| /* |
| * AMD CPU Microcode Update Driver for Linux |
| * |
| * This driver allows to upgrade microcode on F10h AMD |
| * CPUs and later. |
| * |
| * Copyright (C) 2008-2011 Advanced Micro Devices Inc. |
| * |
| * Author: Peter Oruba <peter.oruba@amd.com> |
| * |
| * Based on work by: |
| * Tigran Aivazian <tigran@aivazian.fsnet.co.uk> |
| * |
| * early loader: |
| * Copyright (C) 2013 Advanced Micro Devices, Inc. |
| * |
| * Author: Jacob Shin <jacob.shin@amd.com> |
| * Fixes: Borislav Petkov <bp@suse.de> |
| * |
| * Licensed under the terms of the GNU General Public |
| * License version 2. See file COPYING for details. |
| */ |
| #define pr_fmt(fmt) "microcode: " fmt |
| |
| #include <linux/earlycpio.h> |
| #include <linux/firmware.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <linux/initrd.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| |
| #include <asm/microcode_amd.h> |
| #include <asm/microcode.h> |
| #include <asm/processor.h> |
| #include <asm/setup.h> |
| #include <asm/cpu.h> |
| #include <asm/msr.h> |
| |
| static struct equiv_cpu_entry *equiv_cpu_table; |
| |
| struct ucode_patch { |
| struct list_head plist; |
| void *data; |
| u32 patch_id; |
| u16 equiv_cpu; |
| }; |
| |
| static LIST_HEAD(pcache); |
| |
| /* |
| * This points to the current valid container of microcode patches which we will |
| * save from the initrd before jettisoning its contents. |
| */ |
| static u8 *container; |
| static size_t container_size; |
| |
| static u32 ucode_new_rev; |
| u8 amd_ucode_patch[PATCH_MAX_SIZE]; |
| static u16 this_equiv_id; |
| |
| static struct cpio_data ucode_cpio; |
| |
| /* |
| * Microcode patch container file is prepended to the initrd in cpio format. |
| * See Documentation/x86/early-microcode.txt |
| */ |
| static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin"; |
| |
| static struct cpio_data __init find_ucode_in_initrd(void) |
| { |
| long offset = 0; |
| char *path; |
| void *start; |
| size_t size; |
| |
| #ifdef CONFIG_X86_32 |
| struct boot_params *p; |
| |
| /* |
| * On 32-bit, early load occurs before paging is turned on so we need |
| * to use physical addresses. |
| */ |
| p = (struct boot_params *)__pa_nodebug(&boot_params); |
| path = (char *)__pa_nodebug(ucode_path); |
| start = (void *)p->hdr.ramdisk_image; |
| size = p->hdr.ramdisk_size; |
| #else |
| path = ucode_path; |
| start = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET); |
| size = boot_params.hdr.ramdisk_size; |
| #endif |
| |
| return find_cpio_data(path, start, size, &offset); |
| } |
| |
| static size_t compute_container_size(u8 *data, u32 total_size) |
| { |
| size_t size = 0; |
| u32 *header = (u32 *)data; |
| |
| if (header[0] != UCODE_MAGIC || |
| header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */ |
| header[2] == 0) /* size */ |
| return size; |
| |
| size = header[2] + CONTAINER_HDR_SZ; |
| total_size -= size; |
| data += size; |
| |
| while (total_size) { |
| u16 patch_size; |
| |
| header = (u32 *)data; |
| |
| if (header[0] != UCODE_UCODE_TYPE) |
| break; |
| |
| /* |
| * Sanity-check patch size. |
| */ |
| patch_size = header[1]; |
| if (patch_size > PATCH_MAX_SIZE) |
| break; |
| |
| size += patch_size + SECTION_HDR_SIZE; |
| data += patch_size + SECTION_HDR_SIZE; |
| total_size -= patch_size + SECTION_HDR_SIZE; |
| } |
| |
| return size; |
| } |
| |
| /* |
| * Early load occurs before we can vmalloc(). So we look for the microcode |
