| /* |
| * Kernel Probes (KProbes) |
| * arch/i386/kernel/kprobes.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston |
| * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> added function-return probes. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/spinlock.h> |
| #include <linux/preempt.h> |
| #include <asm/cacheflush.h> |
| #include <asm/kdebug.h> |
| #include <asm/desc.h> |
| |
| static struct kprobe *current_kprobe; |
| static unsigned long kprobe_status, kprobe_old_eflags, kprobe_saved_eflags; |
| static struct kprobe *kprobe_prev; |
| static unsigned long kprobe_status_prev, kprobe_old_eflags_prev, kprobe_saved_eflags_prev; |
| static struct pt_regs jprobe_saved_regs; |
| static long *jprobe_saved_esp; |
| /* copy of the kernel stack at the probe fire time */ |
| static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE]; |
| void jprobe_return_end(void); |
| |
| /* |
| * returns non-zero if opcode modifies the interrupt flag. |
| */ |
| static inline int is_IF_modifier(kprobe_opcode_t opcode) |
| { |
| switch (opcode) { |
| case 0xfa: /* cli */ |
| case 0xfb: /* sti */ |
| case 0xcf: /* iret/iretd */ |
| case 0x9d: /* popf/popfd */ |
| return 1; |
| } |
| return 0; |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |
| |
| void arch_copy_kprobe(struct kprobe *p) |
| { |
| memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| p->opcode = *p->addr; |
| } |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = BREAKPOINT_INSTRUCTION; |
| flush_icache_range((unsigned long) p->addr, |
| (unsigned long) p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flush_icache_range((unsigned long) p->addr, |
| (unsigned long) p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| } |
| |
| static inline void save_previous_kprobe(void) |
| { |
| kprobe_prev = current_kprobe; |
| kprobe_status_prev = kprobe_status; |
| kprobe_old_eflags_prev = kprobe_old_eflags; |
| kprobe_saved_eflags_prev = kprobe_saved_eflags; |
| } |
| |
| static inline void restore_previous_kprobe(void) |
| { |
| current_kprobe = kprobe_prev; |
| kprobe_status = kprobe_status_prev; |
| kprobe_old_eflags = kprobe_old_eflags_prev; |
| kprobe_saved_eflags = kprobe_saved_eflags_prev; |
| } |
| |
| static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs) |
| { |
| current_kprobe = p; |
| kprobe_saved_eflags = kprobe_old_eflags |
| = (regs->eflags & (TF_MASK | IF_MASK)); |
| if (is_IF_modifier(p->opcode)) |
| kprobe_saved_eflags &= ~IF_MASK; |
| } |
| |
| static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| regs->eflags |= TF_MASK; |
| regs->eflags &= ~IF_MASK; |
| /*single step inline if the instruction is an int3*/ |
| if (p->opcode == BREAKPOINT_INSTRUCTION) |
| regs->eip = (unsigned long)p->addr; |
| else |
| regs->eip = (unsigned long)&p->ainsn.insn; |
| } |
| |
| struct task_struct *arch_get_kprobe_task(void *ptr) |
| { |
| return ((struct thread_info *) (((unsigned long) ptr) & |
| (~(THREAD_SIZE -1))))->task; |
| } |
| |
| void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) |
| { |
| unsigned long *sara = (unsigned long *)®s->esp; |
| struct kretprobe_instance *ri; |
| static void *orig_ret_addr; |
| |
| /* |
| * Save the return address when the return probe hits |
| * the first time, and use it to populate the (krprobe |
| * instance)->ret_addr for subsequent return probes at |
| * the same addrress since stack address would have |
| * the kretprobe_trampoline by then. |
| */ |
| if (((void*) *sara) != kretprobe_trampoline) |
| orig_ret_addr = (void*) *sara; |
| |
| if ((ri = get_free_rp_inst(rp)) != NULL) { |
| ri->rp = rp; |
| ri->stack_addr = sara; |
| ri->ret_addr = orig_ret_addr; |
| add_rp_inst(ri); |
| /* Replace the return addr with trampoline addr */ |
| *sara = (unsigned long) &kretprobe_trampoline; |
| } else { |
| rp->nmissed++; |
| } |
| } |
| |
| void arch_kprobe_flush_task(struct task_struct *tk) |
| { |
| struct kretprobe_instance *ri; |
| while ((ri = get_rp_inst_tsk(tk)) != NULL) { |
| *((unsigned long *)(ri->stack_addr)) = |
| (unsigned long) ri->ret_addr; |
| recycle_rp_inst(ri); |
| } |
| } |
| |
| /* |
| * Interrupts are disabled on entry as trap3 is an interrupt gate and they |
| * remain disabled thorough out this function. |
| */ |
| static int kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| kprobe_opcode_t *addr = NULL; |
