blob: fde6b6aa86e38a1af487d94b1117f3ffc340c5a5 [file] [log] [blame]
/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc.
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2010 Adaptec, Inc.
* 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
* 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* src.c
*
* Abstract: Hardware Device Interface for PMC SRC based controllers
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <scsi/scsi_host.h>
#include "aacraid.h"
static int aac_src_get_sync_status(struct aac_dev *dev);
static irqreturn_t aac_src_intr_message(int irq, void *dev_id)
{
struct aac_msix_ctx *ctx;
struct aac_dev *dev;
unsigned long bellbits, bellbits_shifted;
int vector_no;
int isFastResponse, mode;
u32 index, handle;
ctx = (struct aac_msix_ctx *)dev_id;
dev = ctx->dev;
vector_no = ctx->vector_no;
if (dev->msi_enabled) {
mode = AAC_INT_MODE_MSI;
if (vector_no == 0) {
bellbits = src_readl(dev, MUnit.ODR_MSI);
if (bellbits & 0x40000)
mode |= AAC_INT_MODE_AIF;
if (bellbits & 0x1000)
mode |= AAC_INT_MODE_SYNC;
}
} else {
mode = AAC_INT_MODE_INTX;
bellbits = src_readl(dev, MUnit.ODR_R);
if (bellbits & PmDoorBellResponseSent) {
bellbits = PmDoorBellResponseSent;
src_writel(dev, MUnit.ODR_C, bellbits);
src_readl(dev, MUnit.ODR_C);
} else {
bellbits_shifted = (bellbits >> SRC_ODR_SHIFT);
src_writel(dev, MUnit.ODR_C, bellbits);
src_readl(dev, MUnit.ODR_C);
if (bellbits_shifted & DoorBellAifPending)
mode |= AAC_INT_MODE_AIF;
else if (bellbits_shifted & OUTBOUNDDOORBELL_0)
mode |= AAC_INT_MODE_SYNC;
}
}
if (mode & AAC_INT_MODE_SYNC) {
unsigned long sflags;
struct list_head *entry;
int send_it = 0;
extern int aac_sync_mode;
if (!aac_sync_mode && !dev->msi_enabled) {
src_writel(dev, MUnit.ODR_C, bellbits);
src_readl(dev, MUnit.ODR_C);
}
if (dev->sync_fib) {
if (dev->sync_fib->callback)
dev->sync_fib->callback(dev->sync_fib->callback_data,
dev->sync_fib);
spin_lock_irqsave(&dev->sync_fib->event_lock, sflags);
if (dev->sync_fib->flags & FIB_CONTEXT_FLAG_WAIT) {
dev->management_fib_count--;
up(&dev->sync_fib->event_wait);
}
spin_unlock_irqrestore(&dev->sync_fib->event_lock,
sflags);
spin_lock_irqsave(&dev->sync_lock, sflags);
if (!list_empty(&dev->sync_fib_list)) {
entry = dev->sync_fib_list.next;
dev->sync_fib = list_entry(entry,
struct fib,
fiblink);
list_del(entry);
send_it = 1;
} else {
dev->sync_fib = NULL;
}
spin_unlock_irqrestore(&dev->sync_lock, sflags);
if (send_it) {
aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
(u32)dev->sync_fib->hw_fib_pa,
0, 0, 0, 0, 0,
NULL, NULL, NULL, NULL, NULL);
}
}
if (!dev->msi_enabled)
mode = 0;
}
if (mode & AAC_INT_MODE_AIF) {
/* handle AIF */
if (dev->sa_firmware) {
u32 events = src_readl(dev, MUnit.SCR0);
aac_intr_normal(dev, events, 1, 0, NULL);
writel(events, &dev->IndexRegs->Mailbox[0]);
src_writel(dev, MUnit.IDR, 1 << 23);
} else {
if (dev->aif_thread && dev->fsa_dev)
aac_intr_normal(dev, 0, 2, 0, NULL);
}
if (dev->msi_enabled)
aac_src_access_devreg(dev, AAC_CLEAR_AIF_BIT);
mode = 0;
}
if (mode) {
index = dev->host_rrq_idx[vector_no];
for (;;) {
isFastResponse = 0;
/* remove toggle bit (31) */
handle = le32_to_cpu((dev->host_rrq[index])
& 0x7fffffff);
/* check fast response bits (30, 1) */
if (handle & 0x40000000)
isFastResponse = 1;
handle &= 0x0000ffff;
if (handle == 0)
break;
handle >>= 2;
if (dev->msi_enabled && dev->max_msix > 1)
atomic_dec(&dev->rrq_outstanding[vector_no]);
aac_intr_normal(dev, handle, 0, isFastResponse, NULL);
dev->host_rrq[index++] = 0;
if (index == (vector_no + 1) * dev->vector_cap)
index = vector_no * dev->vector_cap;
dev->host_rrq_idx[vector_no] = index;
}
mode = 0;
}
return IRQ_HANDLED;
}
/**
* aac_src_disable_interrupt - Disable interrupts
* @dev: Adapter
*/
static void aac_src_disable_interrupt(struct aac_dev *dev)
{
src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff);
}
/**
* aac_src_enable_interrupt_message - Enable interrupts
* @dev: Adapter
*/
static void aac_src_enable_interrupt_message(struct aac_dev *dev)
{
aac_src_access_devreg(dev, AAC_ENABLE_INTERRUPT);
}
/**
* src_sync_cmd - send a command and wait
* @dev: Adapter
* @command: Command to execute
* @p1: first parameter
* @ret: adapter status
*
* This routine will send a synchronous command to the adapter and wait
* for its completion.
