
*
* Copyright (C) 2018 Linaro Ltd
*
* Based on OV5640 Sensor Driver
* Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2014-2017 Mentor Graphics Inc.
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define OV2680_CHIP_ID 0x2680
#define OV2680_REG_STREAM_CTRL CCI_REG8(0x0100)
#define OV2680_REG_SOFT_RESET CCI_REG8(0x0103)
#define OV2680_REG_CHIP_ID CCI_REG16(0x300a)
#define OV2680_REG_SC_CMMN_SUB_ID CCI_REG8(0x302a)
#define OV2680_REG_PLL_MULTIPLIER CCI_REG16(0x3081)
#define OV2680_REG_EXPOSURE_PK CCI_REG24(0x3500)
#define OV2680_REG_R_MANUAL CCI_REG8(0x3503)
#define OV2680_REG_GAIN_PK CCI_REG16(0x350a)
#define OV2680_REG_SENSOR_CTRL_0A CCI_REG8(0x370a)
#define OV2680_REG_HORIZONTAL_START CCI_REG16(0x3800)
#define OV2680_REG_VERTICAL_START CCI_REG16(0x3802)
#define OV2680_REG_HORIZONTAL_END CCI_REG16(0x3804)
#define OV2680_REG_VERTICAL_END CCI_REG16(0x3806)
#define OV2680_REG_HORIZONTAL_OUTPUT_SIZE CCI_REG16(0x3808)
#define OV2680_REG_VERTICAL_OUTPUT_SIZE CCI_REG16(0x380a)
#define OV2680_REG_TIMING_HTS CCI_REG16(0x380c)
#define OV2680_REG_TIMING_VTS CCI_REG16(0x380e)
#define OV2680_REG_ISP_X_WIN CCI_REG16(0x3810)
#define OV2680_REG_ISP_Y_WIN CCI_REG16(0x3812)
#define OV2680_REG_X_INC CCI_REG8(0x3814)
#define OV2680_REG_Y_INC CCI_REG8(0x3815)
#define OV2680_REG_FORMAT1 CCI_REG8(0x3820)
#define OV2680_REG_FORMAT2 CCI_REG8(0x3821)
#define OV2680_REG_ISP_CTRL00 CCI_REG8(0x5080)
#define OV2680_REG_X_WIN CCI_REG16(0x5704)
#define OV2680_REG_Y_WIN CCI_REG16(0x5706)
#define OV2680_FRAME_RATE 30
#define OV2680_NATIVE_WIDTH 1616
#define OV2680_NATIVE_HEIGHT 1216
#define OV2680_NATIVE_START_LEFT 0
#define OV2680_NATIVE_START_TOP 0
#define OV2680_ACTIVE_WIDTH 1600
#define OV2680_ACTIVE_HEIGHT 1200
#define OV2680_ACTIVE_START_LEFT 8
#define OV2680_ACTIVE_START_TOP 8
#define OV2680_MIN_CROP_WIDTH 2
#define OV2680_MIN_CROP_HEIGHT 2
/* Fixed pre-div of 1/2 */
#define OV2680_PLL_PREDIV0 2
/* Pre-div configurable through reg 0x3080, left at its default of 0x02 : 1/2 */
#define OV2680_PLL_PREDIV 2
/* 66MHz pixel clock: 66MHz / 1704 * 1294 = 30fps */
#define OV2680_PIXELS_PER_LINE 1704
#define OV2680_LINES_PER_FRAME 1294
/* If possible send 16 extra rows / lines to the ISP as padding */
#define OV2680_END_MARGIN 16
/* Max exposure time is VTS - 8 */
#define OV2680_INTEGRATION_TIME_MARGIN 8
#define OV2680_DEFAULT_WIDTH 800
#define OV2680_DEFAULT_HEIGHT 600
/* For enum_frame_size() full-size + binned-/quarter-size */
#define OV2680_FRAME_SIZES 2
static const char * const ov2680_supply_name[] = {
"DOVDD",
"DVDD",
"AVDD",
};
#define OV2680_NUM_SUPPLIES ARRAY_SIZE(ov2680_supply_name)
enum {
OV2680_19_2_MHZ,
OV2680_24_MHZ,
};
static const unsigned long ov2680_xvclk_freqs[] = {
[OV2680_19_2_MHZ] = 19200000,
[OV2680_24_MHZ] = 24000000,
};
static const u8 ov2680_pll_multipliers[] = {
[OV2680_19_2_MHZ] = 69,
[OV2680_24_MHZ] = 55,
