blob: c875f11786b933612e85cdeba677ecb706130954 [file] [log] [blame]
/*
* Copyright (C) 2012 Avionic Design GmbH
* Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/iommu.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <soc/tegra/pmc.h>
#include "dc.h"
#include "drm.h"
#include "gem.h"
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_plane_helper.h>
struct tegra_dc_soc_info {
bool supports_border_color;
bool supports_interlacing;
bool supports_cursor;
bool supports_block_linear;
unsigned int pitch_align;
bool has_powergate;
bool broken_reset;
};
struct tegra_plane {
struct drm_plane base;
unsigned int index;
};
static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
{
return container_of(plane, struct tegra_plane, base);
}
struct tegra_dc_state {
struct drm_crtc_state base;
struct clk *clk;
unsigned long pclk;
unsigned int div;
u32 planes;
};
static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
{
if (state)
return container_of(state, struct tegra_dc_state, base);
return NULL;
}
struct tegra_plane_state {
struct drm_plane_state base;
struct tegra_bo_tiling tiling;
u32 format;
u32 swap;
};
static inline struct tegra_plane_state *
to_tegra_plane_state(struct drm_plane_state *state)
{
if (state)
return container_of(state, struct tegra_plane_state, base);
return NULL;
}
static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
{
stats->frames = 0;
stats->vblank = 0;
stats->underflow = 0;
stats->overflow = 0;
}
/*
* Reads the active copy of a register. This takes the dc->lock spinlock to
* prevent races with the VBLANK processing which also needs access to the
* active copy of some registers.
*/
static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
{
unsigned long flags;
u32 value;
spin_lock_irqsave(&dc->lock, flags);
tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
value = tegra_dc_readl(dc, offset);
tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
spin_unlock_irqrestore(&dc->lock, flags);
return value;
}
/*
* Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
* *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
* Latching happens mmediately if the display controller is in STOP mode or
* on the next frame boundary otherwise.
*
* Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
* ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
* are written. When the *_ACT_REQ bits are written, the ARM copy is latched
* into the ACTIVE copy, either immediately if the display controller is in
* STOP mode, or at the next frame boundary otherwise.
*/
void tegra_dc_commit(struct tegra_dc *dc)
{
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
}
static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
{
/* assume no swapping of fetched data */
if (swap)
*swap = BYTE_SWAP_NOSWAP;
switch (fourcc) {
case DRM_FORMAT_XBGR8888:
*format = WIN_COLOR_DEPTH_R8G8B8A8;
break;
case DRM_FORMAT_XRGB8888:
*format = WIN_COLOR_DEPTH_B8G8R8A8;
break;
case DRM_FORMAT_RGB565:
*format = WIN_COLOR_DEPTH_B5G6R5;
break;
case DRM_FORMAT_UYVY:
*format = WIN_COLOR_DEPTH_YCbCr422;
break;
case DRM_FORMAT_YUYV:
if (swap)
*swap = BYTE_SWAP_SWAP2;
*format = WIN_COLOR_DEPTH_YCbCr422;
break;
case DRM_FORMAT_YUV420:
*format = WIN_COLOR_DEPTH_YCbCr420P;
break;
case DRM_FORMAT_YUV422:
*format = WIN_COLOR_DEPTH_YCbCr422P;
break;
default:
return -EINVAL;
}
return 0;
}
static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
{
switch (format) {
case WIN_COLOR_DEPTH_YCbCr422:
case WIN_COLOR_DEPTH_YUV422:
if (planar)
*planar = false;
return true;
case WIN_COLOR_DEPTH_YCbCr420P:
case WIN_COLOR_DEPTH_YUV420P:
case WIN_COLOR_DEPTH_YCbCr422P:
case WIN_COLOR_DEPTH_YUV422P:
case WIN_COLOR_DEPTH_YCbCr422R:
case WIN_COLOR_DEPTH_YUV422R:
case WIN_COLOR_DEPTH_YCbCr422RA:
case WIN_COLOR_DEPTH_YUV422RA:
if (planar)
*planar = true;
return true;
}
if (planar)
*planar = false;
return false;
}
static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
unsigned int bpp)
{
fixed20_12 outf = dfixed_init(out);
fixed20_12 inf = dfixed_init(in);
u32 dda_inc;
int max;
if (v)
max = 15;
else {
switch (bpp) {
case 2:
max = 8;
break;
default:
WARN_ON_ONCE(1);
/* fallthrough */
case 4:
max = 4;
break;
}
}
outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
inf.full -= dfixed_const(1);
dda_inc = dfixed_div(inf, outf);
dda_inc = min_t(u32, dda_inc, dfixed_const(max));
return dda_inc;
}
static inline u32 compute_initial_dda(unsigned int in)
{
fixed20_12 inf = dfixed_init(in);
return dfixed_frac(inf);
}
static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
const struct tegra_dc_window *window)
{
unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
unsigned long value, flags;
bool yuv, planar;
/*
* For YUV planar modes, the number of bytes per pixel takes into
* account only the luma component and therefore is 1.
*/
yuv = tegra_dc_format_is_yuv(window->format, &planar);
if (!yuv)
bpp = window->bits_per_pixel / 8;
else
bpp = planar ? 1 : 2;
spin_lock_irqsave(&dc->lock, flags);
value = WINDOW_A_SELECT << index;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
tegra_dc_writel(dc, value, DC_WIN_POSITION);
value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
tegra_dc_writel(dc, value, DC_WIN_SIZE);
h_offset = window->src.x * bpp;
v_offset = window->src.y;
h_size = window->src.w * bpp;
v_size = window->src.h;
value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
/*
* For DDA computations the number of bytes per pixel for YUV planar
* modes needs to take into account all Y, U and V components.