*/
static int src_sync_cmd(struct aac_dev *dev, u32 command,
u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6,
u32 *status, u32 * r1, u32 * r2, u32 * r3, u32 * r4)
{
unsigned long start;
unsigned long delay;
int ok;
/*
* Write the command into Mailbox 0
*/
writel(command, &dev->IndexRegs->Mailbox[0]);
/*
* Write the parameters into Mailboxes 1 - 6
*/
writel(p1, &dev->IndexRegs->Mailbox[1]);
writel(p2, &dev->IndexRegs->Mailbox[2]);
writel(p3, &dev->IndexRegs->Mailbox[3]);
writel(p4, &dev->IndexRegs->Mailbox[4]);
/*
* Clear the synch command doorbell to start on a clean slate.
*/
if (!dev->msi_enabled)
src_writel(dev,
MUnit.ODR_C,
OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
/*
* Disable doorbell interrupts
*/
src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff);
/*
* Force the completion of the mask register write before issuing
* the interrupt.
*/
src_readl(dev, MUnit.OIMR);
/*
* Signal that there is a new synch command
*/
src_writel(dev, MUnit.IDR, INBOUNDDOORBELL_0 << SRC_IDR_SHIFT);
if (!dev->sync_mode || command != SEND_SYNCHRONOUS_FIB) {
ok = 0;
start = jiffies;
if (command == IOP_RESET_ALWAYS) {
/* Wait up to 10 sec */
delay = 10*HZ;
} else {
/* Wait up to 5 minutes */
delay = 300*HZ;
}
while (time_before(jiffies, start+delay)) {
udelay(5); /* Delay 5 microseconds to let Mon960 get info. */
/*
* Mon960 will set doorbell0 bit when it has completed the command.
*/
if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) {
/*
* Clear the doorbell.
*/
if (dev->msi_enabled)
aac_src_access_devreg(dev,
AAC_CLEAR_SYNC_BIT);
else
src_writel(dev,
MUnit.ODR_C,
OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
ok = 1;
break;
}
/*
* Yield the processor in case we are slow
*/
msleep(1);
}
if (unlikely(ok != 1)) {
/*
* Restore interrupt mask even though we timed out
*/
aac_adapter_enable_int(dev);
return -ETIMEDOUT;
}
/*
* Pull the synch status from Mailbox 0.
*/
if (status)
*status = readl(&dev->IndexRegs->Mailbox[0]);
if (r1)
*r1 = readl(&dev->IndexRegs->Mailbox[1]);
if (r2)
*r2 = readl(&dev->IndexRegs->Mailbox[2]);
if (r3)
*r3 = readl(&dev->IndexRegs->Mailbox[3]);
if (r4)
*r4 = readl(&dev->IndexRegs->Mailbox[4]);
if (command == GET_COMM_PREFERRED_SETTINGS)
dev->max_msix =
readl(&dev->IndexRegs->Mailbox[5]) & 0xFFFF;
/*
* Clear the synch command doorbell.
*/
if (!dev->msi_enabled)
src_writel(dev,
MUnit.ODR_C,
OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
}
/*
* Restore interrupt mask
*/
aac_adapter_enable_int(dev);
return 0;
}
/**
* aac_src_interrupt_adapter - interrupt adapter
* @dev: Adapter
*
* Send an interrupt to the i960 and breakpoint it.