};
struct ov2680_ctrls {
struct v4l2_ctrl_handler handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *gain;
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
struct v4l2_ctrl *test_pattern;
struct v4l2_ctrl *link_freq;
struct v4l2_ctrl *pixel_rate;
};
struct ov2680_mode {
struct v4l2_rect crop;
struct v4l2_mbus_framefmt fmt;
struct v4l2_fract frame_interval;
bool binning;
u16 h_start;
u16 v_start;
u16 h_end;
u16 v_end;
u16 h_output_size;
u16 v_output_size;
u16 hts;
u16 vts;
};
struct ov2680_dev {
struct device *dev;
struct regmap *regmap;
struct v4l2_subdev sd;
struct media_pad pad;
struct clk *xvclk;
u32 xvclk_freq;
u8 pll_mult;
s64 link_freq[1];
u64 pixel_rate;
struct regulator_bulk_data supplies[OV2680_NUM_SUPPLIES];
struct gpio_desc *pwdn_gpio;
struct mutex lock; /* protect members */
bool is_streaming;
struct ov2680_ctrls ctrls;
struct ov2680_mode mode;
};
static const struct v4l2_rect ov2680_default_crop = {
.left = OV2680_ACTIVE_START_LEFT,
.top = OV2680_ACTIVE_START_TOP,
.width = OV2680_ACTIVE_WIDTH,
.height = OV2680_ACTIVE_HEIGHT,
};
static const char * const test_pattern_menu[] = {
"Disabled",
"Color Bars",
"Random Data",
"Square",
"Black Image",
};
static const int ov2680_hv_flip_bayer_order[] = {
MEDIA_BUS_FMT_SBGGR10_1X10,
MEDIA_BUS_FMT_SGRBG10_1X10,
MEDIA_BUS_FMT_SGBRG10_1X10,
MEDIA_BUS_FMT_SRGGB10_1X10,
};
static const struct reg_sequence ov2680_global_setting[] = {
/* MIPI PHY, 0x10 -> 0x1c enable bp_c_hs_en_lat and bp_d_hs_en_lat */
{0x3016, 0x1c},
/* R MANUAL set exposure and gain to manual (hw does not do auto) */
{0x3503, 0x03},
/* Analog control register tweaks */
{0x3603, 0x39}, /* Reset value 0x99 */
{0x3604, 0x24}, /* Reset value 0x74 */
{0x3621, 0x37}, /* Reset value 0x44 */
/* Sensor control register tweaks */
{0x3701, 0x64}, /* Reset value 0x61 */
{0x3705, 0x3c}, /* Reset value 0x21 */
{0x370c, 0x50}, /* Reset value 0x10 */
{0x370d, 0xc0}, /* Reset value 0x00 */
{0x3718, 0x88}, /* Reset value 0x80 */
/* PSRAM tweaks */
{0x3781, 0x80}, /* Reset value 0x00 */
{0x3784, 0x0c}, /* Reset value 0x00, based on OV2680_R1A_AM10.ovt */
{0x3789, 0x60}, /* Reset value 0x50 */
/* BLC CTRL00 0x01 -> 0x81 set avg_weight to 8 */
{0x4000, 0x81},
/* Set black level compensation range to 0 - 3 (default 0 - 11) */
{0x4008, 0x00},
{0x4009, 0x03},
/* VFIFO R2 0x00 -> 0x02 set Frame reset enable */
{0x4602, 0x02},
/* MIPI ctrl CLK PREPARE MIN change from 0x26 (38) -> 0x36 (54) */
{0x481f, 0x36},
/* MIPI ctrl CLK LPX P MIN change from 0x32 (50) -> 0x36 (54) */
{0x4825, 0x36},
/* R ISP CTRL2 0x20 -> 0x30, set sof_sel bit */
{0x5002, 0x30},
/*
* Window CONTROL 0x00 -> 0x01, enable manual window control,
* this is necessary for full size flip and mirror support.
*/
{0x5708, 0x01},
/*
* DPC CTRL0 0x14 -> 0x3e, set enable_tail, enable_3x3_cluster
* and enable_general_tail bits based OV2680_R1A_AM10.ovt.