| * patch container file in initrd, traverse equivalent cpu table, look for a |
| * matching microcode patch, and update, all in initrd memory in place. |
| * When vmalloc() is available for use later -- on 64-bit during first AP load, |
| * and on 32-bit during save_microcode_in_initrd_amd() -- we can call |
| * load_microcode_amd() to save equivalent cpu table and microcode patches in |
| * kernel heap memory. |
| */ |
| static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch) |
| { |
| struct equiv_cpu_entry *eq; |
| size_t *cont_sz; |
| u32 *header; |
| u8 *data, **cont; |
| u8 (*patch)[PATCH_MAX_SIZE]; |
| u16 eq_id = 0; |
| int offset, left; |
| u32 rev, eax, ebx, ecx, edx; |
| u32 *new_rev; |
| |
| #ifdef CONFIG_X86_32 |
| new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); |
| cont_sz = (size_t *)__pa_nodebug(&container_size); |
| cont = (u8 **)__pa_nodebug(&container); |
| patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch); |
| #else |
| new_rev = &ucode_new_rev; |
| cont_sz = &container_size; |
| cont = &container; |
| patch = &amd_ucode_patch; |
| #endif |
| |
| data = ucode; |
| left = size; |
| header = (u32 *)data; |
| |
| /* find equiv cpu table */ |
| if (header[0] != UCODE_MAGIC || |
| header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */ |
| header[2] == 0) /* size */ |
| return; |
| |
| eax = 0x00000001; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| |
| while (left > 0) { |
| eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ); |
| |
| *cont = data; |
| |
| /* Advance past the container header */ |
| offset = header[2] + CONTAINER_HDR_SZ; |
| data += offset; |
| left -= offset; |
| |
| eq_id = find_equiv_id(eq, eax); |
| if (eq_id) { |
| this_equiv_id = eq_id; |
| *cont_sz = compute_container_size(*cont, left + offset); |
| |
| /* |
| * truncate how much we need to iterate over in the |
| * ucode update loop below |
| */ |
| left = *cont_sz - offset; |
| break; |
| } |
| |
| /* |
| * support multiple container files appended together. if this |
| * one does not have a matching equivalent cpu entry, we fast |
| * forward to the next container file. |
| */ |
| while (left > 0) { |
| header = (u32 *)data; |
| if (header[0] == UCODE_MAGIC && |
| header[1] == UCODE_EQUIV_CPU_TABLE_TYPE) |
| break; |
| |
| offset = header[1] + SECTION_HDR_SIZE; |
| data += offset; |
| left -= offset; |
| } |
| |
| /* mark where the next microcode container file starts */ |
| offset = data - (u8 *)ucode; |
| ucode = data; |
| } |
| |
| if (!eq_id) { |
| *cont = NULL; |
| *cont_sz = 0; |
| return; |
| } |
| |
| if (check_current_patch_level(&rev, true)) |
| return; |
| |
| while (left > 0) { |
| struct microcode_amd *mc; |
| |
| header = (u32 *)data; |
| if (header[0] != UCODE_UCODE_TYPE || /* type */ |
| header[1] == 0) /* size */ |
| break; |
| |
| mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE); |
| |
| if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) { |
| |
| if (!__apply_microcode_amd(mc)) { |
| rev = mc->hdr.patch_id; |
| *new_rev = rev; |
| |
| if (save_patch) |
| memcpy(patch, mc, |
| min_t(u32, header[1], PATCH_MAX_SIZE)); |
| } |
| } |
| |
| offset = header[1] + SECTION_HDR_SIZE; |
| data += offset; |
| left -= offset; |
| } |
| } |
| |
| static bool __init load_builtin_amd_microcode(struct cpio_data *cp, |
| unsigned int family) |
| { |
| #ifdef CONFIG_X86_64 |