*/
static void aac_src_interrupt_adapter(struct aac_dev *dev)
{
src_sync_cmd(dev, BREAKPOINT_REQUEST,
0, 0, 0, 0, 0, 0,
NULL, NULL, NULL, NULL, NULL);
}
/**
* aac_src_notify_adapter - send an event to the adapter
* @dev: Adapter
* @event: Event to send
*
* Notify the i960 that something it probably cares about has
* happened.
*/
static void aac_src_notify_adapter(struct aac_dev *dev, u32 event)
{
switch (event) {
case AdapNormCmdQue:
src_writel(dev, MUnit.ODR_C,
INBOUNDDOORBELL_1 << SRC_ODR_SHIFT);
break;
case HostNormRespNotFull:
src_writel(dev, MUnit.ODR_C,
INBOUNDDOORBELL_4 << SRC_ODR_SHIFT);
break;
case AdapNormRespQue:
src_writel(dev, MUnit.ODR_C,
INBOUNDDOORBELL_2 << SRC_ODR_SHIFT);
break;
case HostNormCmdNotFull:
src_writel(dev, MUnit.ODR_C,
INBOUNDDOORBELL_3 << SRC_ODR_SHIFT);
break;
case FastIo:
src_writel(dev, MUnit.ODR_C,
INBOUNDDOORBELL_6 << SRC_ODR_SHIFT);
break;
case AdapPrintfDone:
src_writel(dev, MUnit.ODR_C,
INBOUNDDOORBELL_5 << SRC_ODR_SHIFT);
break;
default:
BUG();
break;
}
}
/**
* aac_src_start_adapter - activate adapter
* @dev: Adapter
*
* Start up processing on an i960 based AAC adapter
*/
static void aac_src_start_adapter(struct aac_dev *dev)
{
union aac_init *init;
int i;
/* reset host_rrq_idx first */
for (i = 0; i < dev->max_msix; i++) {
dev->host_rrq_idx[i] = i * dev->vector_cap;
atomic_set(&dev->rrq_outstanding[i], 0);
}
atomic_set(&dev->msix_counter, 0);
dev->fibs_pushed_no = 0;
init = dev->init;
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
init->r8.host_elapsed_seconds = cpu_to_le32(get_seconds());
src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS,
lower_32_bits(dev->init_pa),
upper_32_bits(dev->init_pa),
sizeof(struct _r8) +
(AAC_MAX_HRRQ - 1) * sizeof(struct _rrq),
0, 0, 0, NULL, NULL, NULL, NULL, NULL);
} else {
init->r7.host_elapsed_seconds = cpu_to_le32(get_seconds());
// We can only use a 32 bit address here
src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS,
(u32)(ulong)dev->init_pa, 0, 0, 0, 0, 0,
NULL, NULL, NULL, NULL, NULL);
}
}
/**
* aac_src_check_health
* @dev: device to check if healthy
*
* Will attempt to determine if the specified adapter is alive and
* capable of handling requests, returning 0 if alive.
*/
static int aac_src_check_health(struct aac_dev *dev)
{
u32 status = src_readl(dev, MUnit.OMR);
/*
* Check to see if the board panic'd.
*/
if (unlikely(status & KERNEL_PANIC))
goto err_blink;
/*
* Check to see if the board failed any self tests.
*/
if (unlikely(status & SELF_TEST_FAILED))
goto err_out;
/*
* Check to see if the board failed any self tests.
*/
if (unlikely(status & MONITOR_PANIC))
goto err_out;
/*
* Wait for the adapter to be up and running.
*/
if (unlikely(!(status & KERNEL_UP_AND_RUNNING)))
return -3;
/*
* Everything is OK
*/
return 0;
err_out:
return -1;
err_blink:
return (status >> 16) & 0xFF;
}
static inline u32 aac_get_vector(struct aac_dev *dev)
{
return atomic_inc_return(&dev->msix_counter)%dev->max_msix;
}
/**
* aac_src_deliver_message
* @fib: fib to issue
*
* Will send a fib, returning 0 if successful.