*/
{0x5780, 0x3e},
/* DPC MORE CONNECTION CASE THRE 0x0c (12) -> 0x02 (2) */
{0x5788, 0x02},
/* DPC GAIN LIST1 0x0f (15) -> 0x08 (8) */
{0x578e, 0x08},
/* DPC GAIN LIST2 0x3f (63) -> 0x0c (12) */
{0x578f, 0x0c},
/* DPC THRE RATIO 0x04 (4) -> 0x00 (0) */
{0x5792, 0x00},
};
static struct ov2680_dev *to_ov2680_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct ov2680_dev, sd);
}
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct ov2680_dev,
ctrls.handler)->sd;
}
static void ov2680_power_up(struct ov2680_dev *sensor)
{
if (!sensor->pwdn_gpio)
return;
gpiod_set_value(sensor->pwdn_gpio, 0);
usleep_range(5000, 10000);
}
static void ov2680_power_down(struct ov2680_dev *sensor)
{
if (!sensor->pwdn_gpio)
return;
gpiod_set_value(sensor->pwdn_gpio, 1);
usleep_range(5000, 10000);
}
static void ov2680_set_bayer_order(struct ov2680_dev *sensor,
struct v4l2_mbus_framefmt *fmt)
{
int hv_flip = 0;
if (sensor->ctrls.vflip && sensor->ctrls.vflip->val)
hv_flip += 1;
if (sensor->ctrls.hflip && sensor->ctrls.hflip->val)
hv_flip += 2;
fmt->code = ov2680_hv_flip_bayer_order[hv_flip];
}
static struct v4l2_mbus_framefmt *
__ov2680_get_pad_format(struct ov2680_dev *sensor,
struct v4l2_subdev_state *state,
unsigned int pad,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_state_get_format(state, pad);
return &sensor->mode.fmt;
}
static struct v4l2_rect *
__ov2680_get_pad_crop(struct ov2680_dev *sensor,
struct v4l2_subdev_state *state,
unsigned int pad,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_state_get_crop(state, pad);
return &sensor->mode.crop;
}
static void ov2680_fill_format(struct ov2680_dev *sensor,
struct v4l2_mbus_framefmt *fmt,
unsigned int width, unsigned int height)
{
memset(fmt, 0, sizeof(*fmt));
fmt->width = width;
fmt->height = height;
fmt->field = V4L2_FIELD_NONE;
fmt->colorspace = V4L2_COLORSPACE_SRGB;
ov2680_set_bayer_order(sensor, fmt);
}
static void ov2680_calc_mode(struct ov2680_dev *sensor)
{
int width = sensor->mode.fmt.width;
int height = sensor->mode.fmt.height;
int orig_width = width;
int orig_height = height;
if (width <= (sensor->mode.crop.width / 2) &&
height <= (sensor->mode.crop.height / 2)) {
sensor->mode.binning = true;
width *= 2;
height *= 2;
} else {
sensor->mode.binning = false;
}
sensor->mode.h_start = (sensor->mode.crop.left +
(sensor->mode.crop.width - width) / 2) & ~1;
sensor->mode.v_start = (sensor->mode.crop.top +
(sensor->mode.crop.height - height) / 2) & ~1;
sensor->mode.h_end =
min(sensor->mode.h_start + width + OV2680_END_MARGIN - 1,
OV2680_NATIVE_WIDTH - 1);
sensor->mode.v_end =
min(sensor->mode.v_start + height + OV2680_END_MARGIN - 1,
OV2680_NATIVE_HEIGHT - 1);
sensor->mode.h_output_size = orig_width;
sensor->mode.v_output_size = orig_height;
sensor->mode.hts = OV2680_PIXELS_PER_LINE;
sensor->mode.vts = OV2680_LINES_PER_FRAME;
}
static int ov2680_set_mode(struct ov2680_dev *sensor)
{
u8 sensor_ctrl_0a, inc, fmt1, fmt2;
int ret = 0;
if (sensor->mode.binning) {
sensor_ctrl_0a = 0x23;
inc = 0x31;
fmt1 = 0xc2;
fmt2 = 0x01;
} else {
sensor_ctrl_0a = 0x21;
inc = 0x11;
fmt1 = 0xc0;
fmt2 = 0x00;
}
cci_write(sensor->regmap, OV2680_REG_SENSOR_CTRL_0A,
sensor_ctrl_0a, &ret);
cci_write(sensor->regmap, OV2680_REG_HORIZONTAL_START,
sensor->mode.h_start, &ret);
cci_write(sensor->regmap, OV2680_REG_VERTICAL_START,
sensor->mode.v_start, &ret);
cci_write(sensor->regmap, OV2680_REG_HORIZONTAL_END,
sensor->mode.h_end, &ret);
cci_write(sensor->regmap, OV2680_REG_VERTICAL_END,
sensor->mode.v_end, &ret);
cci_write(sensor->regmap, OV2680_REG_HORIZONTAL_OUTPUT_SIZE,
sensor->mode.h_output_size, &ret);
cci_write(sensor->regmap, OV2680_REG_VERTICAL_OUTPUT_SIZE,
sensor->mode.v_output_size, &ret);