| unsigned long *lp; |
| |
| /* We're in an interrupt, but this is clear and BUG()-safe. */ |
| preempt_disable(); |
| /* Check if the application is using LDT entry for its code segment and |
| * calculate the address by reading the base address from the LDT entry. |
| */ |
| if ((regs->xcs & 4) && (current->mm)) { |
| lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8) |
| + (char *) current->mm->context.ldt); |
| addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip - |
| sizeof(kprobe_opcode_t)); |
| } else { |
| addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t)); |
| } |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| /* We *are* holding lock here, so this is safe. |
| Disarm the probe we just hit, and ignore it. */ |
| p = get_kprobe(addr); |
| if (p) { |
| if (kprobe_status == KPROBE_HIT_SS) { |
| regs->eflags &= ~TF_MASK; |
| regs->eflags |= kprobe_saved_eflags; |
| unlock_kprobes(); |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(); |
| set_current_kprobe(p, regs); |
| p->nmissed++; |
| prepare_singlestep(p, regs); |
| kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else { |
| p = current_kprobe; |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } |
| /* If it's not ours, can't be delete race, (we hold lock). */ |
| goto no_kprobe; |
| } |
| |
| lock_kprobes(); |
| p = get_kprobe(addr); |
| if (!p) { |
| unlock_kprobes(); |
| if (regs->eflags & VM_MASK) { |
| /* We are in virtual-8086 mode. Return 0 */ |
| goto no_kprobe; |
| } |
| |
| if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| kprobe_status = KPROBE_HIT_ACTIVE; |
| set_current_kprobe(p, regs); |
| |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* handler has already set things up, so skip ss setup */ |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs); |
| kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* |
| * For function-return probes, init_kprobes() establishes a probepoint |
| * here. When a retprobed function returns, this probe is hit and |
| * trampoline_probe_handler() runs, calling the kretprobe's handler. |
| */ |
| void kretprobe_trampoline_holder(void) |
| { |
| asm volatile ( ".global kretprobe_trampoline\n" |
| "kretprobe_trampoline: \n" |
| "nop\n"); |
| } |
| |
| /* |
| * Called when we hit the probe point at kretprobe_trampoline |
| */ |
| int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct task_struct *tsk; |
| struct kretprobe_instance *ri; |
| struct hlist_head *head; |
| struct hlist_node *node; |
| unsigned long *sara = ((unsigned long *) ®s->esp) - 1; |
| |
| tsk = arch_get_kprobe_task(sara); |
| head = kretprobe_inst_table_head(tsk); |
| |
| hlist_for_each_entry(ri, node, head, hlist) { |
| if (ri->stack_addr == sara && ri->rp) { |
| if (ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| } |
| } |
| return 0; |
| } |
| |
| void trampoline_post_handler(struct kprobe *p, struct pt_regs *regs, |
| unsigned long flags) |
| { |
| struct kretprobe_instance *ri; |
| /* RA already popped */ |
| unsigned long *sara = ((unsigned long *)®s->esp) - 1; |
| |
| while ((ri = get_rp_inst(sara))) { |
| regs->eip = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri); |
| } |
| regs->eflags &= ~TF_MASK; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "int 3" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| * |
| * This function prepares to return from the post-single-step |
| * interrupt. We have to fix up the stack as follows: |
| * |
| * 0) Except in the case of absolute or indirect jump or call instructions, |
| * the new eip is relative to the copied instruction. We need to make |
| * it relative to the original instruction. |
| * |
| * 1) If the single-stepped instruction was pushfl, then the TF and IF |
| * flags are set in the just-pushed eflags, and may need to be cleared. |
| * |
| * 2) If the single-stepped instruction was a call, the return address |
| * that is atop the stack is the address following the copied instruction. |
| * We need to make it the address following the original instruction. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long *tos = (unsigned long *)®s->esp; |
| unsigned long next_eip = 0; |
| unsigned long copy_eip = (unsigned long)&p->ainsn.insn; |
| unsigned long orig_eip = (unsigned long)p->addr; |
| |
| switch (p->ainsn.insn[0]) { |
| case 0x9c: /* pushfl */ |