*/
static int aac_src_deliver_message(struct fib *fib)
{
struct aac_dev *dev = fib->dev;
struct aac_queue *q = &dev->queues->queue[AdapNormCmdQueue];
u32 fibsize;
dma_addr_t address;
struct aac_fib_xporthdr *pFibX;
int native_hba;
#if !defined(writeq)
unsigned long flags;
#endif
u16 vector_no;
atomic_inc(&q->numpending);
native_hba = (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) ? 1 : 0;
if (dev->msi_enabled && dev->max_msix > 1 &&
(native_hba || fib->hw_fib_va->header.Command != AifRequest)) {
if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE3)
&& dev->sa_firmware)
vector_no = aac_get_vector(dev);
else
vector_no = fib->vector_no;
if (native_hba) {
if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) {
struct aac_hba_tm_req *tm_req;
tm_req = (struct aac_hba_tm_req *)
fib->hw_fib_va;
if (tm_req->iu_type ==
HBA_IU_TYPE_SCSI_TM_REQ) {
((struct aac_hba_tm_req *)
fib->hw_fib_va)->reply_qid
= vector_no;
((struct aac_hba_tm_req *)
fib->hw_fib_va)->request_id
+= (vector_no << 16);
} else {
((struct aac_hba_reset_req *)
fib->hw_fib_va)->reply_qid
= vector_no;
((struct aac_hba_reset_req *)
fib->hw_fib_va)->request_id
+= (vector_no << 16);
}
} else {
((struct aac_hba_cmd_req *)
fib->hw_fib_va)->reply_qid
= vector_no;
((struct aac_hba_cmd_req *)
fib->hw_fib_va)->request_id
+= (vector_no << 16);
}
} else {
fib->hw_fib_va->header.Handle += (vector_no << 16);
}
} else {
vector_no = 0;
}
atomic_inc(&dev->rrq_outstanding[vector_no]);
if (native_hba) {
address = fib->hw_fib_pa;
fibsize = (fib->hbacmd_size + 127) / 128 - 1;
if (fibsize > 31)
fibsize = 31;
address |= fibsize;
#if defined(writeq)
src_writeq(dev, MUnit.IQN_L, (u64)address);
#else
spin_lock_irqsave(&fib->dev->iq_lock, flags);
src_writel(dev, MUnit.IQN_H,
upper_32_bits(address) & 0xffffffff);
src_writel(dev, MUnit.IQN_L, address & 0xffffffff);
spin_unlock_irqrestore(&fib->dev->iq_lock, flags);
#endif
} else {
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
/* Calculate the amount to the fibsize bits */
fibsize = (le16_to_cpu(fib->hw_fib_va->header.Size)
+ 127) / 128 - 1;
/* New FIB header, 32-bit */
address = fib->hw_fib_pa;
fib->hw_fib_va->header.StructType = FIB_MAGIC2;
fib->hw_fib_va->header.SenderFibAddress =
cpu_to_le32((u32)address);
fib->hw_fib_va->header.u.TimeStamp = 0;
WARN_ON(upper_32_bits(address) != 0L);
} else {
/* Calculate the amount to the fibsize bits */
fibsize = (sizeof(struct aac_fib_xporthdr) +
le16_to_cpu(fib->hw_fib_va->header.Size)
+ 127) / 128 - 1;
/* Fill XPORT header */
pFibX = (struct aac_fib_xporthdr *)
((unsigned char *)fib->hw_fib_va -
sizeof(struct aac_fib_xporthdr));
pFibX->Handle = fib->hw_fib_va->header.Handle;
pFibX->HostAddress =
cpu_to_le64((u64)fib->hw_fib_pa);
pFibX->Size = cpu_to_le32(
le16_to_cpu(fib->hw_fib_va->header.Size));
address = fib->hw_fib_pa -
(u64)sizeof(struct aac_fib_xporthdr);
}
if (fibsize > 31)
fibsize = 31;
address |= fibsize;
#if defined(writeq)
src_writeq(dev, MUnit.IQ_L, (u64)address);
#else
spin_lock_irqsave(&fib->dev->iq_lock, flags);
src_writel(dev, MUnit.IQ_H,
upper_32_bits(address) & 0xffffffff);
src_writel(dev, MUnit.IQ_L, address & 0xffffffff);
spin_unlock_irqrestore(&fib->dev->iq_lock, flags);
#endif
}
return 0;
}
/**
* aac_src_ioremap
* @size: mapping resize request
*
*/
static int aac_src_ioremap(struct aac_dev *dev, u32 size)
{
if (!size) {
iounmap(dev->regs.src.bar1);
dev->regs.src.bar1 = NULL;
iounmap(dev->regs.src.bar0);
dev->base = dev->regs.src.bar0 = NULL;
return 0;
}
dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2),
AAC_MIN_SRC_BAR1_SIZE);