cci_write(sensor->regmap, OV2680_REG_TIMING_HTS,
sensor->mode.hts, &ret);
cci_write(sensor->regmap, OV2680_REG_TIMING_VTS,
sensor->mode.vts, &ret);
cci_write(sensor->regmap, OV2680_REG_ISP_X_WIN, 0, &ret);
cci_write(sensor->regmap, OV2680_REG_ISP_Y_WIN, 0, &ret);
cci_write(sensor->regmap, OV2680_REG_X_INC, inc, &ret);
cci_write(sensor->regmap, OV2680_REG_Y_INC, inc, &ret);
cci_write(sensor->regmap, OV2680_REG_X_WIN,
sensor->mode.h_output_size, &ret);
cci_write(sensor->regmap, OV2680_REG_Y_WIN,
sensor->mode.v_output_size, &ret);
cci_write(sensor->regmap, OV2680_REG_FORMAT1, fmt1, &ret);
cci_write(sensor->regmap, OV2680_REG_FORMAT2, fmt2, &ret);
return ret;
}
static int ov2680_set_vflip(struct ov2680_dev *sensor, s32 val)
{
int ret;
if (sensor->is_streaming)
return -EBUSY;
ret = cci_update_bits(sensor->regmap, OV2680_REG_FORMAT1,
BIT(2), val ? BIT(2) : 0, NULL);
if (ret < 0)
return ret;
ov2680_set_bayer_order(sensor, &sensor->mode.fmt);
return 0;
}
static int ov2680_set_hflip(struct ov2680_dev *sensor, s32 val)
{
int ret;
if (sensor->is_streaming)
return -EBUSY;
ret = cci_update_bits(sensor->regmap, OV2680_REG_FORMAT2,
BIT(2), val ? BIT(2) : 0, NULL);
if (ret < 0)
return ret;
ov2680_set_bayer_order(sensor, &sensor->mode.fmt);
return 0;
}
static int ov2680_test_pattern_set(struct ov2680_dev *sensor, int value)
{
int ret = 0;
if (!value)
return cci_update_bits(sensor->regmap, OV2680_REG_ISP_CTRL00,
BIT(7), 0, NULL);
cci_update_bits(sensor->regmap, OV2680_REG_ISP_CTRL00,
0x03, value - 1, &ret);
cci_update_bits(sensor->regmap, OV2680_REG_ISP_CTRL00,
BIT(7), BIT(7), &ret);
return ret;
}
static int ov2680_gain_set(struct ov2680_dev *sensor, u32 gain)
{
return cci_write(sensor->regmap, OV2680_REG_GAIN_PK, gain, NULL);
}
static int ov2680_exposure_set(struct ov2680_dev *sensor, u32 exp)
{
return cci_write(sensor->regmap, OV2680_REG_EXPOSURE_PK, exp << 4,
NULL);
}
static int ov2680_stream_enable(struct ov2680_dev *sensor)
{
int ret;
ret = cci_write(sensor->regmap, OV2680_REG_PLL_MULTIPLIER,
sensor->pll_mult, NULL);
if (ret < 0)
return ret;
ret = regmap_multi_reg_write(sensor->regmap,
ov2680_global_setting,
ARRAY_SIZE(ov2680_global_setting));
if (ret < 0)
return ret;
ret = ov2680_set_mode(sensor);
if (ret < 0)
return ret;
/* Restore value of all ctrls */
ret = __v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
if (ret < 0)
return ret;
return cci_write(sensor->regmap, OV2680_REG_STREAM_CTRL, 1, NULL);
}
static int ov2680_stream_disable(struct ov2680_dev *sensor)
{
return cci_write(sensor->regmap, OV2680_REG_STREAM_CTRL, 0, NULL);
}
static int ov2680_power_off(struct ov2680_dev *sensor)
{
clk_disable_unprepare(sensor->xvclk);
ov2680_power_down(sensor);
regulator_bulk_disable(OV2680_NUM_SUPPLIES, sensor->supplies);
return 0;
}
static int ov2680_power_on(struct ov2680_dev *sensor)
{
int ret;
ret = regulator_bulk_enable(OV2680_NUM_SUPPLIES, sensor->supplies);
if (ret < 0) {
dev_err(sensor->dev, "failed to enable regulators: %d\n", ret);
return ret;
}
if (!sensor->pwdn_gpio) {
ret = cci_write(sensor->regmap, OV2680_REG_SOFT_RESET, 0x01,
NULL);
if (ret != 0) {
dev_err(sensor->dev, "sensor soft reset failed\n");
goto err_disable_regulators;
}
usleep_range(1000, 2000);
} else {
ov2680_power_down(sensor);
ov2680_power_up(sensor);
}
ret = clk_prepare_enable(sensor->xvclk);
if (ret < 0)
goto err_disable_regulators;
return 0;
err_disable_regulators:
regulator_bulk_disable(OV2680_NUM_SUPPLIES, sensor->supplies);
return ret;
}
static int ov2680_get_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval *fi)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
/*
* FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
* subdev active state API.
