| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| * Copyright (c) 2016 Facebook |
| */ |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/jhash.h> |
| #include <linux/filter.h> |
| #include <linux/rculist_nulls.h> |
| #include <linux/random.h> |
| #include <uapi/linux/btf.h> |
| #include "percpu_freelist.h" |
| #include "bpf_lru_list.h" |
| #include "map_in_map.h" |
| |
| #define HTAB_CREATE_FLAG_MASK \ |
| (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ |
| BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) |
| |
| #define BATCH_OPS(_name) \ |
| .map_lookup_batch = \ |
| _name##_map_lookup_batch, \ |
| .map_lookup_and_delete_batch = \ |
| _name##_map_lookup_and_delete_batch, \ |
| .map_update_batch = \ |
| generic_map_update_batch, \ |
| .map_delete_batch = \ |
| generic_map_delete_batch |
| |
| /* |
| * The bucket lock has two protection scopes: |
| * |
| * 1) Serializing concurrent operations from BPF programs on differrent |
| * CPUs |
| * |
| * 2) Serializing concurrent operations from BPF programs and sys_bpf() |
| * |
| * BPF programs can execute in any context including perf, kprobes and |
| * tracing. As there are almost no limits where perf, kprobes and tracing |
| * can be invoked from the lock operations need to be protected against |
| * deadlocks. Deadlocks can be caused by recursion and by an invocation in |
| * the lock held section when functions which acquire this lock are invoked |
| * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU |
| * variable bpf_prog_active, which prevents BPF programs attached to perf |
| * events, kprobes and tracing to be invoked before the prior invocation |
| * from one of these contexts completed. sys_bpf() uses the same mechanism |
| * by pinning the task to the current CPU and incrementing the recursion |
| * protection accross the map operation. |
| * |
| * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain |
| * operations like memory allocations (even with GFP_ATOMIC) from atomic |
| * contexts. This is required because even with GFP_ATOMIC the memory |
| * allocator calls into code pathes which acquire locks with long held lock |
| * sections. To ensure the deterministic behaviour these locks are regular |
| * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only |
| * true atomic contexts on an RT kernel are the low level hardware |
| * handling, scheduling, low level interrupt handling, NMIs etc. None of |
| * these contexts should ever do memory allocations. |
| * |
| * As regular device interrupt handlers and soft interrupts are forced into |
| * thread context, the existing code which does |
| * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); |
| * just works. |
| * |
| * In theory the BPF locks could be converted to regular spinlocks as well, |
| * but the bucket locks and percpu_freelist locks can be taken from |
| * arbitrary contexts (perf, kprobes, tracepoints) which are required to be |
| * atomic contexts even on RT. These mechanisms require preallocated maps, |
| * so there is no need to invoke memory allocations within the lock held |
| * sections. |
| * |
| * BPF maps which need dynamic allocation are only used from (forced) |
| * thread context on RT and can therefore use regular spinlocks which in |
| * turn allows to invoke memory allocations from the lock held section. |
| * |
| * On a non RT kernel this distinction is neither possible nor required. |
| * spinlock maps to raw_spinlock and the extra code is optimized out by the |
| * compiler. |
| */ |
| struct bucket { |
| struct hlist_nulls_head head; |
| union { |
| raw_spinlock_t raw_lock; |
| spinlock_t lock; |
| }; |
| }; |
| |
| struct bpf_htab { |
| struct bpf_map map; |
| struct bucket *buckets; |
| void *elems; |
| union { |
| struct pcpu_freelist freelist; |
| struct bpf_lru lru; |
| }; |
| struct htab_elem *__percpu *extra_elems; |
| atomic_t count; /* number of elements in this hashtable */ |
| u32 n_buckets; /* number of hash buckets */ |
| u32 elem_size; /* size of each element in bytes */ |
| u32 hashrnd; |
| }; |
| |
| /* each htab element is struct htab_elem + key + value */ |
| struct htab_elem { |