*/
if (yuv && planar)
bpp = 2;
h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
h_dda = compute_initial_dda(window->src.x);
v_dda = compute_initial_dda(window->src.y);
tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
if (yuv && planar) {
tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
value = window->stride[1] << 16 | window->stride[0];
tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
} else {
tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
}
if (window->bottom_up)
v_offset += window->src.h - 1;
tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
if (dc->soc->supports_block_linear) {
unsigned long height = window->tiling.value;
switch (window->tiling.mode) {
case TEGRA_BO_TILING_MODE_PITCH:
value = DC_WINBUF_SURFACE_KIND_PITCH;
break;
case TEGRA_BO_TILING_MODE_TILED:
value = DC_WINBUF_SURFACE_KIND_TILED;
break;
case TEGRA_BO_TILING_MODE_BLOCK:
value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
DC_WINBUF_SURFACE_KIND_BLOCK;
break;
}
tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
} else {
switch (window->tiling.mode) {
case TEGRA_BO_TILING_MODE_PITCH:
value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
DC_WIN_BUFFER_ADDR_MODE_LINEAR;
break;
case TEGRA_BO_TILING_MODE_TILED:
value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
DC_WIN_BUFFER_ADDR_MODE_TILE;
break;
case TEGRA_BO_TILING_MODE_BLOCK:
/*
* No need to handle this here because ->atomic_check
* will already have filtered it out.
*/
break;
}
tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
}
value = WIN_ENABLE;
if (yuv) {
/* setup default colorspace conversion coefficients */
tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
value |= CSC_ENABLE;
} else if (window->bits_per_pixel < 24) {
value |= COLOR_EXPAND;
}
if (window->bottom_up)
value |= V_DIRECTION;
tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
/*
* Disable blending and assume Window A is the bottom-most window,
* Window C is the top-most window and Window B is in the middle.
*/
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
switch (index) {
case 0:
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
break;
case 1:
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
break;
case 2:
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
break;
}
spin_unlock_irqrestore(&dc->lock, flags);
}
static void tegra_plane_destroy(struct drm_plane *plane)
{
struct tegra_plane *p = to_tegra_plane(plane);
drm_plane_cleanup(plane);
kfree(p);
}
static const u32 tegra_primary_plane_formats[] = {
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB565,
};
static void tegra_primary_plane_destroy(struct drm_plane *plane)
{
tegra_plane_destroy(plane);
}
static void tegra_plane_reset(struct drm_plane *plane)
{
struct tegra_plane_state *state;
if (plane->state)
__drm_atomic_helper_plane_destroy_state(plane->state);
kfree(plane->state);
plane->state = NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state) {
plane->state = &state->base;
plane->state->plane = plane;
}
}
static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
{
struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
struct tegra_plane_state *copy;
copy = kmalloc(sizeof(*copy), GFP_KERNEL);
if (!copy)
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
copy->tiling = state->tiling;
copy->format = state->format;
copy->swap = state->swap;
return &copy->base;
}
static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
__drm_atomic_helper_plane_destroy_state(state);
kfree(state);
}
static const struct drm_plane_funcs tegra_primary_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = tegra_primary_plane_destroy,
.reset = tegra_plane_reset,
.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
.atomic_destroy_state = tegra_plane_atomic_destroy_state,
};
static int tegra_plane_state_add(struct tegra_plane *plane,
struct drm_plane_state *state)
{
struct drm_crtc_state *crtc_state;
struct tegra_dc_state *tegra;
struct drm_rect clip;
int err;
/* Propagate errors from allocation or locking failures. */
crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
clip.x1 = 0;
clip.y1 = 0;
clip.x2 = crtc_state->mode.hdisplay;
clip.y2 = crtc_state->mode.vdisplay;
/* Check plane state for visibility and calculate clipping bounds */
err = drm_plane_helper_check_state(state, &clip, 0, INT_MAX,
true, true);
if (err < 0)
return err;
tegra = to_dc_state(crtc_state);
tegra->planes |= WIN_A_ACT_REQ << plane->index;
return 0;
}
static int tegra_plane_atomic_check(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
struct tegra_bo_tiling *tiling = &plane_state->tiling;
struct tegra_plane *tegra = to_tegra_plane(plane);
struct tegra_dc *dc = to_tegra_dc(state->crtc);
int err;
/* no need for further checks if the plane is being disabled */
if (!state->crtc)
return 0;
err = tegra_dc_format(state->fb->format->format, &plane_state->format,
&plane_state->swap);
if (err < 0)
return err;
err = tegra_fb_get_tiling(state->fb, tiling);
if (err < 0)
return err;
if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
!dc->soc->supports_block_linear) {
DRM_ERROR("hardware doesn't support block linear mode\n");
return -EINVAL;
}
/*
* Tegra doesn't support different strides for U and V planes so we
* error out if the user tries to display a framebuffer with such a
* configuration.