| char fw_name[36] = "amd-ucode/microcode_amd.bin"; |
| |
| if (family >= 0x15) |
| snprintf(fw_name, sizeof(fw_name), |
| "amd-ucode/microcode_amd_fam%.2xh.bin", family); |
| |
| return get_builtin_firmware(cp, fw_name); |
| #else |
| return false; |
| #endif |
| } |
| |
| void __init load_ucode_amd_bsp(unsigned int family) |
| { |
| struct cpio_data cp; |
| void **data; |
| size_t *size; |
| |
| #ifdef CONFIG_X86_32 |
| data = (void **)__pa_nodebug(&ucode_cpio.data); |
| size = (size_t *)__pa_nodebug(&ucode_cpio.size); |
| #else |
| data = &ucode_cpio.data; |
| size = &ucode_cpio.size; |
| #endif |
| |
| cp = find_ucode_in_initrd(); |
| if (!cp.data) { |
| if (!load_builtin_amd_microcode(&cp, family)) |
| return; |
| } |
| |
| *data = cp.data; |
| *size = cp.size; |
| |
| apply_ucode_in_initrd(cp.data, cp.size, true); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * On 32-bit, since AP's early load occurs before paging is turned on, we |
| * cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during |
| * cold boot, AP will apply_ucode_in_initrd() just like the BSP. During |
| * save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch, |
| * which is used upon resume from suspend. |
| */ |
| void load_ucode_amd_ap(void) |
| { |
| struct microcode_amd *mc; |
| size_t *usize; |
| void **ucode; |
| |
| mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch); |
| if (mc->hdr.patch_id && mc->hdr.processor_rev_id) { |
| __apply_microcode_amd(mc); |
| return; |
| } |
| |
| ucode = (void *)__pa_nodebug(&container); |
| usize = (size_t *)__pa_nodebug(&container_size); |
| |
| if (!*ucode || !*usize) |
| return; |
| |
| apply_ucode_in_initrd(*ucode, *usize, false); |
| } |
| |
| static void __init collect_cpu_sig_on_bsp(void *arg) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| |
| uci->cpu_sig.sig = cpuid_eax(0x00000001); |
| } |
| |
| static void __init get_bsp_sig(void) |
| { |
| unsigned int bsp = boot_cpu_data.cpu_index; |
| struct ucode_cpu_info *uci = ucode_cpu_info + bsp; |
| |
| if (!uci->cpu_sig.sig) |
| smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1); |
| } |
| #else |
| void load_ucode_amd_ap(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct equiv_cpu_entry *eq; |
| struct microcode_amd *mc; |
| u32 rev, eax; |
| u16 eq_id; |
| |
| /* Exit if called on the BSP. */ |
| if (!cpu) |
| return; |
| |
| if (!container) |
| return; |
| |
| /* |
| * 64-bit runs with paging enabled, thus early==false. |
| */ |
| if (check_current_patch_level(&rev, false)) |
| return; |
| |
| eax = cpuid_eax(0x00000001); |
| eq = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ); |
| |
| eq_id = find_equiv_id(eq, eax); |
| if (!eq_id) |
| return; |
| |
| if (eq_id == this_equiv_id) { |
| mc = (struct microcode_amd *)amd_ucode_patch; |
| |
| if (mc && rev < mc->hdr.patch_id) { |
| if (!__apply_microcode_amd(mc)) |
| ucode_new_rev = mc->hdr.patch_id; |
| } |
| |
| } else { |
| if (!ucode_cpio.data) |
| return; |
| |
| /* |
| * AP has a different equivalence ID than BSP, looks like |
| * mixed-steppings silicon so go through the ucode blob anew. |
| */ |
| apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false); |
| } |
| } |
| #endif |
| |
| int __init save_microcode_in_initrd_amd(void) |
| { |
| unsigned long cont; |
| int retval = 0; |
| enum ucode_state ret; |
| u8 *cont_va; |
| u32 eax; |
| |
| if (!container) |
| return -EINVAL; |
| |
| #ifdef CONFIG_X86_32 |