dev->base = NULL;
if (dev->regs.src.bar1 == NULL)
return -1;
dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size);
if (dev->base == NULL) {
iounmap(dev->regs.src.bar1);
dev->regs.src.bar1 = NULL;
return -1;
}
dev->IndexRegs = &((struct src_registers __iomem *)
dev->base)->u.tupelo.IndexRegs;
return 0;
}
/**
* aac_srcv_ioremap
* @size: mapping resize request
*
*/
static int aac_srcv_ioremap(struct aac_dev *dev, u32 size)
{
if (!size) {
iounmap(dev->regs.src.bar0);
dev->base = dev->regs.src.bar0 = NULL;
return 0;
}
dev->regs.src.bar1 =
ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRCV_BAR1_SIZE);
dev->base = NULL;
if (dev->regs.src.bar1 == NULL)
return -1;
dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size);
if (dev->base == NULL) {
iounmap(dev->regs.src.bar1);
dev->regs.src.bar1 = NULL;
return -1;
}
dev->IndexRegs = &((struct src_registers __iomem *)
dev->base)->u.denali.IndexRegs;
return 0;
}
void aac_set_intx_mode(struct aac_dev *dev)
{
if (dev->msi_enabled) {
aac_src_access_devreg(dev, AAC_ENABLE_INTX);
dev->msi_enabled = 0;
msleep(5000); /* Delay 5 seconds */
}
}
static void aac_dump_fw_fib_iop_reset(struct aac_dev *dev)
{
__le32 supported_options3;
if (!aac_fib_dump)
return;
supported_options3 = dev->supplement_adapter_info.supported_options3;
if (!(supported_options3 & AAC_OPTION_SUPPORTED3_IOP_RESET_FIB_DUMP))
return;
aac_adapter_sync_cmd(dev, IOP_RESET_FW_FIB_DUMP,
0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL);
}
static bool aac_is_ctrl_up_and_running(struct aac_dev *dev)
{
bool ctrl_up = true;
unsigned long status, start;
bool is_up = false;
start = jiffies;
do {
schedule();
status = src_readl(dev, MUnit.OMR);
if (status == 0xffffffff)
status = 0;
if (status & KERNEL_BOOTING) {
start = jiffies;
continue;
}
if (time_after(jiffies, start+HZ*SOFT_RESET_TIME)) {
ctrl_up = false;
break;
}
is_up = status & KERNEL_UP_AND_RUNNING;
} while (!is_up);
return ctrl_up;
}
static void aac_notify_fw_of_iop_reset(struct aac_dev *dev)
{
aac_adapter_sync_cmd(dev, IOP_RESET_ALWAYS, 0, 0, 0, 0, 0, 0, NULL,
NULL, NULL, NULL, NULL);
}
static void aac_send_iop_reset(struct aac_dev *dev)
{
aac_dump_fw_fib_iop_reset(dev);
aac_notify_fw_of_iop_reset(dev);
aac_set_intx_mode(dev);
src_writel(dev, MUnit.IDR, IOP_SRC_RESET_MASK);
msleep(5000);
}
static void aac_send_hardware_soft_reset(struct aac_dev *dev)
{
u_int32_t val;
val = readl(((char *)(dev->base) + IBW_SWR_OFFSET));
val |= 0x01;
writel(val, ((char *)(dev->base) + IBW_SWR_OFFSET));
msleep_interruptible(20000);
}
static int aac_src_restart_adapter(struct aac_dev *dev, int bled, u8 reset_type)
{
bool is_ctrl_up;
int ret = 0;
if (bled < 0)
goto invalid_out;
if (bled)
dev_err(&dev->pdev->dev, "adapter kernel panic'd %x.\n", bled);
/*
* When there is a BlinkLED, IOP_RESET has not effect
*/
if (bled >= 2 && dev->sa_firmware && reset_type & HW_IOP_RESET)
reset_type &= ~HW_IOP_RESET;
dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
dev_err(&dev->pdev->dev, "Controller reset type is %d\n", reset_type);
if (reset_type & HW_IOP_RESET) {
dev_info(&dev->pdev->dev, "Issuing IOP reset\n");
aac_send_iop_reset(dev);
/*
* Creates a delay or wait till up and running comes thru
*/
is_ctrl_up = aac_is_ctrl_up_and_running(dev);
if (!is_ctrl_up)
dev_err(&dev->pdev->dev, "IOP reset failed\n");
else {
dev_info(&dev->pdev->dev, "IOP reset succeded\n");
goto set_startup;
}
}
if (!dev->sa_firmware) {
dev_err(&dev->pdev->dev, "ARC Reset attempt failed\n");
ret = -ENODEV;
goto out;
}
if (reset_type & HW_SOFT_RESET) {