| *tos &= ~(TF_MASK | IF_MASK); |
| *tos |= kprobe_old_eflags; |
| break; |
| case 0xc3: /* ret/lret */ |
| case 0xcb: |
| case 0xc2: |
| case 0xca: |
| regs->eflags &= ~TF_MASK; |
| /* eip is already adjusted, no more changes required*/ |
| return; |
| case 0xe8: /* call relative - Fix return addr */ |
| *tos = orig_eip + (*tos - copy_eip); |
| break; |
| case 0xff: |
| if ((p->ainsn.insn[1] & 0x30) == 0x10) { |
| /* call absolute, indirect */ |
| /* Fix return addr; eip is correct. */ |
| next_eip = regs->eip; |
| *tos = orig_eip + (*tos - copy_eip); |
| } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */ |
| ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */ |
| /* eip is correct. */ |
| next_eip = regs->eip; |
| } |
| break; |
| case 0xea: /* jmp absolute -- eip is correct */ |
| next_eip = regs->eip; |
| break; |
| default: |
| break; |
| } |
| |
| regs->eflags &= ~TF_MASK; |
| if (next_eip) { |
| regs->eip = next_eip; |
| } else { |
| regs->eip = orig_eip + (regs->eip - copy_eip); |
| } |
| } |
| |
| /* |
| * Interrupts are disabled on entry as trap1 is an interrupt gate and they |
| * remain disabled thoroughout this function. And we hold kprobe lock. |
| */ |
| static inline int post_kprobe_handler(struct pt_regs *regs) |
| { |
| if (!kprobe_running()) |
| return 0; |
| |
| if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) { |
| kprobe_status = KPROBE_HIT_SSDONE; |
| current_kprobe->post_handler(current_kprobe, regs, 0); |
| } |
| |
| if (current_kprobe->post_handler != trampoline_post_handler) |
| resume_execution(current_kprobe, regs); |
| regs->eflags |= kprobe_saved_eflags; |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(); |
| goto out; |
| } |
| unlock_kprobes(); |
| out: |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, eflags |
| * will have TF set, in which case, continue the remaining processing |
| * of do_debug, as if this is not a probe hit. |
| */ |
| if (regs->eflags & TF_MASK) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Interrupts disabled, kprobe_lock held. */ |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| if (current_kprobe->fault_handler |
| && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| return 1; |
| |
| if (kprobe_status & KPROBE_HIT_SS) { |
| resume_execution(current_kprobe, regs); |
| regs->eflags |= kprobe_old_eflags; |
| |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| switch (val) { |
| case DIE_INT3: |
| if (kprobe_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_DEBUG: |
| if (post_kprobe_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_GPF: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_PAGE_FAULT: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr; |
| |
| jprobe_saved_regs = *regs; |
| jprobe_saved_esp = ®s->esp; |
| addr = (unsigned long)jprobe_saved_esp; |
| |
| /* |
| * TBD: As Linus pointed out, gcc assumes that the callee |
| * owns the argument space and could overwrite it, e.g. |
| * tailcall optimization. So, to be absolutely safe |
| * we also save and restore enough stack bytes to cover |
| * the argument area. |
| */ |
| memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr)); |
| regs->eflags &= ~IF_MASK; |
| regs->eip = (unsigned long)(jp->entry); |
| return 1; |
| } |
| |
| void jprobe_return(void) |
| { |
| preempt_enable_no_resched(); |
| asm volatile (" xchgl %%ebx,%%esp \n" |
| " int3 \n" |
| " .globl jprobe_return_end \n" |
| " jprobe_return_end: \n" |
| " nop \n"::"b" |
| (jprobe_saved_esp):"memory"); |
| } |
| |
| int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| u8 *addr = (u8 *) (regs->eip - 1); |
| unsigned long stack_addr = (unsigned long)jprobe_saved_esp; |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| |
| if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { |
| if (®s->esp != jprobe_saved_esp) { |
| struct pt_regs *saved_regs = |
| container_of(jprobe_saved_esp, struct pt_regs, esp); |
| printk("current esp %p does not match saved esp %p\n", |
| ®s->esp, jprobe_saved_esp); |
| printk("Saved registers for jprobe %p\n", jp); |
| show_registers(saved_regs); |
| printk("Current registers\n"); |
| show_registers(regs); |
| BUG(); |
| } |
| *regs = jprobe_saved_regs; |
| memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack, |
| MIN_STACK_SIZE(stack_addr)); |
| return 1; |
| } |
| return 0; |
| } |