| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * S390 version |
| * Copyright IBM Corp. 1999 |
| * Author(s): Hartmut Penner (hp@de.ibm.com) |
| * Ulrich Weigand (uweigand@de.ibm.com) |
| * |
| * Derived from "arch/i386/mm/fault.c" |
| * Copyright (C) 1995 Linus Torvalds |
| */ |
| |
| #include <linux/kernel_stat.h> |
| #include <linux/mmu_context.h> |
| #include <linux/perf_event.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/sched/debug.h> |
| #include <linux/jump_label.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/compat.h> |
| #include <linux/smp.h> |
| #include <linux/kdebug.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/extable.h> |
| #include <linux/hardirq.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/hugetlb.h> |
| #include <linux/kfence.h> |
| #include <asm/asm-extable.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/ptrace.h> |
| #include <asm/fault.h> |
| #include <asm/diag.h> |
| #include <asm/gmap.h> |
| #include <asm/irq.h> |
| #include <asm/facility.h> |
| #include <asm/uv.h> |
| #include "../kernel/entry.h" |
| |
| enum fault_type { |
| KERNEL_FAULT, |
| USER_FAULT, |
| GMAP_FAULT, |
| }; |
| |
| static DEFINE_STATIC_KEY_FALSE(have_store_indication); |
| |
| static int __init fault_init(void) |
| { |
| if (test_facility(75)) |
| static_branch_enable(&have_store_indication); |
| return 0; |
| } |
| early_initcall(fault_init); |
| |
| /* |
| * Find out which address space caused the exception. |
| */ |
| static enum fault_type get_fault_type(struct pt_regs *regs) |
| { |
| union teid teid = { .val = regs->int_parm_long }; |
| struct gmap *gmap; |
| |
| if (likely(teid.as == PSW_BITS_AS_PRIMARY)) { |
| if (user_mode(regs)) |
| return USER_FAULT; |
| if (!IS_ENABLED(CONFIG_PGSTE)) |
| return KERNEL_FAULT; |
| gmap = (struct gmap *)S390_lowcore.gmap; |
| if (gmap && gmap->asce == regs->cr1) |
| return GMAP_FAULT; |
| return KERNEL_FAULT; |
| } |
| if (teid.as == PSW_BITS_AS_SECONDARY) |
| return USER_FAULT; |
| /* Access register mode, not used in the kernel */ |
| if (teid.as == PSW_BITS_AS_ACCREG) |
| return USER_FAULT; |
| /* Home space -> access via kernel ASCE */ |
| return KERNEL_FAULT; |
| } |
| |
| static unsigned long get_fault_address(struct pt_regs *regs) |
| { |
| union teid teid = { .val = regs->int_parm_long }; |
| |
| return teid.addr * PAGE_SIZE; |
| } |
| |
| static __always_inline bool fault_is_write(struct pt_regs *regs) |
| { |
| union teid teid = { .val = regs->int_parm_long }; |
| |
| if (static_branch_likely(&have_store_indication)) |
| return teid.fsi == TEID_FSI_STORE; |
| return false; |
| } |
| |
| static void dump_pagetable(unsigned long asce, unsigned long address) |
| { |
| unsigned long entry, *table = __va(asce & _ASCE_ORIGIN); |
| |
| pr_alert("AS:%016lx ", asce); |
| switch (asce & _ASCE_TYPE_MASK) { |
| case _ASCE_TYPE_REGION1: |
| table += (address & _REGION1_INDEX) >> _REGION1_SHIFT; |
| if (get_kernel_nofault(entry, table)) |
| goto bad; |
| pr_cont("R1:%016lx ", entry); |
| if (entry & _REGION_ENTRY_INVALID) |
| goto out; |
| table = __va(entry & _REGION_ENTRY_ORIGIN); |
| fallthrough; |
| case _ASCE_TYPE_REGION2: |
| table += (address & _REGION2_INDEX) >> _REGION2_SHIFT; |
| if (get_kernel_nofault(entry, table)) |
| goto bad; |
| pr_cont("R2:%016lx ", entry); |
| if (entry & _REGION_ENTRY_INVALID) |
| goto out; |
| table = __va(entry & _REGION_ENTRY_ORIGIN); |
| fallthrough; |
| case _ASCE_TYPE_REGION3: |