*/
if (state->fb->format->num_planes > 2) {
if (state->fb->pitches[2] != state->fb->pitches[1]) {
DRM_ERROR("unsupported UV-plane configuration\n");
return -EINVAL;
}
}
err = tegra_plane_state_add(tegra, state);
if (err < 0)
return err;
return 0;
}
static void tegra_dc_disable_window(struct tegra_dc *dc, int index)
{
unsigned long flags;
u32 value;
spin_lock_irqsave(&dc->lock, flags);
value = WINDOW_A_SELECT << index;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
value &= ~WIN_ENABLE;
tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
spin_unlock_irqrestore(&dc->lock, flags);
}
static void tegra_plane_atomic_update(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
struct drm_framebuffer *fb = plane->state->fb;
struct tegra_plane *p = to_tegra_plane(plane);
struct tegra_dc_window window;
unsigned int i;
/* rien ne va plus */
if (!plane->state->crtc || !plane->state->fb)
return;
if (!plane->state->visible)
return tegra_dc_disable_window(dc, p->index);
memset(&window, 0, sizeof(window));
window.src.x = plane->state->src.x1 >> 16;
window.src.y = plane->state->src.y1 >> 16;
window.src.w = drm_rect_width(&plane->state->src) >> 16;
window.src.h = drm_rect_height(&plane->state->src) >> 16;
window.dst.x = plane->state->dst.x1;
window.dst.y = plane->state->dst.y1;
window.dst.w = drm_rect_width(&plane->state->dst);
window.dst.h = drm_rect_height(&plane->state->dst);
window.bits_per_pixel = fb->format->cpp[0] * 8;
window.bottom_up = tegra_fb_is_bottom_up(fb);
/* copy from state */
window.tiling = state->tiling;
window.format = state->format;
window.swap = state->swap;
for (i = 0; i < fb->format->num_planes; i++) {
struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
window.base[i] = bo->paddr + fb->offsets[i];
/*
* Tegra uses a shared stride for UV planes. Framebuffers are
* already checked for this in the tegra_plane_atomic_check()
* function, so it's safe to ignore the V-plane pitch here.
*/
if (i < 2)
window.stride[i] = fb->pitches[i];
}
tegra_dc_setup_window(dc, p->index, &window);
}
static void tegra_plane_atomic_disable(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct tegra_plane *p = to_tegra_plane(plane);
struct tegra_dc *dc;
/* rien ne va plus */
if (!old_state || !old_state->crtc)
return;
dc = to_tegra_dc(old_state->crtc);
tegra_dc_disable_window(dc, p->index);
}
static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
.atomic_check = tegra_plane_atomic_check,
.atomic_update = tegra_plane_atomic_update,
.atomic_disable = tegra_plane_atomic_disable,
};
static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
struct tegra_dc *dc)
{
/*
* Ideally this would use drm_crtc_mask(), but that would require the
* CRTC to already be in the mode_config's list of CRTCs. However, it
* will only be added to that list in the drm_crtc_init_with_planes()
* (in tegra_dc_init()), which in turn requires registration of these
* planes. So we have ourselves a nice little chicken and egg problem
* here.
*
* We work around this by manually creating the mask from the number
* of CRTCs that have been registered, and should therefore always be
* the same as drm_crtc_index() after registration.
*/
unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
struct tegra_plane *plane;
unsigned int num_formats;
const u32 *formats;
int err;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
formats = tegra_primary_plane_formats;
err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
&tegra_primary_plane_funcs, formats,
num_formats, DRM_PLANE_TYPE_PRIMARY,
NULL);
if (err < 0) {
kfree(plane);
return ERR_PTR(err);
}
drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
return &plane->base;
}
static const u32 tegra_cursor_plane_formats[] = {
DRM_FORMAT_RGBA8888,
};
static int tegra_cursor_atomic_check(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct tegra_plane *tegra = to_tegra_plane(plane);
int err;
/* no need for further checks if the plane is being disabled */
if (!state->crtc)
return 0;
/* scaling not supported for cursor */
if ((state->src_w >> 16 != state->crtc_w) ||
(state->src_h >> 16 != state->crtc_h))
return -EINVAL;
/* only square cursors supported */
if (state->src_w != state->src_h)
return -EINVAL;
if (state->crtc_w != 32 && state->crtc_w != 64 &&
state->crtc_w != 128 && state->crtc_w != 256)
return -EINVAL;
err = tegra_plane_state_add(tegra, state);
if (err < 0)
return err;
return 0;
}
static void tegra_cursor_atomic_update(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
struct drm_plane_state *state = plane->state;
u32 value = CURSOR_CLIP_DISPLAY;
/* rien ne va plus */
if (!plane->state->crtc || !plane->state->fb)
return;
switch (state->crtc_w) {
case 32:
value |= CURSOR_SIZE_32x32;
break;
case 64:
value |= CURSOR_SIZE_64x64;
break;
case 128:
value |= CURSOR_SIZE_128x128;
break;
case 256:
value |= CURSOR_SIZE_256x256;
break;
default:
WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
state->crtc_h);
return;
}
value |= (bo->paddr >> 10) & 0x3fffff;
tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
value = (bo->paddr >> 32) & 0x3;
tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
#endif
/* enable cursor and set blend mode */
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value |= CURSOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
value &= ~CURSOR_DST_BLEND_MASK;
value &= ~CURSOR_SRC_BLEND_MASK;
value |= CURSOR_MODE_NORMAL;
value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
value |= CURSOR_ALPHA;
tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
/* position the cursor */
value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
}
static void tegra_cursor_atomic_disable(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct tegra_dc *dc;
u32 value;
/* rien ne va plus */
if (!old_state || !old_state->crtc)
return;
dc = to_tegra_dc(old_state->crtc);
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value &= ~CURSOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
}
static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = tegra_plane_destroy,
.reset = tegra_plane_reset,
.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
.atomic_destroy_state = tegra_plane_atomic_destroy_state,
};
static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
.atomic_check = tegra_cursor_atomic_check,
.atomic_update = tegra_cursor_atomic_update,
.atomic_disable = tegra_cursor_atomic_disable,
};
static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
struct tegra_dc *dc)
{
struct tegra_plane *plane;
unsigned int num_formats;
const u32 *formats;
int err;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
/*
* This index is kind of fake. The cursor isn't a regular plane, but
* its update and activation request bits in DC_CMD_STATE_CONTROL do
* use the same programming. Setting this fake index here allows the
* code in tegra_add_plane_state() to do the right thing without the
* need to special-casing the cursor plane.