*/
if (fi->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
mutex_lock(&sensor->lock);
fi->interval = sensor->mode.frame_interval;
mutex_unlock(&sensor->lock);
return 0;
}
static int ov2680_s_stream(struct v4l2_subdev *sd, int enable)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
int ret = 0;
mutex_lock(&sensor->lock);
if (sensor->is_streaming == !!enable)
goto unlock;
if (enable) {
ret = pm_runtime_resume_and_get(sensor->sd.dev);
if (ret < 0)
goto unlock;
ret = ov2680_stream_enable(sensor);
if (ret < 0) {
pm_runtime_put(sensor->sd.dev);
goto unlock;
}
} else {
ret = ov2680_stream_disable(sensor);
pm_runtime_put(sensor->sd.dev);
}
sensor->is_streaming = !!enable;
unlock:
mutex_unlock(&sensor->lock);
return ret;
}
static int ov2680_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
if (code->index != 0)
return -EINVAL;
code->code = sensor->mode.fmt.code;
return 0;
}
static int ov2680_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
struct v4l2_mbus_framefmt *fmt;
fmt = __ov2680_get_pad_format(sensor, sd_state, format->pad,
format->which);
mutex_lock(&sensor->lock);
format->format = *fmt;
mutex_unlock(&sensor->lock);
return 0;
}
static int ov2680_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
struct v4l2_mbus_framefmt *try_fmt;
const struct v4l2_rect *crop;
unsigned int width, height;
int ret = 0;
crop = __ov2680_get_pad_crop(sensor, sd_state, format->pad,
format->which);
/* Limit set_fmt max size to crop width / height */
width = clamp_val(ALIGN(format->format.width, 2),
OV2680_MIN_CROP_WIDTH, crop->width);
height = clamp_val(ALIGN(format->format.height, 2),
OV2680_MIN_CROP_HEIGHT, crop->height);
ov2680_fill_format(sensor, &format->format, width, height);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
try_fmt = v4l2_subdev_state_get_format(sd_state, 0);
*try_fmt = format->format;
return 0;
}
mutex_lock(&sensor->lock);
if (sensor->is_streaming) {
ret = -EBUSY;
goto unlock;
}
sensor->mode.fmt = format->format;
ov2680_calc_mode(sensor);
unlock:
mutex_unlock(&sensor->lock);
return ret;
}
static int ov2680_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
mutex_lock(&sensor->lock);
sel->r = *__ov2680_get_pad_crop(sensor, state, sel->pad,
sel->which);
mutex_unlock(&sensor->lock);
break;
case V4L2_SEL_TGT_NATIVE_SIZE:
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.top = 0;
sel->r.left = 0;
sel->r.width = OV2680_NATIVE_WIDTH;
sel->r.height = OV2680_NATIVE_HEIGHT;
break;
case V4L2_SEL_TGT_CROP_DEFAULT:
sel->r = ov2680_default_crop;
break;
default:
return -EINVAL;
}
return 0;
}
static int ov2680_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
struct v4l2_rect rect;
if (sel->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
/*
* Clamp the boundaries of the crop rectangle to the size of the sensor
* pixel array. Align to multiples of 2 to ensure Bayer pattern isn't
* disrupted.
*/
rect.left = clamp_val(ALIGN(sel->r.left, 2),
OV2680_NATIVE_START_LEFT, OV2680_NATIVE_WIDTH);
rect.top = clamp_val(ALIGN(sel->r.top, 2),
OV2680_NATIVE_START_TOP, OV2680_NATIVE_HEIGHT);
rect.width = clamp_val(ALIGN(sel->r.width, 2),
OV2680_MIN_CROP_WIDTH, OV2680_NATIVE_WIDTH);
rect.height = clamp_val(ALIGN(sel->r.height, 2),
OV2680_MIN_CROP_HEIGHT, OV2680_NATIVE_HEIGHT);
/* Make sure the crop rectangle isn't outside the bounds of the array */
rect.width = min_t(unsigned int, rect.width,
OV2680_NATIVE_WIDTH - rect.left);
rect.height = min_t(unsigned int, rect.height,
OV2680_NATIVE_HEIGHT - rect.top);
crop = __ov2680_get_pad_crop(sensor, state, sel->pad, sel->which);
mutex_lock(&sensor->lock);
if (rect.width != crop->width || rect.height != crop->height) {
/*
* Reset the output image size if the crop rectangle size has
* been modified.