| table += (address & _REGION3_INDEX) >> _REGION3_SHIFT; |
| if (get_kernel_nofault(entry, table)) |
| goto bad; |
| pr_cont("R3:%016lx ", entry); |
| if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE)) |
| goto out; |
| table = __va(entry & _REGION_ENTRY_ORIGIN); |
| fallthrough; |
| case _ASCE_TYPE_SEGMENT: |
| table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; |
| if (get_kernel_nofault(entry, table)) |
| goto bad; |
| pr_cont("S:%016lx ", entry); |
| if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE)) |
| goto out; |
| table = __va(entry & _SEGMENT_ENTRY_ORIGIN); |
| } |
| table += (address & _PAGE_INDEX) >> _PAGE_SHIFT; |
| if (get_kernel_nofault(entry, table)) |
| goto bad; |
| pr_cont("P:%016lx ", entry); |
| out: |
| pr_cont("\n"); |
| return; |
| bad: |
| pr_cont("BAD\n"); |
| } |
| |
| static void dump_fault_info(struct pt_regs *regs) |
| { |
| union teid teid = { .val = regs->int_parm_long }; |
| unsigned long asce; |
| |
| pr_alert("Failing address: %016lx TEID: %016lx\n", |
| get_fault_address(regs), teid.val); |
| pr_alert("Fault in "); |
| switch (teid.as) { |
| case PSW_BITS_AS_HOME: |
| pr_cont("home space "); |
| break; |
| case PSW_BITS_AS_SECONDARY: |
| pr_cont("secondary space "); |
| break; |
| case PSW_BITS_AS_ACCREG: |
| pr_cont("access register "); |
| break; |
| case PSW_BITS_AS_PRIMARY: |
| pr_cont("primary space "); |
| break; |
| } |
| pr_cont("mode while using "); |
| switch (get_fault_type(regs)) { |
| case USER_FAULT: |
| asce = S390_lowcore.user_asce.val; |
| pr_cont("user "); |
| break; |
| case GMAP_FAULT: |
| asce = ((struct gmap *)S390_lowcore.gmap)->asce; |
| pr_cont("gmap "); |
| break; |
| case KERNEL_FAULT: |
| asce = S390_lowcore.kernel_asce.val; |
| pr_cont("kernel "); |
| break; |
| default: |
| unreachable(); |
| } |
| pr_cont("ASCE.\n"); |
| dump_pagetable(asce, get_fault_address(regs)); |
| } |
| |
| int show_unhandled_signals = 1; |
| |
| void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault) |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); |
| |
| if ((task_pid_nr(current) > 1) && !show_unhandled_signals) |
| return; |
| if (!unhandled_signal(current, signr)) |
| return; |
| if (!__ratelimit(&rs)) |
| return; |
| pr_alert("User process fault: interruption code %04x ilc:%d ", |
| regs->int_code & 0xffff, regs->int_code >> 17); |
| print_vma_addr(KERN_CONT "in ", regs->psw.addr); |
| pr_cont("\n"); |
| if (is_mm_fault) |
| dump_fault_info(regs); |
| show_regs(regs); |
| } |
| |
| static void do_sigsegv(struct pt_regs *regs, int si_code) |
| { |
| report_user_fault(regs, SIGSEGV, 1); |
| force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs)); |
| } |
| |
| static void handle_fault_error_nolock(struct pt_regs *regs, int si_code) |
| { |
| enum fault_type fault_type; |
| unsigned long address; |
| bool is_write; |
| |
| if (user_mode(regs)) { |
| if (WARN_ON_ONCE(!si_code)) |
| si_code = SEGV_MAPERR; |
| return do_sigsegv(regs, si_code); |
| } |
| if (fixup_exception(regs)) |
| return; |
| fault_type = get_fault_type(regs); |
| if (fault_type == KERNEL_FAULT) { |
| address = get_fault_address(regs); |
| is_write = fault_is_write(regs); |
| if (kfence_handle_page_fault(address, is_write, regs)) |
| return; |
| } |
| if (fault_type == KERNEL_FAULT) |
| pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n"); |
| else |
| pr_alert("Unable to handle kernel paging request in virtual user address space\n"); |