| get_bsp_sig(); |
| cont = (unsigned long)container; |
| cont_va = __va(container); |
| #else |
| /* |
| * We need the physical address of the container for both bitness since |
| * boot_params.hdr.ramdisk_image is a physical address. |
| */ |
| cont = __pa(container); |
| cont_va = container; |
| #endif |
| |
| /* |
| * Take into account the fact that the ramdisk might get relocated and |
| * therefore we need to recompute the container's position in virtual |
| * memory space. |
| */ |
| if (relocated_ramdisk) |
| container = (u8 *)(__va(relocated_ramdisk) + |
| (cont - boot_params.hdr.ramdisk_image)); |
| else |
| container = cont_va; |
| |
| if (ucode_new_rev) |
| pr_info("microcode: updated early to new patch_level=0x%08x\n", |
| ucode_new_rev); |
| |
| eax = cpuid_eax(0x00000001); |
| eax = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff); |
| |
| ret = load_microcode_amd(smp_processor_id(), eax, container, container_size); |
| if (ret != UCODE_OK) |
| retval = -EINVAL; |
| |
| /* |
| * This will be freed any msec now, stash patches for the current |
| * family and switch to patch cache for cpu hotplug, etc later. |
| */ |
| container = NULL; |
| container_size = 0; |
| |
| return retval; |
| } |
| |
| void reload_ucode_amd(void) |
| { |
| struct microcode_amd *mc; |
| u32 rev; |
| |
| /* |
| * early==false because this is a syscore ->resume path and by |
| * that time paging is long enabled. |
| */ |
| if (check_current_patch_level(&rev, false)) |
| return; |
| |
| mc = (struct microcode_amd *)amd_ucode_patch; |
| |
| if (mc && rev < mc->hdr.patch_id) { |
| if (!__apply_microcode_amd(mc)) { |
| ucode_new_rev = mc->hdr.patch_id; |
| pr_info("microcode: reload patch_level=0x%08x\n", |
| ucode_new_rev); |
| } |
| } |
| } |
| static u16 __find_equiv_id(unsigned int cpu) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig); |
| } |
| |
| static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu) |
| { |
| int i = 0; |
| |
| BUG_ON(!equiv_cpu_table); |
| |
| while (equiv_cpu_table[i].equiv_cpu != 0) { |
| if (equiv_cpu == equiv_cpu_table[i].equiv_cpu) |
| return equiv_cpu_table[i].installed_cpu; |
| i++; |
| } |
| return 0; |
| } |
| |
| /* |
| * a small, trivial cache of per-family ucode patches |
| */ |
| static struct ucode_patch *cache_find_patch(u16 equiv_cpu) |
| { |
| struct ucode_patch *p; |
| |
| list_for_each_entry(p, &pcache, plist) |
| if (p->equiv_cpu == equiv_cpu) |
| return p; |
| return NULL; |
| } |
| |
| static void update_cache(struct ucode_patch *new_patch) |
| { |
| struct ucode_patch *p; |
| |
| list_for_each_entry(p, &pcache, plist) { |
| if (p->equiv_cpu == new_patch->equiv_cpu) { |
| if (p->patch_id >= new_patch->patch_id) |
| /* we already have the latest patch */ |
| return; |
| |
| list_replace(&p->plist, &new_patch->plist); |
| kfree(p->data); |
| kfree(p); |
| return; |
| } |
| } |
| /* no patch found, add it */ |
| list_add_tail(&new_patch->plist, &pcache); |
| } |
| |
| static void free_cache(void) |
| { |
| struct ucode_patch *p, *tmp; |
| |
| list_for_each_entry_safe(p, tmp, &pcache, plist) { |
| __list_del(p->plist.prev, p->plist.next); |
| kfree(p->data); |
| kfree(p); |
| } |
| } |
| |
| static struct ucode_patch *find_patch(unsigned int cpu) |
| { |
| u16 equiv_id; |
| |
| equiv_id = __find_equiv_id(cpu); |
| if (!equiv_id) |
| return NULL; |
| |
| return cache_find_patch(equiv_id); |
| } |
| |