*/
format = __ov2680_get_pad_format(sensor, state, sel->pad,
sel->which);
format->width = rect.width;
format->height = rect.height;
}
*crop = rect;
mutex_unlock(&sensor->lock);
sel->r = rect;
return 0;
}
static int ov2680_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
*v4l2_subdev_state_get_crop(sd_state, 0) = ov2680_default_crop;
ov2680_fill_format(sensor, v4l2_subdev_state_get_format(sd_state, 0),
OV2680_DEFAULT_WIDTH, OV2680_DEFAULT_HEIGHT);
return 0;
}
static int ov2680_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
struct v4l2_rect *crop;
if (fse->index >= OV2680_FRAME_SIZES)
return -EINVAL;
crop = __ov2680_get_pad_crop(sensor, sd_state, fse->pad, fse->which);
if (!crop)
return -EINVAL;
fse->min_width = crop->width / (fse->index + 1);
fse->min_height = crop->height / (fse->index + 1);
fse->max_width = fse->min_width;
fse->max_height = fse->min_height;
return 0;
}
static bool ov2680_valid_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct v4l2_subdev_frame_size_enum fse = {
.pad = fie->pad,
.which = fie->which,
};
int i;
for (i = 0; i < OV2680_FRAME_SIZES; i++) {
fse.index = i;
if (ov2680_enum_frame_size(sd, sd_state, &fse))
return false;
if (fie->width == fse.min_width &&
fie->height == fse.min_height)
return true;
}
return false;
}
static int ov2680_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct ov2680_dev *sensor = to_ov2680_dev(sd);
/* Only 1 framerate */
if (fie->index || !ov2680_valid_frame_size(sd, sd_state, fie))
return -EINVAL;
fie->interval = sensor->mode.frame_interval;
return 0;
}
static int ov2680_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct ov2680_dev *sensor = to_ov2680_dev(sd);
int ret;
/* Only apply changes to the controls if the device is powered up */
if (!pm_runtime_get_if_in_use(sensor->sd.dev)) {
ov2680_set_bayer_order(sensor, &sensor->mode.fmt);
return 0;
}
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
ret = ov2680_gain_set(sensor, ctrl->val);
break;
case V4L2_CID_EXPOSURE:
ret = ov2680_exposure_set(sensor, ctrl->val);
break;
case V4L2_CID_VFLIP:
ret = ov2680_set_vflip(sensor, ctrl->val);
break;
case V4L2_CID_HFLIP:
ret = ov2680_set_hflip(sensor, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
ret = ov2680_test_pattern_set(sensor, ctrl->val);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_put(sensor->sd.dev);
return ret;
}
static const struct v4l2_ctrl_ops ov2680_ctrl_ops = {
.s_ctrl = ov2680_s_ctrl,
};
static const struct v4l2_subdev_video_ops ov2680_video_ops = {
.s_stream = ov2680_s_stream,
};
static const struct v4l2_subdev_pad_ops ov2680_pad_ops = {
.enum_mbus_code = ov2680_enum_mbus_code,
.enum_frame_size = ov2680_enum_frame_size,
.enum_frame_interval = ov2680_enum_frame_interval,
.get_fmt = ov2680_get_fmt,
.set_fmt = ov2680_set_fmt,
.get_selection = ov2680_get_selection,
.set_selection = ov2680_set_selection,
.get_frame_interval = ov2680_get_frame_interval,
.set_frame_interval = ov2680_get_frame_interval,
};
static const struct v4l2_subdev_ops ov2680_subdev_ops = {
.video = &ov2680_video_ops,
.pad = &ov2680_pad_ops,
};
static const struct v4l2_subdev_internal_ops ov2680_internal_ops = {
.init_state = ov2680_init_state,
};
static int ov2680_mode_init(struct ov2680_dev *sensor)
{
/* set initial mode */
sensor->mode.crop = ov2680_default_crop;
ov2680_fill_format(sensor, &sensor->mode.fmt,
OV2680_DEFAULT_WIDTH, OV2680_DEFAULT_HEIGHT);
ov2680_calc_mode(sensor);
sensor->mode.frame_interval.denominator = OV2680_FRAME_RATE;
sensor->mode.frame_interval.numerator = 1;
return 0;
}
static int ov2680_v4l2_register(struct ov2680_dev *sensor)
{
struct i2c_client *client = to_i2c_client(sensor->dev);
const struct v4l2_ctrl_ops *ops = &ov2680_ctrl_ops;
struct ov2680_ctrls *ctrls = &sensor->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int exp_max = OV2680_LINES_PER_FRAME - OV2680_INTEGRATION_TIME_MARGIN;
int ret = 0;