| union { |
| struct hlist_nulls_node hash_node; |
| struct { |
| void *padding; |
| union { |
| struct bpf_htab *htab; |
| struct pcpu_freelist_node fnode; |
| struct htab_elem *batch_flink; |
| }; |
| }; |
| }; |
| union { |
| struct rcu_head rcu; |
| struct bpf_lru_node lru_node; |
| }; |
| u32 hash; |
| char key[] __aligned(8); |
| }; |
| |
| static inline bool htab_is_prealloc(const struct bpf_htab *htab) |
| { |
| return !(htab->map.map_flags & BPF_F_NO_PREALLOC); |
| } |
| |
| static inline bool htab_use_raw_lock(const struct bpf_htab *htab) |
| { |
| return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); |
| } |
| |
| static void htab_init_buckets(struct bpf_htab *htab) |
| { |
| unsigned i; |
| |
| for (i = 0; i < htab->n_buckets; i++) { |
| INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); |
| if (htab_use_raw_lock(htab)) |
| raw_spin_lock_init(&htab->buckets[i].raw_lock); |
| else |
| spin_lock_init(&htab->buckets[i].lock); |
| } |
| } |
| |
| static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab, |
| struct bucket *b) |
| { |
| unsigned long flags; |
| |
| if (htab_use_raw_lock(htab)) |
| raw_spin_lock_irqsave(&b->raw_lock, flags); |
| else |
| spin_lock_irqsave(&b->lock, flags); |
| return flags; |
| } |
| |
| static inline void htab_unlock_bucket(const struct bpf_htab *htab, |
| struct bucket *b, |
| unsigned long flags) |
| { |
| if (htab_use_raw_lock(htab)) |
| raw_spin_unlock_irqrestore(&b->raw_lock, flags); |
| else |
| spin_unlock_irqrestore(&b->lock, flags); |
| } |
| |
| static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); |
| |
| static bool htab_is_lru(const struct bpf_htab *htab) |
| { |
| return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || |
| htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; |
| } |
| |
| static bool htab_is_percpu(const struct bpf_htab *htab) |
| { |
| return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || |
| htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; |
| } |
| |
| static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, |
| void __percpu *pptr) |
| { |
| *(void __percpu **)(l->key + key_size) = pptr; |
| } |
| |
| static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) |
| { |
| return *(void __percpu **)(l->key + key_size); |
| } |
| |
| static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) |
| { |
| return *(void **)(l->key + roundup(map->key_size, 8)); |
| } |
| |
| static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) |
| { |
| return (struct htab_elem *) (htab->elems + i * htab->elem_size); |
| } |
| |
| static void htab_free_elems(struct bpf_htab *htab) |
| { |
| int i; |
| |
| if (!htab_is_percpu(htab)) |
| goto free_elems; |
| |
| for (i = 0; i < htab->map.max_entries; i++) { |
| void __percpu *pptr; |
| |
| pptr = htab_elem_get_ptr(get_htab_elem(htab, i), |
| htab->map.key_size); |
| free_percpu(pptr); |
| cond_resched(); |
| } |
| free_elems: |
| bpf_map_area_free(htab->elems); |
| } |
| |
| /* The LRU list has a lock (lru_lock). Each htab bucket has a lock |
| * (bucket_lock). If both locks need to be acquired together, the lock |
| * order is always lru_lock -> bucket_lock and this only happens in |
| * bpf_lru_list.c logic. For example, certain code path of |
| * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), |
| * will acquire lru_lock first followed by acquiring bucket_lock. |
| * |
| * In hashtab.c, to avoid deadlock, lock acquisition of |
| * bucket_lock followed by lru_lock is not allowed. In such cases, |
| * bucket_lock needs to be released first before acquiring lru_lock. |
| */ |
| static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, |
| u32 hash) |
| { |
| struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); |
| struct htab_elem *l; |
| |
| if (node) { |
| l = container_of(node, struct htab_elem, lru_node); |
| memcpy(l->key, key, htab->map.key_size); |
| return l; |
| } |
| |
| return NULL; |
| } |
| |
| static int prealloc_init(struct bpf_htab *htab) |
| { |
| u32 num_entries = htab->map.max_entries; |
| int err = -ENOMEM, i; |
| |
| if (!htab_is_percpu(htab) && !htab_is_lru(htab)) |