dev_info(&dev->pdev->dev, "Issuing SOFT reset\n");
aac_send_hardware_soft_reset(dev);
dev->msi_enabled = 0;
is_ctrl_up = aac_is_ctrl_up_and_running(dev);
if (!is_ctrl_up) {
dev_err(&dev->pdev->dev, "SOFT reset failed\n");
ret = -ENODEV;
goto out;
} else
dev_info(&dev->pdev->dev, "SOFT reset succeded\n");
}
set_startup:
if (startup_timeout < 300)
startup_timeout = 300;
out:
return ret;
invalid_out:
if (src_readl(dev, MUnit.OMR) & KERNEL_PANIC)
ret = -ENODEV;
goto out;
}
/**
* aac_src_select_comm - Select communications method
* @dev: Adapter
* @comm: communications method
*/
static int aac_src_select_comm(struct aac_dev *dev, int comm)
{
switch (comm) {
case AAC_COMM_MESSAGE:
dev->a_ops.adapter_intr = aac_src_intr_message;
dev->a_ops.adapter_deliver = aac_src_deliver_message;
break;
default:
return 1;
}
return 0;
}
/**
* aac_src_init - initialize an Cardinal Frey Bar card
* @dev: device to configure
*
*/
int aac_src_init(struct aac_dev *dev)
{
unsigned long start;
unsigned long status;
int restart = 0;
int instance = dev->id;
const char *name = dev->name;
dev->a_ops.adapter_ioremap = aac_src_ioremap;
dev->a_ops.adapter_comm = aac_src_select_comm;
dev->base_size = AAC_MIN_SRC_BAR0_SIZE;
if (aac_adapter_ioremap(dev, dev->base_size)) {
printk(KERN_WARNING "%s: unable to map adapter.\n", name);
goto error_iounmap;
}
/* Failure to reset here is an option ... */
dev->a_ops.adapter_sync_cmd = src_sync_cmd;
dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
if (dev->init_reset) {
dev->init_reset = false;
if (!aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET))
++restart;
}
/*
* Check to see if the board panic'd while booting.
*/
status = src_readl(dev, MUnit.OMR);
if (status & KERNEL_PANIC) {
if (aac_src_restart_adapter(dev,
aac_src_check_health(dev), IOP_HWSOFT_RESET))
goto error_iounmap;
++restart;
}
/*
* Check to see if the board failed any self tests.
*/
status = src_readl(dev, MUnit.OMR);
if (status & SELF_TEST_FAILED) {
printk(KERN_ERR "%s%d: adapter self-test failed.\n",
dev->name, instance);
goto error_iounmap;
}
/*
* Check to see if the monitor panic'd while booting.
*/
if (status & MONITOR_PANIC) {
printk(KERN_ERR "%s%d: adapter monitor panic.\n",
dev->name, instance);
goto error_iounmap;
}
start = jiffies;
/*
* Wait for the adapter to be up and running. Wait up to 3 minutes
*/
while (!((status = src_readl(dev, MUnit.OMR)) &
KERNEL_UP_AND_RUNNING)) {
if ((restart &&
(status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) ||
time_after(jiffies, start+HZ*startup_timeout)) {
printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n",
dev->name, instance, status);
goto error_iounmap;
}
if (!restart &&
((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) ||
time_after(jiffies, start + HZ *
((startup_timeout > 60)
? (startup_timeout - 60)
: (startup_timeout / 2))))) {
if (likely(!aac_src_restart_adapter(dev,
aac_src_check_health(dev), IOP_HWSOFT_RESET)))
start = jiffies;
++restart;
}
msleep(1);
}
if (restart && aac_commit)
aac_commit = 1;
/*
* Fill in the common function dispatch table.
*/
dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter;
dev->a_ops.adapter_disable_int = aac_src_disable_interrupt;
dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
dev->a_ops.adapter_notify = aac_src_notify_adapter;
dev->a_ops.adapter_sync_cmd = src_sync_cmd;
dev->a_ops.adapter_check_health = aac_src_check_health;
dev->a_ops.adapter_restart = aac_src_restart_adapter;
dev->a_ops.adapter_start = aac_src_start_adapter;
/*
* First clear out all interrupts. Then enable the one's that we
* can handle.