*/
plane->index = 6;
num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
formats = tegra_cursor_plane_formats;
err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
&tegra_cursor_plane_funcs, formats,
num_formats, DRM_PLANE_TYPE_CURSOR,
NULL);
if (err < 0) {
kfree(plane);
return ERR_PTR(err);
}
drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
return &plane->base;
}
static void tegra_overlay_plane_destroy(struct drm_plane *plane)
{
tegra_plane_destroy(plane);
}
static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = tegra_overlay_plane_destroy,
.reset = tegra_plane_reset,
.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
.atomic_destroy_state = tegra_plane_atomic_destroy_state,
};
static const uint32_t tegra_overlay_plane_formats[] = {
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_UYVY,
DRM_FORMAT_YUYV,
DRM_FORMAT_YUV420,
DRM_FORMAT_YUV422,
};
static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
.atomic_check = tegra_plane_atomic_check,
.atomic_update = tegra_plane_atomic_update,
.atomic_disable = tegra_plane_atomic_disable,
};
static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
struct tegra_dc *dc,
unsigned int index)
{
struct tegra_plane *plane;
unsigned int num_formats;
const u32 *formats;
int err;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
plane->index = index;
num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
formats = tegra_overlay_plane_formats;
err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
&tegra_overlay_plane_funcs, formats,
num_formats, DRM_PLANE_TYPE_OVERLAY,
NULL);
if (err < 0) {
kfree(plane);
return ERR_PTR(err);
}
drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
return &plane->base;
}
static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
{
struct drm_plane *plane;
unsigned int i;
for (i = 0; i < 2; i++) {
plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
if (IS_ERR(plane))
return PTR_ERR(plane);
}
return 0;
}
static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
if (dc->syncpt)
return host1x_syncpt_read(dc->syncpt);
/* fallback to software emulated VBLANK counter */
return drm_crtc_vblank_count(&dc->base);
}
static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
unsigned long value, flags;
spin_lock_irqsave(&dc->lock, flags);
value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
value |= VBLANK_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
spin_unlock_irqrestore(&dc->lock, flags);
return 0;
}
static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
unsigned long value, flags;
spin_lock_irqsave(&dc->lock, flags);
value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
value &= ~VBLANK_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
spin_unlock_irqrestore(&dc->lock, flags);
}
static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
{
struct drm_device *drm = dc->base.dev;
struct drm_crtc *crtc = &dc->base;
unsigned long flags, base;
struct tegra_bo *bo;
spin_lock_irqsave(&drm->event_lock, flags);
if (!dc->event) {
spin_unlock_irqrestore(&drm->event_lock, flags);
return;
}
bo = tegra_fb_get_plane(crtc->primary->fb, 0);
spin_lock(&dc->lock);
/* check if new start address has been latched */
tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
spin_unlock(&dc->lock);
if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
drm_crtc_send_vblank_event(crtc, dc->event);
drm_crtc_vblank_put(crtc);
dc->event = NULL;
}
spin_unlock_irqrestore(&drm->event_lock, flags);
}
static void tegra_dc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
}
static void tegra_crtc_reset(struct drm_crtc *crtc)
{
struct tegra_dc_state *state;
if (crtc->state)
__drm_atomic_helper_crtc_destroy_state(crtc->state);
kfree(crtc->state);
crtc->state = NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state) {
crtc->state = &state->base;
crtc->state->crtc = crtc;
}
drm_crtc_vblank_reset(crtc);
}
static struct drm_crtc_state *
tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct tegra_dc_state *state = to_dc_state(crtc->state);
struct tegra_dc_state *copy;
copy = kmalloc(sizeof(*copy), GFP_KERNEL);
if (!copy)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
copy->clk = state->clk;
copy->pclk = state->pclk;
copy->div = state->div;
copy->planes = state->planes;
return &copy->base;
}
static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
__drm_atomic_helper_crtc_destroy_state(state);
kfree(state);
}
static const struct drm_crtc_funcs tegra_crtc_funcs = {
.page_flip = drm_atomic_helper_page_flip,
.set_config = drm_atomic_helper_set_config,
.destroy = tegra_dc_destroy,
.reset = tegra_crtc_reset,
.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
.get_vblank_counter = tegra_dc_get_vblank_counter,
.enable_vblank = tegra_dc_enable_vblank,
.disable_vblank = tegra_dc_disable_vblank,
};
static int tegra_dc_set_timings(struct tegra_dc *dc,
struct drm_display_mode *mode)
{
unsigned int h_ref_to_sync = 1;
unsigned int v_ref_to_sync = 1;
unsigned long value;
tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
value = (v_ref_to_sync << 16) | h_ref_to_sync;
tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
value = ((mode->vsync_end - mode->vsync_start) << 16) |
((mode->hsync_end - mode->hsync_start) << 0);
tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
value = ((mode->vtotal - mode->vsync_end) << 16) |
((mode->htotal - mode->hsync_end) << 0);
tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
value = ((mode->vsync_start - mode->vdisplay) << 16) |
((mode->hsync_start - mode->hdisplay) << 0);
tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
value = (mode->vdisplay << 16) | mode->hdisplay;
tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
return 0;
}
/**
* tegra_dc_state_setup_clock - check clock settings and store them in atomic
* state
* @dc: display controller
* @crtc_state: CRTC atomic state
* @clk: parent clock for display controller
* @pclk: pixel clock
* @div: shift clock divider
*
* Returns:
* 0 on success or a negative error-code on failure.