v4l2_i2c_subdev_init(&sensor->sd, client, &ov2680_subdev_ops);
sensor->sd.internal_ops = &ov2680_internal_ops;
sensor->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
if (ret < 0)
return ret;
v4l2_ctrl_handler_init(hdl, 5);
hdl->lock = &sensor->lock;
ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl,
&ov2680_ctrl_ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(test_pattern_menu) - 1,
0, 0, test_pattern_menu);
ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
0, exp_max, 1, exp_max);
ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN,
0, 1023, 1, 250);
ctrls->link_freq = v4l2_ctrl_new_int_menu(hdl, NULL, V4L2_CID_LINK_FREQ,
0, 0, sensor->link_freq);
ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_PIXEL_RATE,
0, sensor->pixel_rate,
1, sensor->pixel_rate);
if (hdl->error) {
ret = hdl->error;
goto cleanup_entity;
}
ctrls->vflip->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
ctrls->hflip->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
ctrls->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;
sensor->sd.ctrl_handler = hdl;
ret = v4l2_async_register_subdev(&sensor->sd);
if (ret < 0)
goto cleanup_entity;
return 0;
cleanup_entity:
media_entity_cleanup(&sensor->sd.entity);
v4l2_ctrl_handler_free(hdl);
return ret;
}
static int ov2680_get_regulators(struct ov2680_dev *sensor)
{
int i;
for (i = 0; i < OV2680_NUM_SUPPLIES; i++)
sensor->supplies[i].supply = ov2680_supply_name[i];
return devm_regulator_bulk_get(sensor->dev,
OV2680_NUM_SUPPLIES, sensor->supplies);
}
static int ov2680_check_id(struct ov2680_dev *sensor)
{
u64 chip_id, rev;
int ret = 0;
cci_read(sensor->regmap, OV2680_REG_CHIP_ID, &chip_id, &ret);
cci_read(sensor->regmap, OV2680_REG_SC_CMMN_SUB_ID, &rev, &ret);
if (ret < 0) {
dev_err(sensor->dev, "failed to read chip id\n");
return ret;
}
if (chip_id != OV2680_CHIP_ID) {
dev_err(sensor->dev, "chip id: 0x%04llx does not match expected 0x%04x\n",
chip_id, OV2680_CHIP_ID);
return -ENODEV;
}
dev_info(sensor->dev, "sensor_revision id = 0x%llx, rev= %lld\n",
chip_id, rev & 0x0f);
return 0;
}
static int ov2680_parse_dt(struct ov2680_dev *sensor)
{
struct v4l2_fwnode_endpoint bus_cfg = {
.bus_type = V4L2_MBUS_CSI2_DPHY,
};
struct device *dev = sensor->dev;
struct fwnode_handle *ep_fwnode;
struct gpio_desc *gpio;
unsigned int rate = 0;
int i, ret;
/*
* Sometimes the fwnode graph is initialized by the bridge driver.
* Bridge drivers doing this may also add GPIO mappings, wait for this.
*/
ep_fwnode = fwnode_graph_get_next_endpoint(dev_fwnode(dev), NULL);
if (!ep_fwnode)
return dev_err_probe(dev, -EPROBE_DEFER,
"waiting for fwnode graph endpoint\n");
ret = v4l2_fwnode_endpoint_alloc_parse(ep_fwnode, &bus_cfg);
fwnode_handle_put(ep_fwnode);
if (ret)
return ret;
/*
* The pin we want is named XSHUTDN in the datasheet. Linux sensor
* drivers have standardized on using "powerdown" as con-id name
* for powerdown or shutdown pins. Older DTB files use "reset",
* so fallback to that if there is no "powerdown" pin.
*/
gpio = devm_gpiod_get_optional(dev, "powerdown", GPIOD_OUT_HIGH);
if (!gpio)
gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
ret = PTR_ERR_OR_ZERO(gpio);
if (ret < 0) {
dev_dbg(dev, "error while getting reset gpio: %d\n", ret);
goto out_free_bus_cfg;
}
sensor->pwdn_gpio = gpio;
sensor->xvclk = devm_clk_get_optional(dev, "xvclk");
if (IS_ERR(sensor->xvclk)) {
ret = dev_err_probe(dev, PTR_ERR(sensor->xvclk),
"xvclk clock missing or invalid\n");
goto out_free_bus_cfg;
}
/*
* We could have either a 24MHz or 19.2MHz clock rate from either DT or
* ACPI... but we also need to support the weird IPU3 case which will
* have an external clock AND a clock-frequency property. Check for the
* clock-frequency property and if found, set that rate if we managed
* to acquire a clock. This should cover the ACPI case. If the system
* uses devicetree then the configured rate should already be set, so
* we can just read it.