*/
aac_adapter_comm(dev, AAC_COMM_MESSAGE);
aac_adapter_disable_int(dev);
src_writel(dev, MUnit.ODR_C, 0xffffffff);
aac_adapter_enable_int(dev);
if (aac_init_adapter(dev) == NULL)
goto error_iounmap;
if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE1)
goto error_iounmap;
dev->msi = !pci_enable_msi(dev->pdev);
dev->aac_msix[0].vector_no = 0;
dev->aac_msix[0].dev = dev;
if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
IRQF_SHARED, "aacraid", &(dev->aac_msix[0])) < 0) {
if (dev->msi)
pci_disable_msi(dev->pdev);
printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
name, instance);
goto error_iounmap;
}
dev->dbg_base = pci_resource_start(dev->pdev, 2);
dev->dbg_base_mapped = dev->regs.src.bar1;
dev->dbg_size = AAC_MIN_SRC_BAR1_SIZE;
dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message;
aac_adapter_enable_int(dev);
if (!dev->sync_mode) {
/*
* Tell the adapter that all is configured, and it can
* start accepting requests
*/
aac_src_start_adapter(dev);
}
return 0;
error_iounmap:
return -1;
}
/**
* aac_srcv_init - initialize an SRCv card
* @dev: device to configure
*
*/
int aac_srcv_init(struct aac_dev *dev)
{
unsigned long start;
unsigned long status;
int restart = 0;
int instance = dev->id;
const char *name = dev->name;
dev->a_ops.adapter_ioremap = aac_srcv_ioremap;
dev->a_ops.adapter_comm = aac_src_select_comm;
dev->base_size = AAC_MIN_SRCV_BAR0_SIZE;
if (aac_adapter_ioremap(dev, dev->base_size)) {
printk(KERN_WARNING "%s: unable to map adapter.\n", name);
goto error_iounmap;
}
/* Failure to reset here is an option ... */
dev->a_ops.adapter_sync_cmd = src_sync_cmd;
dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
if (dev->init_reset) {
dev->init_reset = false;
if (!aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET))
++restart;
}
/*
* Check to see if flash update is running.
* Wait for the adapter to be up and running. Wait up to 5 minutes
*/
status = src_readl(dev, MUnit.OMR);
if (status & FLASH_UPD_PENDING) {
start = jiffies;
do {
status = src_readl(dev, MUnit.OMR);
if (time_after(jiffies, start+HZ*FWUPD_TIMEOUT)) {
printk(KERN_ERR "%s%d: adapter flash update failed.\n",
dev->name, instance);
goto error_iounmap;
}
} while (!(status & FLASH_UPD_SUCCESS) &&
!(status & FLASH_UPD_FAILED));
/* Delay 10 seconds.
* Because right now FW is doing a soft reset,
* do not read scratch pad register at this time
*/
ssleep(10);
}
/*
* Check to see if the board panic'd while booting.
*/
status = src_readl(dev, MUnit.OMR);
if (status & KERNEL_PANIC) {
if (aac_src_restart_adapter(dev,
aac_src_check_health(dev), IOP_HWSOFT_RESET))
goto error_iounmap;
++restart;
}
/*
* Check to see if the board failed any self tests.
*/
status = src_readl(dev, MUnit.OMR);
if (status & SELF_TEST_FAILED) {
printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance);
goto error_iounmap;
}
/*
* Check to see if the monitor panic'd while booting.
*/
if (status & MONITOR_PANIC) {
printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance);
goto error_iounmap;
}
start = jiffies;
/*
* Wait for the adapter to be up and running. Wait up to 3 minutes
*/
while (!((status = src_readl(dev, MUnit.OMR)) &
KERNEL_UP_AND_RUNNING) ||
status == 0xffffffff) {
if ((restart &&
(status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) ||
time_after(jiffies, start+HZ*startup_timeout)) {
printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n",
dev->name, instance, status);
goto error_iounmap;
}
if (!restart &&
((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) ||
time_after(jiffies, start + HZ *
((startup_timeout > 60)
? (startup_timeout - 60)
: (startup_timeout / 2))))) {
if (likely(!aac_src_restart_adapter(dev,
aac_src_check_health(dev), IOP_HWSOFT_RESET)))
start = jiffies;
++restart;
}
msleep(1);
}
if (restart && aac_commit)
aac_commit = 1;
/*
* Fill in the common function dispatch table.