| num_entries += num_possible_cpus(); |
| |
| htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries, |
| htab->map.numa_node); |
| if (!htab->elems) |
| return -ENOMEM; |
| |
| if (!htab_is_percpu(htab)) |
| goto skip_percpu_elems; |
| |
| for (i = 0; i < num_entries; i++) { |
| u32 size = round_up(htab->map.value_size, 8); |
| void __percpu *pptr; |
| |
| pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN); |
| if (!pptr) |
| goto free_elems; |
| htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, |
| pptr); |
| cond_resched(); |
| } |
| |
| skip_percpu_elems: |
| if (htab_is_lru(htab)) |
| err = bpf_lru_init(&htab->lru, |
| htab->map.map_flags & BPF_F_NO_COMMON_LRU, |
| offsetof(struct htab_elem, hash) - |
| offsetof(struct htab_elem, lru_node), |
| htab_lru_map_delete_node, |
| htab); |
| else |
| err = pcpu_freelist_init(&htab->freelist); |
| |
| if (err) |
| goto free_elems; |
| |
| if (htab_is_lru(htab)) |
| bpf_lru_populate(&htab->lru, htab->elems, |
| offsetof(struct htab_elem, lru_node), |
| htab->elem_size, num_entries); |
| else |
| pcpu_freelist_populate(&htab->freelist, |
| htab->elems + offsetof(struct htab_elem, fnode), |
| htab->elem_size, num_entries); |
| |
| return 0; |
| |
| free_elems: |
| htab_free_elems(htab); |
| return err; |
| } |
| |
| static void prealloc_destroy(struct bpf_htab *htab) |
| { |
| htab_free_elems(htab); |
| |
| if (htab_is_lru(htab)) |
| bpf_lru_destroy(&htab->lru); |
| else |
| pcpu_freelist_destroy(&htab->freelist); |
| } |
| |
| static int alloc_extra_elems(struct bpf_htab *htab) |
| { |
| struct htab_elem *__percpu *pptr, *l_new; |
| struct pcpu_freelist_node *l; |
| int cpu; |
| |
| pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8, |
| GFP_USER | __GFP_NOWARN); |
| if (!pptr) |
| return -ENOMEM; |
| |
| for_each_possible_cpu(cpu) { |
| l = pcpu_freelist_pop(&htab->freelist); |
| /* pop will succeed, since prealloc_init() |
| * preallocated extra num_possible_cpus elements |
| */ |
| l_new = container_of(l, struct htab_elem, fnode); |
| *per_cpu_ptr(pptr, cpu) = l_new; |
| } |
| htab->extra_elems = pptr; |
| return 0; |
| } |
| |
| /* Called from syscall */ |
| static int htab_map_alloc_check(union bpf_attr *attr) |
| { |
| bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || |
| attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); |
| bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || |
| attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); |
| /* percpu_lru means each cpu has its own LRU list. |
| * it is different from BPF_MAP_TYPE_PERCPU_HASH where |
| * the map's value itself is percpu. percpu_lru has |
| * nothing to do with the map's value. |
| */ |
| bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); |
| bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); |
| bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); |
| int numa_node = bpf_map_attr_numa_node(attr); |
| |
| BUILD_BUG_ON(offsetof(struct htab_elem, htab) != |
| offsetof(struct htab_elem, hash_node.pprev)); |
| BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != |
| offsetof(struct htab_elem, hash_node.pprev)); |
| |
| if (lru && !bpf_capable()) |
| /* LRU implementation is much complicated than other |
| * maps. Hence, limit to CAP_BPF. |
| */ |
| return -EPERM; |
| |
| if (zero_seed && !capable(CAP_SYS_ADMIN)) |
| /* Guard against local DoS, and discourage production use. */ |
| return -EPERM; |
| |
| if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || |
| !bpf_map_flags_access_ok(attr->map_flags)) |
| return -EINVAL; |
| |
| if (!lru && percpu_lru) |
| return -EINVAL; |
| |
| if (lru && !prealloc) |
| return -ENOTSUPP; |
| |
| if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) |
| return -EINVAL; |
| |
| /* check sanity of attributes. |
| * value_size == 0 may be allowed in the future to use map as a set |
| */ |
| if (attr->max_entries == 0 || attr->key_size == 0 || |
| attr->value_size == 0) |
| return -EINVAL; |
| |
| if (attr->key_size > MAX_BPF_STACK) |
| /* eBPF programs initialize keys on stack, so they cannot be |
| * larger than max stack size |
| */ |
| return -E2BIG; |