| static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| struct ucode_patch *p; |
| |
| csig->sig = cpuid_eax(0x00000001); |
| csig->rev = c->microcode; |
| |
| /* |
| * a patch could have been loaded early, set uci->mc so that |
| * mc_bp_resume() can call apply_microcode() |
| */ |
| p = find_patch(cpu); |
| if (p && (p->patch_id == csig->rev)) |
| uci->mc = p->data; |
| |
| pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev); |
| |
| return 0; |
| } |
| |
| static unsigned int verify_patch_size(u8 family, u32 patch_size, |
| unsigned int size) |
| { |
| u32 max_size; |
| |
| #define F1XH_MPB_MAX_SIZE 2048 |
| #define F14H_MPB_MAX_SIZE 1824 |
| #define F15H_MPB_MAX_SIZE 4096 |
| #define F16H_MPB_MAX_SIZE 3458 |
| |
| switch (family) { |
| case 0x14: |
| max_size = F14H_MPB_MAX_SIZE; |
| break; |
| case 0x15: |
| max_size = F15H_MPB_MAX_SIZE; |
| break; |
| case 0x16: |
| max_size = F16H_MPB_MAX_SIZE; |
| break; |
| default: |
| max_size = F1XH_MPB_MAX_SIZE; |
| break; |
| } |
| |
| if (patch_size > min_t(u32, size, max_size)) { |
| pr_err("patch size mismatch\n"); |
| return 0; |
| } |
| |
| return patch_size; |
| } |
| |
| /* |
| * Those patch levels cannot be updated to newer ones and thus should be final. |
| */ |
| static u32 final_levels[] = { |
| 0x01000098, |
| 0x0100009f, |
| 0x010000af, |
| 0, /* T-101 terminator */ |
| }; |
| |
| /* |
| * Check the current patch level on this CPU. |
| * |
| * @rev: Use it to return the patch level. It is set to 0 in the case of |
| * error. |
| * |
| * Returns: |
| * - true: if update should stop |
| * - false: otherwise |
| */ |
| bool check_current_patch_level(u32 *rev, bool early) |
| { |
| u32 lvl, dummy, i; |
| bool ret = false; |
| u32 *levels; |
| |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); |
| |
| if (IS_ENABLED(CONFIG_X86_32) && early) |
| levels = (u32 *)__pa_nodebug(&final_levels); |
| else |
| levels = final_levels; |
| |
| for (i = 0; levels[i]; i++) { |
| if (lvl == levels[i]) { |
| lvl = 0; |
| ret = true; |
| break; |
| } |
| } |
| |
| if (rev) |
| *rev = lvl; |
| |
| return ret; |
| } |
| |
| int __apply_microcode_amd(struct microcode_amd *mc_amd) |
| { |
| u32 rev, dummy; |
| |
| native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code); |
| |
| /* verify patch application was successful */ |
| native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); |
| if (rev != mc_amd->hdr.patch_id) |
| return -1; |
| |
| return 0; |
| } |
| |
| int apply_microcode_amd(int cpu) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| struct microcode_amd *mc_amd; |
| struct ucode_cpu_info *uci; |
| struct ucode_patch *p; |
| u32 rev; |
| |
| BUG_ON(raw_smp_processor_id() != cpu); |
| |
| uci = ucode_cpu_info + cpu; |
| |
| p = find_patch(cpu); |
| if (!p) |
| return 0; |
| |
| mc_amd = p->data; |
| uci->mc = p->data; |
| |
| if (check_current_patch_level(&rev, false)) |
| return -1; |
| |
| /* need to apply patch? */ |
| if (rev >= mc_amd->hdr.patch_id) { |
| c->microcode = rev; |
| uci->cpu_sig.rev = rev; |
| return 0; |
| } |
| |
| if (__apply_microcode_amd(mc_amd)) { |
| pr_err("CPU%d: update failed for patch_level=0x%08x\n", |
| cpu, mc_amd->hdr.patch_id); |
| return -1; |
| } |
| pr_info("CPU%d: new patch_level=0x%08x\n", cpu, |
| mc_amd->hdr.patch_id); |
| |
| uci->cpu_sig.rev = mc_amd->hdr.patch_id; |
| c->microcode = mc_amd->hdr.patch_id; |
| |
| return 0; |
| } |
| |