*/
dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter;
dev->a_ops.adapter_disable_int = aac_src_disable_interrupt;
dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
dev->a_ops.adapter_notify = aac_src_notify_adapter;
dev->a_ops.adapter_sync_cmd = src_sync_cmd;
dev->a_ops.adapter_check_health = aac_src_check_health;
dev->a_ops.adapter_restart = aac_src_restart_adapter;
dev->a_ops.adapter_start = aac_src_start_adapter;
/*
* First clear out all interrupts. Then enable the one's that we
* can handle.
*/
aac_adapter_comm(dev, AAC_COMM_MESSAGE);
aac_adapter_disable_int(dev);
src_writel(dev, MUnit.ODR_C, 0xffffffff);
aac_adapter_enable_int(dev);
if (aac_init_adapter(dev) == NULL)
goto error_iounmap;
if ((dev->comm_interface != AAC_COMM_MESSAGE_TYPE2) &&
(dev->comm_interface != AAC_COMM_MESSAGE_TYPE3))
goto error_iounmap;
if (dev->msi_enabled)
aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
if (aac_acquire_irq(dev))
goto error_iounmap;
dev->dbg_base = pci_resource_start(dev->pdev, 2);
dev->dbg_base_mapped = dev->regs.src.bar1;
dev->dbg_size = AAC_MIN_SRCV_BAR1_SIZE;
dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message;
aac_adapter_enable_int(dev);
if (!dev->sync_mode) {
/*
* Tell the adapter that all is configured, and it can
* start accepting requests
*/
aac_src_start_adapter(dev);
}
return 0;
error_iounmap:
return -1;
}
void aac_src_access_devreg(struct aac_dev *dev, int mode)
{
u_int32_t val;
switch (mode) {
case AAC_ENABLE_INTERRUPT:
src_writel(dev,
MUnit.OIMR,
dev->OIMR = (dev->msi_enabled ?
AAC_INT_ENABLE_TYPE1_MSIX :
AAC_INT_ENABLE_TYPE1_INTX));
break;
case AAC_DISABLE_INTERRUPT:
src_writel(dev,
MUnit.OIMR,
dev->OIMR = AAC_INT_DISABLE_ALL);
break;
case AAC_ENABLE_MSIX:
/* set bit 6 */
val = src_readl(dev, MUnit.IDR);
val |= 0x40;
src_writel(dev, MUnit.IDR, val);
src_readl(dev, MUnit.IDR);
/* unmask int. */
val = PMC_ALL_INTERRUPT_BITS;
src_writel(dev, MUnit.IOAR, val);
val = src_readl(dev, MUnit.OIMR);
src_writel(dev,
MUnit.OIMR,
val & (~(PMC_GLOBAL_INT_BIT2 | PMC_GLOBAL_INT_BIT0)));
break;
case AAC_DISABLE_MSIX:
/* reset bit 6 */
val = src_readl(dev, MUnit.IDR);
val &= ~0x40;
src_writel(dev, MUnit.IDR, val);
src_readl(dev, MUnit.IDR);
break;
case AAC_CLEAR_AIF_BIT:
/* set bit 5 */
val = src_readl(dev, MUnit.IDR);
val |= 0x20;
src_writel(dev, MUnit.IDR, val);
src_readl(dev, MUnit.IDR);
break;
case AAC_CLEAR_SYNC_BIT:
/* set bit 4 */
val = src_readl(dev, MUnit.IDR);
val |= 0x10;
src_writel(dev, MUnit.IDR, val);
src_readl(dev, MUnit.IDR);
break;
case AAC_ENABLE_INTX:
/* set bit 7 */
val = src_readl(dev, MUnit.IDR);
val |= 0x80;
src_writel(dev, MUnit.IDR, val);
src_readl(dev, MUnit.IDR);
/* unmask int. */
val = PMC_ALL_INTERRUPT_BITS;
src_writel(dev, MUnit.IOAR, val);
src_readl(dev, MUnit.IOAR);
val = src_readl(dev, MUnit.OIMR);
src_writel(dev, MUnit.OIMR,
val & (~(PMC_GLOBAL_INT_BIT2)));
break;
default:
break;
}
}
static int aac_src_get_sync_status(struct aac_dev *dev)
{
int val;
if (dev->msi_enabled)
val = src_readl(dev, MUnit.ODR_MSI) & 0x1000 ? 1 : 0;
else
val = src_readl(dev, MUnit.ODR_R) >> SRC_ODR_SHIFT;
return val;
}