*/
int tegra_dc_state_setup_clock(struct tegra_dc *dc,
struct drm_crtc_state *crtc_state,
struct clk *clk, unsigned long pclk,
unsigned int div)
{
struct tegra_dc_state *state = to_dc_state(crtc_state);
if (!clk_has_parent(dc->clk, clk))
return -EINVAL;
state->clk = clk;
state->pclk = pclk;
state->div = div;
return 0;
}
static void tegra_dc_commit_state(struct tegra_dc *dc,
struct tegra_dc_state *state)
{
u32 value;
int err;
err = clk_set_parent(dc->clk, state->clk);
if (err < 0)
dev_err(dc->dev, "failed to set parent clock: %d\n", err);
/*
* Outputs may not want to change the parent clock rate. This is only
* relevant to Tegra20 where only a single display PLL is available.
* Since that PLL would typically be used for HDMI, an internal LVDS
* panel would need to be driven by some other clock such as PLL_P
* which is shared with other peripherals. Changing the clock rate
* should therefore be avoided.
*/
if (state->pclk > 0) {
err = clk_set_rate(state->clk, state->pclk);
if (err < 0)
dev_err(dc->dev,
"failed to set clock rate to %lu Hz\n",
state->pclk);
}
DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
state->div);
DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
}
static void tegra_dc_stop(struct tegra_dc *dc)
{
u32 value;
/* stop the display controller */
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
tegra_dc_commit(dc);
}
static bool tegra_dc_idle(struct tegra_dc *dc)
{
u32 value;
value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
return (value & DISP_CTRL_MODE_MASK) == 0;
}
static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
{
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
if (tegra_dc_idle(dc))
return 0;
usleep_range(1000, 2000);
}
dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
return -ETIMEDOUT;
}
static void tegra_crtc_disable(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
if (!tegra_dc_idle(dc)) {
tegra_dc_stop(dc);
/*
* Ignore the return value, there isn't anything useful to do
* in case this fails.
*/
tegra_dc_wait_idle(dc, 100);
}
/*
* This should really be part of the RGB encoder driver, but clearing
* these bits has the side-effect of stopping the display controller.
* When that happens no VBLANK interrupts will be raised. At the same
* time the encoder is disabled before the display controller, so the
* above code is always going to timeout waiting for the controller
* to go idle.
*
* Given the close coupling between the RGB encoder and the display
* controller doing it here is still kind of okay. None of the other
* encoder drivers require these bits to be cleared.
*
* XXX: Perhaps given that the display controller is switched off at
* this point anyway maybe clearing these bits isn't even useful for
* the RGB encoder?
*/
if (dc->rgb) {
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
}
tegra_dc_stats_reset(&dc->stats);
drm_crtc_vblank_off(crtc);
pm_runtime_put_sync(dc->dev);
}
static void tegra_crtc_enable(struct drm_crtc *crtc)
{
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
struct tegra_dc_state *state = to_dc_state(crtc->state);
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
pm_runtime_get_sync(dc->dev);
/* initialize display controller */
if (dc->syncpt) {
u32 syncpt = host1x_syncpt_id(dc->syncpt);
value = SYNCPT_CNTRL_NO_STALL;
tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
value = SYNCPT_VSYNC_ENABLE | syncpt;
tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
}
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
/* initialize timer */
value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
if (dc->soc->supports_border_color)
tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
/* apply PLL and pixel clock changes */
tegra_dc_commit_state(dc, state);
/* program display mode */
tegra_dc_set_timings(dc, mode);
/* interlacing isn't supported yet, so disable it */
if (dc->soc->supports_interlacing) {
value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
value &= ~INTERLACE_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
}
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
value |= DISP_CTRL_MODE_C_DISPLAY;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
tegra_dc_commit(dc);
drm_crtc_vblank_on(crtc);
}
static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
return 0;
}
static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
if (crtc->state->event) {
crtc->state->event->pipe = drm_crtc_index(crtc);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
dc->event = crtc->state->event;
crtc->state->event = NULL;
}
}
static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state)
{
struct tegra_dc_state *state = to_dc_state(crtc->state);
struct tegra_dc *dc = to_tegra_dc(crtc);
tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
}
static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
.disable = tegra_crtc_disable,
.enable = tegra_crtc_enable,
.atomic_check = tegra_crtc_atomic_check,
.atomic_begin = tegra_crtc_atomic_begin,
.atomic_flush = tegra_crtc_atomic_flush,
};
static irqreturn_t tegra_dc_irq(int irq, void *data)