| static int install_equiv_cpu_table(const u8 *buf) |
| { |
| unsigned int *ibuf = (unsigned int *)buf; |
| unsigned int type = ibuf[1]; |
| unsigned int size = ibuf[2]; |
| |
| if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) { |
| pr_err("empty section/" |
| "invalid type field in container file section header\n"); |
| return -EINVAL; |
| } |
| |
| equiv_cpu_table = vmalloc(size); |
| if (!equiv_cpu_table) { |
| pr_err("failed to allocate equivalent CPU table\n"); |
| return -ENOMEM; |
| } |
| |
| memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size); |
| |
| /* add header length */ |
| return size + CONTAINER_HDR_SZ; |
| } |
| |
| static void free_equiv_cpu_table(void) |
| { |
| vfree(equiv_cpu_table); |
| equiv_cpu_table = NULL; |
| } |
| |
| static void cleanup(void) |
| { |
| free_equiv_cpu_table(); |
| free_cache(); |
| } |
| |
| /* |
| * We return the current size even if some of the checks failed so that |
| * we can skip over the next patch. If we return a negative value, we |
| * signal a grave error like a memory allocation has failed and the |
| * driver cannot continue functioning normally. In such cases, we tear |
| * down everything we've used up so far and exit. |
| */ |
| static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover) |
| { |
| struct microcode_header_amd *mc_hdr; |
| struct ucode_patch *patch; |
| unsigned int patch_size, crnt_size, ret; |
| u32 proc_fam; |
| u16 proc_id; |
| |
| patch_size = *(u32 *)(fw + 4); |
| crnt_size = patch_size + SECTION_HDR_SIZE; |
| mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); |
| proc_id = mc_hdr->processor_rev_id; |
| |
| proc_fam = find_cpu_family_by_equiv_cpu(proc_id); |
| if (!proc_fam) { |
| pr_err("No patch family for equiv ID: 0x%04x\n", proc_id); |
| return crnt_size; |
| } |
| |
| /* check if patch is for the current family */ |
| proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff); |
| if (proc_fam != family) |
| return crnt_size; |
| |
| if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { |
| pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", |
| mc_hdr->patch_id); |
| return crnt_size; |
| } |
| |
| ret = verify_patch_size(family, patch_size, leftover); |
| if (!ret) { |
| pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id); |
| return crnt_size; |
| } |
| |
| patch = kzalloc(sizeof(*patch), GFP_KERNEL); |
| if (!patch) { |
| pr_err("Patch allocation failure.\n"); |
| return -EINVAL; |
| } |
| |
| patch->data = kzalloc(patch_size, GFP_KERNEL); |
| if (!patch->data) { |
| pr_err("Patch data allocation failure.\n"); |
| kfree(patch); |
| return -EINVAL; |
| } |
| |
| /* All looks ok, copy patch... */ |
| memcpy(patch->data, fw + SECTION_HDR_SIZE, patch_size); |
| INIT_LIST_HEAD(&patch->plist); |
| patch->patch_id = mc_hdr->patch_id; |
| patch->equiv_cpu = proc_id; |
| |
| pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n", |
| __func__, patch->patch_id, proc_id); |
| |
| /* ... and add to cache. */ |
| update_cache(patch); |
| |
| return crnt_size; |
| } |
| |
| static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, |
| size_t size) |
| { |
| enum ucode_state ret = UCODE_ERROR; |
| unsigned int leftover; |
| u8 *fw = (u8 *)data; |
| int crnt_size = 0; |
| int offset; |
| |
| offset = install_equiv_cpu_table(data); |
| if (offset < 0) { |
| pr_err("failed to create equivalent cpu table\n"); |
| return ret; |
| } |
| fw += offset; |
| leftover = size - offset; |