*/
ret = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
&rate);
if (ret && !sensor->xvclk) {
dev_err_probe(dev, ret, "invalid clock config\n");
goto out_free_bus_cfg;
}
if (!ret && sensor->xvclk) {
ret = clk_set_rate(sensor->xvclk, rate);
if (ret) {
dev_err_probe(dev, ret, "failed to set clock rate\n");
goto out_free_bus_cfg;
}
}
sensor->xvclk_freq = rate ?: clk_get_rate(sensor->xvclk);
for (i = 0; i < ARRAY_SIZE(ov2680_xvclk_freqs); i++) {
if (sensor->xvclk_freq == ov2680_xvclk_freqs[i])
break;
}
if (i == ARRAY_SIZE(ov2680_xvclk_freqs)) {
ret = dev_err_probe(dev, -EINVAL,
"unsupported xvclk frequency %d Hz\n",
sensor->xvclk_freq);
goto out_free_bus_cfg;
}
sensor->pll_mult = ov2680_pll_multipliers[i];
sensor->link_freq[0] = sensor->xvclk_freq / OV2680_PLL_PREDIV0 /
OV2680_PLL_PREDIV * sensor->pll_mult;
/* CSI-2 is double data rate, bus-format is 10 bpp */
sensor->pixel_rate = sensor->link_freq[0] * 2;
do_div(sensor->pixel_rate, 10);
/* Verify bus cfg */
if (bus_cfg.bus.mipi_csi2.num_data_lanes != 1) {
ret = dev_err_probe(dev, -EINVAL,
"only a 1-lane CSI2 config is supported");
goto out_free_bus_cfg;
}
for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++)
if (bus_cfg.link_frequencies[i] == sensor->link_freq[0])
break;
if (bus_cfg.nr_of_link_frequencies == 0 ||
bus_cfg.nr_of_link_frequencies == i) {
ret = dev_err_probe(dev, -EINVAL,
"supported link freq %lld not found\n",
sensor->link_freq[0]);
goto out_free_bus_cfg;
}
out_free_bus_cfg:
v4l2_fwnode_endpoint_free(&bus_cfg);
return ret;
}
static int ov2680_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ov2680_dev *sensor;
int ret;
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->dev = &client->dev;
sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(sensor->regmap))
return PTR_ERR(sensor->regmap);
ret = ov2680_parse_dt(sensor);
if (ret < 0)
return ret;
ret = ov2680_mode_init(sensor);
if (ret < 0)
return ret;
ret = ov2680_get_regulators(sensor);
if (ret < 0) {
dev_err(dev, "failed to get regulators\n");
return ret;
}
mutex_init(&sensor->lock);
/*
* Power up and verify the chip now, so that if runtime pm is
* disabled the chip is left on and streaming will work.
*/
ret = ov2680_power_on(sensor);
if (ret < 0)
goto lock_destroy;
ret = ov2680_check_id(sensor);
if (ret < 0)
goto err_powerdown;
pm_runtime_set_active(&client->dev);
pm_runtime_get_noresume(&client->dev);
pm_runtime_enable(&client->dev);
ret = ov2680_v4l2_register(sensor);
if (ret < 0)
goto err_pm_runtime;
pm_runtime_set_autosuspend_delay(&client->dev, 1000);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return 0;
err_pm_runtime:
pm_runtime_disable(&client->dev);
pm_runtime_put_noidle(&client->dev);
err_powerdown:
ov2680_power_off(sensor);
lock_destroy:
dev_err(dev, "ov2680 init fail: %d\n", ret);
mutex_destroy(&sensor->lock);
return ret;
}
static void ov2680_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ov2680_dev *sensor = to_ov2680_dev(sd);
v4l2_async_unregister_subdev(&sensor->sd);
mutex_destroy(&sensor->lock);
media_entity_cleanup(&sensor->sd.entity);
v4l2_ctrl_handler_free(&sensor->ctrls.handler);
/*
* Disable runtime PM. In case runtime PM is disabled in the kernel,
* make sure to turn power off manually.
*/
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
ov2680_power_off(sensor);
pm_runtime_set_suspended(&client->dev);
}
static int ov2680_suspend(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov2680_dev *sensor = to_ov2680_dev(sd);
if (sensor->is_streaming)
ov2680_stream_disable(sensor);
return ov2680_power_off(sensor);
}
static int ov2680_resume(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov2680_dev *sensor = to_ov2680_dev(sd);
int ret;
ret = ov2680_power_on(sensor);
if (ret < 0)
goto stream_disable;
if (sensor->is_streaming) {
ret = ov2680_stream_enable(sensor);
if (ret < 0)
goto stream_disable;
}
return 0;
stream_disable:
ov2680_stream_disable(sensor);
sensor->is_streaming = false;
return ret;
}
static DEFINE_RUNTIME_DEV_PM_OPS(ov2680_pm_ops, ov2680_suspend, ov2680_resume,
NULL);
static const struct of_device_id ov2680_dt_ids[] = {
{ .compatible = "ovti,ov2680" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, ov2680_dt_ids);
static const struct acpi_device_id ov2680_acpi_ids[] = {
{ "OVTI2680" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(acpi, ov2680_acpi_ids);
static struct i2c_driver ov2680_i2c_driver = {
.driver = {
.name = "ov2680",
.pm = pm_sleep_ptr(&ov2680_pm_ops),
.of_match_table = ov2680_dt_ids,
.acpi_match_table = ov2680_acpi_ids,
},
.probe = ov2680_probe,
.remove = ov2680_remove,
};
module_i2c_driver(ov2680_i2c_driver);
MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
MODULE_DESCRIPTION("OV2680 CMOS Image Sensor driver");
MODULE_LICENSE("GPL v2");