{
struct tegra_dc *dc = data;
unsigned long status;
status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
if (status & FRAME_END_INT) {
/*
dev_dbg(dc->dev, "%s(): frame end\n", __func__);
*/
dc->stats.frames++;
}
if (status & VBLANK_INT) {
/*
dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
*/
drm_crtc_handle_vblank(&dc->base);
tegra_dc_finish_page_flip(dc);
dc->stats.vblank++;
}
if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
/*
dev_dbg(dc->dev, "%s(): underflow\n", __func__);
*/
dc->stats.underflow++;
}
if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
/*
dev_dbg(dc->dev, "%s(): overflow\n", __func__);
*/
dc->stats.overflow++;
}
return IRQ_HANDLED;
}
static int tegra_dc_show_regs(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
int err = 0;
drm_modeset_lock(&dc->base.mutex, NULL);
if (!dc->base.state->active) {
err = -EBUSY;
goto unlock;
}
#define DUMP_REG(name) \
seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
tegra_dc_readl(dc, name))
DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
DUMP_REG(DC_CMD_DISPLAY_COMMAND);
DUMP_REG(DC_CMD_SIGNAL_RAISE);
DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
DUMP_REG(DC_CMD_INT_STATUS);
DUMP_REG(DC_CMD_INT_MASK);
DUMP_REG(DC_CMD_INT_ENABLE);
DUMP_REG(DC_CMD_INT_TYPE);
DUMP_REG(DC_CMD_INT_POLARITY);
DUMP_REG(DC_CMD_SIGNAL_RAISE1);
DUMP_REG(DC_CMD_SIGNAL_RAISE2);
DUMP_REG(DC_CMD_SIGNAL_RAISE3);
DUMP_REG(DC_CMD_STATE_ACCESS);
DUMP_REG(DC_CMD_STATE_CONTROL);
DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
DUMP_REG(DC_CMD_REG_ACT_CONTROL);
DUMP_REG(DC_COM_CRC_CONTROL);
DUMP_REG(DC_COM_CRC_CHECKSUM);
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
DUMP_REG(DC_COM_PIN_MISC_CONTROL);
DUMP_REG(DC_COM_PIN_PM0_CONTROL);
DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
DUMP_REG(DC_COM_PIN_PM1_CONTROL);
DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
DUMP_REG(DC_COM_SPI_CONTROL);
DUMP_REG(DC_COM_SPI_START_BYTE);
DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
DUMP_REG(DC_COM_HSPI_CS_DC);
DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
DUMP_REG(DC_COM_GPIO_CTRL);
DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
DUMP_REG(DC_DISP_REF_TO_SYNC);
DUMP_REG(DC_DISP_SYNC_WIDTH);
DUMP_REG(DC_DISP_BACK_PORCH);
DUMP_REG(DC_DISP_ACTIVE);
DUMP_REG(DC_DISP_FRONT_PORCH);
DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
DUMP_REG(DC_DISP_M0_CONTROL);
DUMP_REG(DC_DISP_M1_CONTROL);
DUMP_REG(DC_DISP_DI_CONTROL);
DUMP_REG(DC_DISP_PP_CONTROL);
DUMP_REG(DC_DISP_PP_SELECT_A);
DUMP_REG(DC_DISP_PP_SELECT_B);
DUMP_REG(DC_DISP_PP_SELECT_C);
DUMP_REG(DC_DISP_PP_SELECT_D);
DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
DUMP_REG(DC_DISP_BORDER_COLOR);
DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
DUMP_REG(DC_DISP_CURSOR_START_ADDR);
DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
DUMP_REG(DC_DISP_CURSOR_POSITION);
DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
DUMP_REG(DC_DISP_DAC_CRT_CTRL);
DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
DUMP_REG(DC_DISP_SD_CONTROL);
DUMP_REG(DC_DISP_SD_CSC_COEFF);
DUMP_REG(DC_DISP_SD_LUT(0));
DUMP_REG(DC_DISP_SD_LUT(1));
DUMP_REG(DC_DISP_SD_LUT(2));
DUMP_REG(DC_DISP_SD_LUT(3));
DUMP_REG(DC_DISP_SD_LUT(4));
DUMP_REG(DC_DISP_SD_LUT(5));
DUMP_REG(DC_DISP_SD_LUT(6));
DUMP_REG(DC_DISP_SD_LUT(7));
DUMP_REG(DC_DISP_SD_LUT(8));
DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
DUMP_REG(DC_DISP_SD_BL_TF(0));
DUMP_REG(DC_DISP_SD_BL_TF(1));
DUMP_REG(DC_DISP_SD_BL_TF(2));
DUMP_REG(DC_DISP_SD_BL_TF(3));
DUMP_REG(DC_DISP_SD_BL_CONTROL);
DUMP_REG(DC_DISP_SD_HW_K_VALUES);
DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
DUMP_REG(DC_WIN_WIN_OPTIONS);
DUMP_REG(DC_WIN_BYTE_SWAP);
DUMP_REG(DC_WIN_BUFFER_CONTROL);
DUMP_REG(DC_WIN_COLOR_DEPTH);
DUMP_REG(DC_WIN_POSITION);
DUMP_REG(DC_WIN_SIZE);
DUMP_REG(DC_WIN_PRESCALED_SIZE);
DUMP_REG(DC_WIN_H_INITIAL_DDA);
DUMP_REG(DC_WIN_V_INITIAL_DDA);
DUMP_REG(DC_WIN_DDA_INC);
DUMP_REG(DC_WIN_LINE_STRIDE);
DUMP_REG(DC_WIN_BUF_STRIDE);
DUMP_REG(DC_WIN_UV_BUF_STRIDE);
DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
DUMP_REG(DC_WIN_DV_CONTROL);
DUMP_REG(DC_WIN_BLEND_NOKEY);
DUMP_REG(DC_WIN_BLEND_1WIN);
DUMP_REG(DC_WIN_BLEND_2WIN_X);
DUMP_REG(DC_WIN_BLEND_2WIN_Y);
DUMP_REG(DC_WIN_BLEND_3WIN_XY);
DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
DUMP_REG(DC_WINBUF_START_ADDR);
DUMP_REG(DC_WINBUF_START_ADDR_NS);
DUMP_REG(DC_WINBUF_START_ADDR_U);
DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
DUMP_REG(DC_WINBUF_START_ADDR_V);
DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
DUMP_REG(DC_WINBUF_UFLOW_STATUS);
DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
#undef DUMP_REG
unlock:
drm_modeset_unlock(&dc->base.mutex);
return err;
}
static int tegra_dc_show_crc(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
int err = 0;
u32 value;
drm_modeset_lock(&dc->base.mutex, NULL);
if (!dc->base.state->active) {
err = -EBUSY;
goto unlock;
}
value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
tegra_dc_commit(dc);