| dump_fault_info(regs); |
| die(regs, "Oops"); |
| } |
| |
| static void handle_fault_error(struct pt_regs *regs, int si_code) |
| { |
| struct mm_struct *mm = current->mm; |
| |
| mmap_read_unlock(mm); |
| handle_fault_error_nolock(regs, si_code); |
| } |
| |
| static void do_sigbus(struct pt_regs *regs) |
| { |
| force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs)); |
| } |
| |
| /* |
| * This routine handles page faults. It determines the address, |
| * and the problem, and then passes it off to one of the appropriate |
| * routines. |
| * |
| * interruption code (int_code): |
| * 04 Protection -> Write-Protection (suppression) |
| * 10 Segment translation -> Not present (nullification) |
| * 11 Page translation -> Not present (nullification) |
| * 3b Region third trans. -> Not present (nullification) |
| */ |
| static void do_exception(struct pt_regs *regs, int access) |
| { |
| struct vm_area_struct *vma; |
| unsigned long address; |
| struct mm_struct *mm; |
| enum fault_type type; |
| unsigned int flags; |
| struct gmap *gmap; |
| vm_fault_t fault; |
| bool is_write; |
| |
| /* |
| * The instruction that caused the program check has |
| * been nullified. Don't signal single step via SIGTRAP. |
| */ |
| clear_thread_flag(TIF_PER_TRAP); |
| if (kprobe_page_fault(regs, 14)) |
| return; |
| mm = current->mm; |
| address = get_fault_address(regs); |
| is_write = fault_is_write(regs); |
| type = get_fault_type(regs); |
| switch (type) { |
| case KERNEL_FAULT: |
| return handle_fault_error_nolock(regs, 0); |
| case USER_FAULT: |
| case GMAP_FAULT: |
| if (faulthandler_disabled() || !mm) |
| return handle_fault_error_nolock(regs, 0); |
| break; |
| } |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); |
| flags = FAULT_FLAG_DEFAULT; |
| if (user_mode(regs)) |
| flags |= FAULT_FLAG_USER; |
| if (is_write) |
| access = VM_WRITE; |
| if (access == VM_WRITE) |
| flags |= FAULT_FLAG_WRITE; |
| if (!(flags & FAULT_FLAG_USER)) |
| goto lock_mmap; |
| vma = lock_vma_under_rcu(mm, address); |
| if (!vma) |
| goto lock_mmap; |
| if (!(vma->vm_flags & access)) { |
| vma_end_read(vma); |
| count_vm_vma_lock_event(VMA_LOCK_SUCCESS); |
| return handle_fault_error_nolock(regs, SEGV_ACCERR); |
| } |
| fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs); |
| if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) |
| vma_end_read(vma); |
| if (!(fault & VM_FAULT_RETRY)) { |
| count_vm_vma_lock_event(VMA_LOCK_SUCCESS); |
| if (unlikely(fault & VM_FAULT_ERROR)) |
| goto error; |
| return; |
| } |
| count_vm_vma_lock_event(VMA_LOCK_RETRY); |
| if (fault & VM_FAULT_MAJOR) |
| flags |= FAULT_FLAG_TRIED; |
| |
| /* Quick path to respond to signals */ |
| if (fault_signal_pending(fault, regs)) { |
| if (!user_mode(regs)) |
| handle_fault_error_nolock(regs, 0); |
| return; |
| } |
| lock_mmap: |
| mmap_read_lock(mm); |
| gmap = NULL; |
| if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) { |
| gmap = (struct gmap *)S390_lowcore.gmap; |
| current->thread.gmap_addr = address; |
| current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE); |
| current->thread.gmap_int_code = regs->int_code & 0xffff; |
| address = __gmap_translate(gmap, address); |
| if (address == -EFAULT) |
| return handle_fault_error(regs, SEGV_MAPERR); |
| if (gmap->pfault_enabled) |
| flags |= FAULT_FLAG_RETRY_NOWAIT; |
| } |
| retry: |
| vma = find_vma(mm, address); |
| if (!vma) |
| return handle_fault_error(regs, SEGV_MAPERR); |
