blob: 439e0a300e258abab7c513d341af20bcf965dfc3 [file] [log] [blame]
/*
* Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "mdp5_kms.h"
#include "mdp5_ctl.h"
/*
* CTL - MDP Control Pool Manager
*
* Controls are shared between all display interfaces.
*
* They are intended to be used for data path configuration.
* The top level register programming describes the complete data path for
* a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
*
* Hardware capabilities determine the number of concurrent data paths
*
* In certain use cases (high-resolution dual pipe), one single CTL can be
* shared across multiple CRTCs.
*/
#define CTL_STAT_BUSY 0x1
#define CTL_STAT_BOOKED 0x2
struct mdp5_ctl {
struct mdp5_ctl_manager *ctlm;
u32 id;
/* CTL status bitmask */
u32 status;
bool encoder_enabled;
uint32_t start_mask;
/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
spinlock_t hw_lock;
u32 reg_offset;
/* when do CTL registers need to be flushed? (mask of trigger bits) */
u32 pending_ctl_trigger;
bool cursor_on;
/* True if the current CTL has FLUSH bits pending for single FLUSH. */
bool flush_pending;
struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
};
struct mdp5_ctl_manager {
struct drm_device *dev;
/* number of CTL / Layer Mixers in this hw config: */
u32 nlm;
u32 nctl;
/* to filter out non-present bits in the current hardware config */
u32 flush_hw_mask;
/* status for single FLUSH */
bool single_flush_supported;
u32 single_flush_pending_mask;
/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
spinlock_t pool_lock;
struct mdp5_ctl ctls[MAX_CTL];
};
static inline
struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
{
struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
return to_mdp5_kms(to_mdp_kms(priv->kms));
}
static inline
void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
{
struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
mdp5_write(mdp5_kms, reg, data);
}
static inline
u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
{
struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
return mdp5_read(mdp5_kms, reg);
}
static void set_display_intf(struct mdp5_kms *mdp5_kms,
struct mdp5_interface *intf)
{
unsigned long flags;
u32 intf_sel;
spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
switch (intf->num) {
case 0:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
break;
case 1:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
break;
case 2:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
break;
case 3:
intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
break;
default:
BUG();
break;
}
mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
}
static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
{
unsigned long flags;
struct mdp5_interface *intf = pipeline->intf;
u32 ctl_op = 0;
if (!mdp5_cfg_intf_is_virtual(intf->type))
ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
switch (intf->type) {
case INTF_DSI:
if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
ctl_op |= MDP5_CTL_OP_CMD_MODE;
break;
case INTF_WB:
if (intf->mode == MDP5_INTF_WB_MODE_LINE)
ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
break;
default:
break;
}
if (pipeline->r_mixer)
ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
MDP5_CTL_OP_PACK_3D(1);
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
struct mdp5_interface *intf = pipeline->intf;
struct mdp5_hw_mixer *mixer = pipeline->mixer;
struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
ctl->start_mask = mdp_ctl_flush_mask_lm(mixer->lm) |
mdp_ctl_flush_mask_encoder(intf);
if (r_mixer)
ctl->start_mask |= mdp_ctl_flush_mask_lm(r_mixer->lm);
/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
if (!mdp5_cfg_intf_is_virtual(intf->type))
set_display_intf(mdp5_kms, intf);
set_ctl_op(ctl, pipeline);
return 0;
}
static bool start_signal_needed(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline)
{
struct mdp5_interface *intf = pipeline->intf;
if (!ctl->encoder_enabled || ctl->start_mask != 0)
return false;
switch (intf->type) {
case INTF_WB:
return true;
case INTF_DSI:
return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
default:
return false;
}
}
/*
* send_start_signal() - Overlay Processor Start Signal
*
* For a given control operation (display pipeline), a START signal needs to be
* executed in order to kick off operation and activate all layers.
* e.g.: DSI command mode, Writeback
*/
static void send_start_signal(struct mdp5_ctl *ctl)
{
unsigned long flags;
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
static void refill_start_mask(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline)
{
struct mdp5_interface *intf = pipeline->intf;
struct mdp5_hw_mixer *mixer = pipeline->mixer;
struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
ctl->start_mask = mdp_ctl_flush_mask_lm(mixer->lm);
if (r_mixer)
ctl->start_mask |= mdp_ctl_flush_mask_lm(r_mixer->lm);
/*
* Writeback encoder needs to program & flush
* address registers for each page flip..
*/
if (intf->type == INTF_WB)
ctl->start_mask |= mdp_ctl_flush_mask_encoder(intf);
}
/**
* mdp5_ctl_set_encoder_state() - set the encoder state
*
* @enable: true, when encoder is ready for data streaming; false, otherwise.
*
* Note:
* This encoder state is needed to trigger START signal (data path kickoff).