drm_crtc_wait_one_vblank(&dc->base);
drm_crtc_wait_one_vblank(&dc->base);
value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
seq_printf(s, "%08x\n", value);
tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
unlock:
drm_modeset_unlock(&dc->base.mutex);
return err;
}
static int tegra_dc_show_stats(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
seq_printf(s, "frames: %lu\n", dc->stats.frames);
seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
return 0;
}
static struct drm_info_list debugfs_files[] = {
{ "regs", tegra_dc_show_regs, 0, NULL },
{ "crc", tegra_dc_show_crc, 0, NULL },
{ "stats", tegra_dc_show_stats, 0, NULL },
};
static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
{
unsigned int i;
char *name;
int err;
name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
kfree(name);
if (!dc->debugfs)
return -ENOMEM;
dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
GFP_KERNEL);
if (!dc->debugfs_files) {
err = -ENOMEM;
goto remove;
}
for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
dc->debugfs_files[i].data = dc;
err = drm_debugfs_create_files(dc->debugfs_files,
ARRAY_SIZE(debugfs_files),
dc->debugfs, minor);
if (err < 0)
goto free;
dc->minor = minor;
return 0;
free:
kfree(dc->debugfs_files);
dc->debugfs_files = NULL;
remove:
debugfs_remove(dc->debugfs);
dc->debugfs = NULL;
return err;
}
static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
{
drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
dc->minor);
dc->minor = NULL;
kfree(dc->debugfs_files);
dc->debugfs_files = NULL;
debugfs_remove(dc->debugfs);
dc->debugfs = NULL;
return 0;
}
static int tegra_dc_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->parent);
unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
struct tegra_dc *dc = host1x_client_to_dc(client);
struct tegra_drm *tegra = drm->dev_private;
struct drm_plane *primary = NULL;
struct drm_plane *cursor = NULL;
int err;
dc->syncpt = host1x_syncpt_request(dc->dev, flags);
if (!dc->syncpt)
dev_warn(dc->dev, "failed to allocate syncpoint\n");
if (tegra->domain) {
err = iommu_attach_device(tegra->domain, dc->dev);
if (err < 0) {
dev_err(dc->dev, "failed to attach to domain: %d\n",
err);
return err;
}
dc->domain = tegra->domain;
}
primary = tegra_dc_primary_plane_create(drm, dc);
if (IS_ERR(primary)) {
err = PTR_ERR(primary);
goto cleanup;
}
if (dc->soc->supports_cursor) {
cursor = tegra_dc_cursor_plane_create(drm, dc);
if (IS_ERR(cursor)) {
err = PTR_ERR(cursor);
goto cleanup;
}
}
err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
&tegra_crtc_funcs, NULL);
if (err < 0)
goto cleanup;
drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
/*
* Keep track of the minimum pitch alignment across all display
* controllers.
*/
if (dc->soc->pitch_align > tegra->pitch_align)
tegra->pitch_align = dc->soc->pitch_align;
err = tegra_dc_rgb_init(drm, dc);
if (err < 0 && err != -ENODEV) {
dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
goto cleanup;
}
err = tegra_dc_add_planes(drm, dc);
if (err < 0)
goto cleanup;
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_dc_debugfs_init(dc, drm->primary);
if (err < 0)
dev_err(dc->dev, "debugfs setup failed: %d\n", err);
}
err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
dev_name(dc->dev), dc);
if (err < 0) {
dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
err);
goto cleanup;
}
return 0;
cleanup:
if (cursor)
drm_plane_cleanup(cursor);
if (primary)
drm_plane_cleanup(primary);
if (tegra->domain) {
iommu_detach_device(tegra->domain, dc->dev);
dc->domain = NULL;
}
return err;
}
static int tegra_dc_exit(struct host1x_client *client)
{
struct tegra_dc *dc = host1x_client_to_dc(client);
int err;
devm_free_irq(dc->dev, dc->irq, dc);
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_dc_debugfs_exit(dc);
if (err < 0)
dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
}
err = tegra_dc_rgb_exit(dc);
if (err) {
dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
return err;
}
if (dc->domain) {
iommu_detach_device(dc->domain, dc->dev);
dc->domain = NULL;
}
host1x_syncpt_free(dc->syncpt);
return 0;
}
static const struct host1x_client_ops dc_client_ops = {
.init = tegra_dc_init,
.exit = tegra_dc_exit,
};
static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
.supports_border_color = true,
.supports_interlacing = false,
.supports_cursor = false,
.supports_block_linear = false,
.pitch_align = 8,
.has_powergate = false,
.broken_reset = true,
};
static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
.supports_border_color = true,
.supports_interlacing = false,
.supports_cursor = false,
.supports_block_linear = false,
.pitch_align = 8,
.has_powergate = false,
.broken_reset = false,
};
static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
.supports_border_color = true,
.supports_interlacing = false,
.supports_cursor = false,
.supports_block_linear = false,
.pitch_align = 64,
.has_powergate = true,
.broken_reset = false,
};
static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
.supports_border_color = false,