| if (unlikely(vma->vm_start > address)) { |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| return handle_fault_error(regs, SEGV_MAPERR); |
| vma = expand_stack(mm, address); |
| if (!vma) |
| return handle_fault_error_nolock(regs, SEGV_MAPERR); |
| } |
| if (unlikely(!(vma->vm_flags & access))) |
| return handle_fault_error(regs, SEGV_ACCERR); |
| fault = handle_mm_fault(vma, address, flags, regs); |
| if (fault_signal_pending(fault, regs)) { |
| if (flags & FAULT_FLAG_RETRY_NOWAIT) |
| mmap_read_unlock(mm); |
| if (!user_mode(regs)) |
| handle_fault_error_nolock(regs, 0); |
| return; |
| } |
| /* The fault is fully completed (including releasing mmap lock) */ |
| if (fault & VM_FAULT_COMPLETED) { |
| if (gmap) { |
| mmap_read_lock(mm); |
| goto gmap; |
| } |
| return; |
| } |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| mmap_read_unlock(mm); |
| goto error; |
| } |
| if (fault & VM_FAULT_RETRY) { |
| if (IS_ENABLED(CONFIG_PGSTE) && gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) { |
| /* |
| * FAULT_FLAG_RETRY_NOWAIT has been set, |
| * mmap_lock has not been released |
| */ |
| current->thread.gmap_pfault = 1; |
| return handle_fault_error(regs, 0); |
| } |
| flags &= ~FAULT_FLAG_RETRY_NOWAIT; |
| flags |= FAULT_FLAG_TRIED; |
| mmap_read_lock(mm); |
| goto retry; |
| } |
| gmap: |
| if (IS_ENABLED(CONFIG_PGSTE) && gmap) { |
| address = __gmap_link(gmap, current->thread.gmap_addr, |
| address); |
| if (address == -EFAULT) |
| return handle_fault_error(regs, SEGV_MAPERR); |
| if (address == -ENOMEM) { |
| fault = VM_FAULT_OOM; |
| mmap_read_unlock(mm); |
| goto error; |
| } |
| } |
| mmap_read_unlock(mm); |
| return; |
| error: |
| if (fault & VM_FAULT_OOM) { |
| if (!user_mode(regs)) |
| handle_fault_error_nolock(regs, 0); |
| else |
| pagefault_out_of_memory(); |
| } else if (fault & VM_FAULT_SIGSEGV) { |
| if (!user_mode(regs)) |
| handle_fault_error_nolock(regs, 0); |
| else |
| do_sigsegv(regs, SEGV_MAPERR); |
| } else if (fault & VM_FAULT_SIGBUS) { |
| if (!user_mode(regs)) |
| handle_fault_error_nolock(regs, 0); |
| else |
| do_sigbus(regs); |
| } else { |
| BUG(); |
| } |
| } |
| |
| void do_protection_exception(struct pt_regs *regs) |
| { |
| union teid teid = { .val = regs->int_parm_long }; |
| |
| /* |
| * Protection exceptions are suppressing, decrement psw address. |
| * The exception to this rule are aborted transactions, for these |
| * the PSW already points to the correct location. |
| */ |
| if (!(regs->int_code & 0x200)) |
| regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16); |
| /* |
| * Check for low-address protection. This needs to be treated |
| * as a special case because the translation exception code |
| * field is not guaranteed to contain valid data in this case. |
| */ |
| if (unlikely(!teid.b61)) { |
| if (user_mode(regs)) { |
| /* Low-address protection in user mode: cannot happen */ |
| die(regs, "Low-address protection"); |
| } |
| /* |
| * Low-address protection in kernel mode means |
| * NULL pointer write access in kernel mode. |
| */ |
| return handle_fault_error_nolock(regs, 0); |
| } |
| if (unlikely(MACHINE_HAS_NX && teid.b56)) { |
| regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK); |
| return handle_fault_error_nolock(regs, SEGV_ACCERR); |
| } |
| do_exception(regs, VM_WRITE); |
| } |
| NOKPROBE_SYMBOL(do_protection_exception); |
| |
| void do_dat_exception(struct pt_regs *regs) |
| { |
| do_exception(regs, VM_ACCESS_FLAGS); |