| |
| if (*(u32 *)fw != UCODE_UCODE_TYPE) { |
| pr_err("invalid type field in container file section header\n"); |
| free_equiv_cpu_table(); |
| return ret; |
| } |
| |
| while (leftover) { |
| crnt_size = verify_and_add_patch(family, fw, leftover); |
| if (crnt_size < 0) |
| return ret; |
| |
| fw += crnt_size; |
| leftover -= crnt_size; |
| } |
| |
| return UCODE_OK; |
| } |
| |
| enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size) |
| { |
| enum ucode_state ret; |
| |
| /* free old equiv table */ |
| free_equiv_cpu_table(); |
| |
| ret = __load_microcode_amd(family, data, size); |
| |
| if (ret != UCODE_OK) |
| cleanup(); |
| |
| #ifdef CONFIG_X86_32 |
| /* save BSP's matching patch for early load */ |
| if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) { |
| struct ucode_patch *p = find_patch(cpu); |
| if (p) { |
| memset(amd_ucode_patch, 0, PATCH_MAX_SIZE); |
| memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), |
| PATCH_MAX_SIZE)); |
| } |
| } |
| #endif |
| return ret; |
| } |
| |
| /* |
| * AMD microcode firmware naming convention, up to family 15h they are in |
| * the legacy file: |
| * |
| * amd-ucode/microcode_amd.bin |
| * |
| * This legacy file is always smaller than 2K in size. |
| * |
| * Beginning with family 15h, they are in family-specific firmware files: |
| * |
| * amd-ucode/microcode_amd_fam15h.bin |
| * amd-ucode/microcode_amd_fam16h.bin |
| * ... |
| * |
| * These might be larger than 2K. |
| */ |
| static enum ucode_state request_microcode_amd(int cpu, struct device *device, |
| bool refresh_fw) |
| { |
| char fw_name[36] = "amd-ucode/microcode_amd.bin"; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| enum ucode_state ret = UCODE_NFOUND; |
| const struct firmware *fw; |
| |
| /* reload ucode container only on the boot cpu */ |
| if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index) |
| return UCODE_OK; |
| |
| if (c->x86 >= 0x15) |
| snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); |
| |
| if (request_firmware_direct(&fw, (const char *)fw_name, device)) { |
| pr_debug("failed to load file %s\n", fw_name); |
| goto out; |
| } |
| |
| ret = UCODE_ERROR; |
| if (*(u32 *)fw->data != UCODE_MAGIC) { |
| pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data); |
| goto fw_release; |
| } |
| |
| ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size); |
| |
| fw_release: |
| release_firmware(fw); |
| |
| out: |
| return ret; |
| } |
| |
| static enum ucode_state |
| request_microcode_user(int cpu, const void __user *buf, size_t size) |
| { |
| return UCODE_ERROR; |
| } |
| |
| static void microcode_fini_cpu_amd(int cpu) |
| { |
| struct ucode_cpu_info *uci = ucode_cpu_info + cpu; |
| |
| uci->mc = NULL; |
| } |
| |
| static struct microcode_ops microcode_amd_ops = { |
| .request_microcode_user = request_microcode_user, |
| .request_microcode_fw = request_microcode_amd, |
| .collect_cpu_info = collect_cpu_info_amd, |
| .apply_microcode = apply_microcode_amd, |
| .microcode_fini_cpu = microcode_fini_cpu_amd, |
| }; |
| |
| struct microcode_ops * __init init_amd_microcode(void) |
| { |
| struct cpuinfo_x86 *c = &boot_cpu_data; |
| |
| if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { |
| pr_warning("AMD CPU family 0x%x not supported\n", c->x86); |
| return NULL; |
| } |
| |
| return µcode_amd_ops; |
| } |
| |
| void __exit exit_amd_microcode(void) |
| { |
| cleanup(); |
| } |