*/
int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline,
bool enabled)
{
struct mdp5_interface *intf = pipeline->intf;
if (WARN_ON(!ctl))
return -EINVAL;
ctl->encoder_enabled = enabled;
DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
if (start_signal_needed(ctl, pipeline)) {
send_start_signal(ctl);
refill_start_mask(ctl, pipeline);
}
return 0;
}
/*
* Note:
* CTL registers need to be flushed after calling this function
* (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
*/
int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
int cursor_id, bool enable)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
unsigned long flags;
u32 blend_cfg;
struct mdp5_hw_mixer *mixer = pipeline->mixer;
if (unlikely(WARN_ON(!mixer))) {
dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM",
ctl->id);
return -EINVAL;
}
if (pipeline->r_mixer) {
dev_err(ctl_mgr->dev->dev, "unsupported configuration");
return -EINVAL;
}
spin_lock_irqsave(&ctl->hw_lock, flags);
blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
if (enable)
blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
else
blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
ctl->cursor_on = enable;
spin_unlock_irqrestore(&ctl->hw_lock, flags);
ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
return 0;
}
static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
enum mdp_mixer_stage_id stage)
{
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
case SSPP_CURSOR0:
case SSPP_CURSOR1:
default: return 0;
}
}
static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
enum mdp_mixer_stage_id stage)
{
if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
return 0;
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
default: return 0;
}
}
static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
{
unsigned long flags;
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
int i;
spin_lock_irqsave(&ctl->hw_lock, flags);
for (i = 0; i < ctl_mgr->nlm; i++) {
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
}
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
#define PIPE_LEFT 0
#define PIPE_RIGHT 1
int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
enum mdp5_pipe stage[][MAX_PIPE_STAGE],
enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
u32 stage_cnt, u32 ctl_blend_op_flags)
{
struct mdp5_hw_mixer *mixer = pipeline->mixer;
struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
unsigned long flags;
u32 blend_cfg = 0, blend_ext_cfg = 0;
u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
int i, start_stage;
mdp5_ctl_reset_blend_regs(ctl);
if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
start_stage = STAGE0;
blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
if (r_mixer)
r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
} else {
start_stage = STAGE_BASE;
}
for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
blend_cfg |=
mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
blend_ext_cfg |=
mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
if (r_mixer) {
r_blend_cfg |=
mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
r_blend_ext_cfg |=
mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
}
}
spin_lock_irqsave(&ctl->hw_lock, flags);
if (ctl->cursor_on)
blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
blend_ext_cfg);
if (r_mixer) {
ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
r_blend_cfg);
ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
r_blend_ext_cfg);
}
spin_unlock_irqrestore(&ctl->hw_lock, flags);
ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
if (r_mixer)
ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
blend_cfg, blend_ext_cfg);
if (r_mixer)
DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
return 0;
}
u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
{
if (intf->type == INTF_WB)
return MDP5_CTL_FLUSH_WB;
switch (intf->num) {
case 0: return MDP5_CTL_FLUSH_TIMING_0;
case 1: return MDP5_CTL_FLUSH_TIMING_1;
case 2: return MDP5_CTL_FLUSH_TIMING_2;
case 3: return MDP5_CTL_FLUSH_TIMING_3;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_cursor(int cursor_id)
{
switch (cursor_id) {
case 0: return MDP5_CTL_FLUSH_CURSOR_0;
case 1: return MDP5_CTL_FLUSH_CURSOR_1;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
{
switch (pipe) {
case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
default: return 0;
}
}
u32 mdp_ctl_flush_mask_lm(int lm)
{
switch (lm) {
case 0: return MDP5_CTL_FLUSH_LM0;
case 1: return MDP5_CTL_FLUSH_LM1;
case 2: return MDP5_CTL_FLUSH_LM2;
case 5: return MDP5_CTL_FLUSH_LM5;
default: return 0;
}
}
static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
u32 flush_mask)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
u32 sw_mask = 0;
#define BIT_NEEDS_SW_FIX(bit) \
(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
/* for some targets, cursor bit is the same as LM bit */
if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
return sw_mask;
}
static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
u32 *flush_id)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
if (ctl->pair) {
DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
ctl->flush_pending = true;
ctl_mgr->single_flush_pending_mask |= (*flush_mask);
*flush_mask = 0;
if (ctl->pair->flush_pending) {
*flush_id = min_t(u32, ctl->id, ctl->pair->id);
*flush_mask = ctl_mgr->single_flush_pending_mask;
ctl->flush_pending = false;
ctl->pair->flush_pending = false;
ctl_mgr->single_flush_pending_mask = 0;
DBG("Single FLUSH mask %x,ID %d", *flush_mask,
*flush_id);
}
}
}
/**
* mdp5_ctl_commit() - Register Flush
*
* The flush register is used to indicate several registers are all
* programmed, and are safe to update to the back copy of the double
* buffered registers.