| } |
| NOKPROBE_SYMBOL(do_dat_exception); |
| |
| #if IS_ENABLED(CONFIG_PGSTE) |
| |
| void do_secure_storage_access(struct pt_regs *regs) |
| { |
| union teid teid = { .val = regs->int_parm_long }; |
| unsigned long addr = get_fault_address(regs); |
| struct vm_area_struct *vma; |
| struct mm_struct *mm; |
| struct page *page; |
| struct gmap *gmap; |
| int rc; |
| |
| /* |
| * Bit 61 indicates if the address is valid, if it is not the |
| * kernel should be stopped or SIGSEGV should be sent to the |
| * process. Bit 61 is not reliable without the misc UV feature, |
| * therefore this needs to be checked too. |
| */ |
| if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) { |
| /* |
| * When this happens, userspace did something that it |
| * was not supposed to do, e.g. branching into secure |
| * memory. Trigger a segmentation fault. |
| */ |
| if (user_mode(regs)) { |
| send_sig(SIGSEGV, current, 0); |
| return; |
| } |
| /* |
| * The kernel should never run into this case and |
| * there is no way out of this situation. |
| */ |
| panic("Unexpected PGM 0x3d with TEID bit 61=0"); |
| } |
| switch (get_fault_type(regs)) { |
| case GMAP_FAULT: |
| mm = current->mm; |
| gmap = (struct gmap *)S390_lowcore.gmap; |
| mmap_read_lock(mm); |
| addr = __gmap_translate(gmap, addr); |
| mmap_read_unlock(mm); |
| if (IS_ERR_VALUE(addr)) |
| return handle_fault_error_nolock(regs, SEGV_MAPERR); |
| fallthrough; |
| case USER_FAULT: |
| mm = current->mm; |
| mmap_read_lock(mm); |
| vma = find_vma(mm, addr); |
| if (!vma) |
| return handle_fault_error(regs, SEGV_MAPERR); |
| page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET); |
| if (IS_ERR_OR_NULL(page)) { |
| mmap_read_unlock(mm); |
| break; |
| } |
| if (arch_make_page_accessible(page)) |
| send_sig(SIGSEGV, current, 0); |
| put_page(page); |
| mmap_read_unlock(mm); |
| break; |
| case KERNEL_FAULT: |
| page = phys_to_page(addr); |
| if (unlikely(!try_get_page(page))) |
| break; |
| rc = arch_make_page_accessible(page); |
| put_page(page); |
| if (rc) |
| BUG(); |
| break; |
| default: |
| unreachable(); |
| } |
| } |
| NOKPROBE_SYMBOL(do_secure_storage_access); |
| |
| void do_non_secure_storage_access(struct pt_regs *regs) |
| { |
| struct gmap *gmap = (struct gmap *)S390_lowcore.gmap; |
| unsigned long gaddr = get_fault_address(regs); |
| |
| if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT)) |
| return handle_fault_error_nolock(regs, SEGV_MAPERR); |
| if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL) |
| send_sig(SIGSEGV, current, 0); |
| } |
| NOKPROBE_SYMBOL(do_non_secure_storage_access); |
| |
| void do_secure_storage_violation(struct pt_regs *regs) |
| { |
| struct gmap *gmap = (struct gmap *)S390_lowcore.gmap; |
| unsigned long gaddr = get_fault_address(regs); |
| |
| /* |
| * If the VM has been rebooted, its address space might still contain |
| * secure pages from the previous boot. |
| * Clear the page so it can be reused. |
| */ |
| if (!gmap_destroy_page(gmap, gaddr)) |
| return; |
| /* |
| * Either KVM messed up the secure guest mapping or the same |
| * page is mapped into multiple secure guests. |
| * |
| * This exception is only triggered when a guest 2 is running |
| * and can therefore never occur in kernel context. |
| */ |
| pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n", |
| current->comm, current->pid); |
| send_sig(SIGSEGV, current, 0); |
| } |
| |
| #endif /* CONFIG_PGSTE */ |