.supports_interlacing = true,
.supports_cursor = true,
.supports_block_linear = true,
.pitch_align = 64,
.has_powergate = true,
.broken_reset = false,
};
static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
.supports_border_color = false,
.supports_interlacing = true,
.supports_cursor = true,
.supports_block_linear = true,
.pitch_align = 64,
.has_powergate = true,
.broken_reset = false,
};
static const struct of_device_id tegra_dc_of_match[] = {
{
.compatible = "nvidia,tegra210-dc",
.data = &tegra210_dc_soc_info,
}, {
.compatible = "nvidia,tegra124-dc",
.data = &tegra124_dc_soc_info,
}, {
.compatible = "nvidia,tegra114-dc",
.data = &tegra114_dc_soc_info,
}, {
.compatible = "nvidia,tegra30-dc",
.data = &tegra30_dc_soc_info,
}, {
.compatible = "nvidia,tegra20-dc",
.data = &tegra20_dc_soc_info,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
static int tegra_dc_parse_dt(struct tegra_dc *dc)
{
struct device_node *np;
u32 value = 0;
int err;
err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
if (err < 0) {
dev_err(dc->dev, "missing \"nvidia,head\" property\n");
/*
* If the nvidia,head property isn't present, try to find the
* correct head number by looking up the position of this
* display controller's node within the device tree. Assuming
* that the nodes are ordered properly in the DTS file and
* that the translation into a flattened device tree blob
* preserves that ordering this will actually yield the right
* head number.
*
* If those assumptions don't hold, this will still work for
* cases where only a single display controller is used.
*/
for_each_matching_node(np, tegra_dc_of_match) {
if (np == dc->dev->of_node) {
of_node_put(np);
break;
}
value++;
}
}
dc->pipe = value;
return 0;
}
static int tegra_dc_probe(struct platform_device *pdev)
{
const struct of_device_id *id;
struct resource *regs;
struct tegra_dc *dc;
int err;
dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
if (!dc)
return -ENOMEM;
id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
if (!id)
return -ENODEV;
spin_lock_init(&dc->lock);
INIT_LIST_HEAD(&dc->list);
dc->dev = &pdev->dev;
dc->soc = id->data;
err = tegra_dc_parse_dt(dc);
if (err < 0)
return err;
dc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dc->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
return PTR_ERR(dc->clk);
}
dc->rst = devm_reset_control_get(&pdev->dev, "dc");
if (IS_ERR(dc->rst)) {
dev_err(&pdev->dev, "failed to get reset\n");
return PTR_ERR(dc->rst);
}
if (!dc->soc->broken_reset)
reset_control_assert(dc->rst);
if (dc->soc->has_powergate) {
if (dc->pipe == 0)
dc->powergate = TEGRA_POWERGATE_DIS;
else
dc->powergate = TEGRA_POWERGATE_DISB;
tegra_powergate_power_off(dc->powergate);
}
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dc->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(dc->regs))
return PTR_ERR(dc->regs);
dc->irq = platform_get_irq(pdev, 0);
if (dc->irq < 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
return -ENXIO;
}
err = tegra_dc_rgb_probe(dc);
if (err < 0 && err != -ENODEV) {
dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
return err;
}
platform_set_drvdata(pdev, dc);
pm_runtime_enable(&pdev->dev);
INIT_LIST_HEAD(&dc->client.list);
dc->client.ops = &dc_client_ops;
dc->client.dev = &pdev->dev;
err = host1x_client_register(&dc->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to register host1x client: %d\n",
err);
return err;
}
return 0;
}
static int tegra_dc_remove(struct platform_device *pdev)
{
struct tegra_dc *dc = platform_get_drvdata(pdev);
int err;
err = host1x_client_unregister(&dc->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
err);
return err;
}
err = tegra_dc_rgb_remove(dc);
if (err < 0) {
dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
return err;
}
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int tegra_dc_suspend(struct device *dev)
{
struct tegra_dc *dc = dev_get_drvdata(dev);
int err;
if (!dc->soc->broken_reset) {
err = reset_control_assert(dc->rst);
if (err < 0) {
dev_err(dev, "failed to assert reset: %d\n", err);
return err;
}
}
if (dc->soc->has_powergate)
tegra_powergate_power_off(dc->powergate);
clk_disable_unprepare(dc->clk);
return 0;
}
static int tegra_dc_resume(struct device *dev)
{
struct tegra_dc *dc = dev_get_drvdata(dev);
int err;
if (dc->soc->has_powergate) {
err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
dc->rst);
if (err < 0) {
dev_err(dev, "failed to power partition: %d\n", err);
return err;
}
} else {
err = clk_prepare_enable(dc->clk);
if (err < 0) {
dev_err(dev, "failed to enable clock: %d\n", err);
return err;
}
if (!dc->soc->broken_reset) {
err = reset_control_deassert(dc->rst);
if (err < 0) {
dev_err(dev,
"failed to deassert reset: %d\n", err);
return err;
}
}
}
return 0;
}
#endif
static const struct dev_pm_ops tegra_dc_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
};
struct platform_driver tegra_dc_driver = {
.driver = {
.name = "tegra-dc",
.of_match_table = tegra_dc_of_match,
.pm = &tegra_dc_pm_ops,
},
.probe = tegra_dc_probe,
.remove = tegra_dc_remove,
};