*
* Some registers FLUSH bits are shared when the hardware does not have
* dedicated bits for them; handling these is the job of fix_sw_flush().
*
* CTL registers need to be flushed in some circumstances; if that is the
* case, some trigger bits will be present in both flush mask and
* ctl->pending_ctl_trigger.
*
* Return H/W flushed bit mask.
*/
u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
struct mdp5_pipeline *pipeline,
u32 flush_mask)
{
struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
unsigned long flags;
u32 flush_id = ctl->id;
u32 curr_ctl_flush_mask;
ctl->start_mask &= ~flush_mask;
VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
ctl->start_mask, ctl->pending_ctl_trigger);
if (ctl->pending_ctl_trigger & flush_mask) {
flush_mask |= MDP5_CTL_FLUSH_CTL;
ctl->pending_ctl_trigger = 0;
}
flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
flush_mask &= ctl_mgr->flush_hw_mask;
curr_ctl_flush_mask = flush_mask;
fix_for_single_flush(ctl, &flush_mask, &flush_id);
if (flush_mask) {
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
if (start_signal_needed(ctl, pipeline)) {
send_start_signal(ctl);
refill_start_mask(ctl, pipeline);
}
return curr_ctl_flush_mask;
}
u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
{
return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
}
int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
{
return WARN_ON(!ctl) ? -EINVAL : ctl->id;
}
/*
* mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
*/
int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
{
struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
/* do nothing silently if hw doesn't support */
if (!ctl_mgr->single_flush_supported)
return 0;
if (!enable) {
ctlx->pair = NULL;
ctly->pair = NULL;
mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
return 0;
} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
dev_err(ctl_mgr->dev->dev, "CTLs already paired\n");
return -EINVAL;
} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
return -EINVAL;
}
ctlx->pair = ctly;
ctly->pair = ctlx;
mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
return 0;
}
/*
* mdp5_ctl_request() - CTL allocation
*
* Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
* If no CTL is available in preferred category, allocate from the other one.
*
* @return fail if no CTL is available.
*/
struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
int intf_num)
{
struct mdp5_ctl *ctl = NULL;
const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
unsigned long flags;
int c;
spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
/* search the preferred */
for (c = 0; c < ctl_mgr->nctl; c++)
if ((ctl_mgr->ctls[c].status & checkm) == match)
goto found;
dev_warn(ctl_mgr->dev->dev,
"fall back to the other CTL category for INTF %d!\n", intf_num);
match ^= CTL_STAT_BOOKED;
for (c = 0; c < ctl_mgr->nctl; c++)
if ((ctl_mgr->ctls[c].status & checkm) == match)
goto found;
dev_err(ctl_mgr->dev->dev, "No more CTL available!");
goto unlock;
found:
ctl = &ctl_mgr->ctls[c];
ctl->status |= CTL_STAT_BUSY;
ctl->pending_ctl_trigger = 0;
DBG("CTL %d allocated", ctl->id);
unlock:
spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
return ctl;
}
void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
{
unsigned long flags;
int c;
for (c = 0; c < ctl_mgr->nctl; c++) {
struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
spin_lock_irqsave(&ctl->hw_lock, flags);
ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
spin_unlock_irqrestore(&ctl->hw_lock, flags);
}
}
void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
{
kfree(ctl_mgr);
}
struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
{
struct mdp5_ctl_manager *ctl_mgr;
const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
unsigned long flags;
int c, ret;
ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
if (!ctl_mgr) {
dev_err(dev->dev, "failed to allocate CTL manager\n");
ret = -ENOMEM;
goto fail;
}
if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
dev_err(dev->dev, "Increase static pool size to at least %d\n",
ctl_cfg->count);
ret = -ENOSPC;
goto fail;
}
/* initialize the CTL manager: */
ctl_mgr->dev = dev;
ctl_mgr->nlm = hw_cfg->lm.count;
ctl_mgr->nctl = ctl_cfg->count;
ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
spin_lock_init(&ctl_mgr->pool_lock);
/* initialize each CTL of the pool: */
spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
for (c = 0; c < ctl_mgr->nctl; c++) {
struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
if (WARN_ON(!ctl_cfg->base[c])) {
dev_err(dev->dev, "CTL_%d: base is null!\n", c);
ret = -EINVAL;
spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
goto fail;
}
ctl->ctlm = ctl_mgr;
ctl->id = c;
ctl->reg_offset = ctl_cfg->base[c];
ctl->status = 0;
spin_lock_init(&ctl->hw_lock);
}
/*
* In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
* interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
* only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
* Single FLUSH is supported from hw rev v3.0.
*/
if (rev >= 3) {
ctl_mgr->single_flush_supported = true;
/* Reserve CTL0/1 for INTF1/2 */
ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
}
spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
return ctl_mgr;
fail:
if (ctl_mgr)
mdp5_ctlm_destroy(ctl_mgr);
return ERR_PTR(ret);
}