| |
| if (attr->value_size >= KMALLOC_MAX_SIZE - |
| MAX_BPF_STACK - sizeof(struct htab_elem)) |
| /* if value_size is bigger, the user space won't be able to |
| * access the elements via bpf syscall. This check also makes |
| * sure that the elem_size doesn't overflow and it's |
| * kmalloc-able later in htab_map_update_elem() |
| */ |
| return -E2BIG; |
| |
| return 0; |
| } |
| |
| static struct bpf_map *htab_map_alloc(union bpf_attr *attr) |
| { |
| bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || |
| attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); |
| bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || |
| attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); |
| /* percpu_lru means each cpu has its own LRU list. |
| * it is different from BPF_MAP_TYPE_PERCPU_HASH where |
| * the map's value itself is percpu. percpu_lru has |
| * nothing to do with the map's value. |
| */ |
| bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); |
| bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); |
| struct bpf_htab *htab; |
| u64 cost; |
| int err; |
| |
| htab = kzalloc(sizeof(*htab), GFP_USER); |
| if (!htab) |
| return ERR_PTR(-ENOMEM); |
| |
| bpf_map_init_from_attr(&htab->map, attr); |
| |
| if (percpu_lru) { |
| /* ensure each CPU's lru list has >=1 elements. |
| * since we are at it, make each lru list has the same |
| * number of elements. |
| */ |
| htab->map.max_entries = roundup(attr->max_entries, |
| num_possible_cpus()); |
| if (htab->map.max_entries < attr->max_entries) |
| htab->map.max_entries = rounddown(attr->max_entries, |
| num_possible_cpus()); |
| } |
| |
| /* hash table size must be power of 2 */ |
| htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); |
| |
| htab->elem_size = sizeof(struct htab_elem) + |
| round_up(htab->map.key_size, 8); |
| if (percpu) |
| htab->elem_size += sizeof(void *); |
| else |
| htab->elem_size += round_up(htab->map.value_size, 8); |
| |
| err = -E2BIG; |
| /* prevent zero size kmalloc and check for u32 overflow */ |
| if (htab->n_buckets == 0 || |
| htab->n_buckets > U32_MAX / sizeof(struct bucket)) |
| goto free_htab; |
| |
| cost = (u64) htab->n_buckets * sizeof(struct bucket) + |
| (u64) htab->elem_size * htab->map.max_entries; |
| |
| if (percpu) |
| cost += (u64) round_up(htab->map.value_size, 8) * |
| num_possible_cpus() * htab->map.max_entries; |
| else |
| cost += (u64) htab->elem_size * num_possible_cpus(); |
| |
| /* if map size is larger than memlock limit, reject it */ |
| err = bpf_map_charge_init(&htab->map.memory, cost); |
| if (err) |
| goto free_htab; |
| |
| err = -ENOMEM; |
| htab->buckets = bpf_map_area_alloc(htab->n_buckets * |
| sizeof(struct bucket), |
| htab->map.numa_node); |
| if (!htab->buckets) |
| goto free_charge; |
| |
| if (htab->map.map_flags & BPF_F_ZERO_SEED) |
| htab->hashrnd = 0; |
| else |
| htab->hashrnd = get_random_int(); |
| |
| htab_init_buckets(htab); |
| |
| if (prealloc) { |
| err = prealloc_init(htab); |
| if (err) |
| goto free_buckets; |
| |
| if (!percpu && !lru) { |
| /* lru itself can remove the least used element, so |
| * there is no need for an extra elem during map_update. |
| */ |
| err = alloc_extra_elems(htab); |
| if (err) |
| goto free_prealloc; |
| } |
| } |
| |
| return &htab->map; |
| |
| free_prealloc: |
| prealloc_destroy(htab); |
| free_buckets: |
| bpf_map_area_free(htab->buckets); |
| free_charge: |
| bpf_map_charge_finish(&htab->map.memory); |
| free_htab: |
| kfree(htab); |
| return ERR_PTR(err); |
| } |
| |
| static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) |
| { |
| return jhash(key, key_len, hashrnd); |
| } |
| |
| static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) |
| { |
| return &htab->buckets[hash & (htab->n_buckets - 1)]; |
| } |
| |
| static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) |
| { |
| return &__select_bucket(htab, hash)->head; |
| } |
| |
| /* this lookup function can only be called with bucket lock taken */ |
| static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, |
| void *key, u32 key_size) |
| { |
| struct hlist_nulls_node *n; |
| struct htab_elem *l; |
| |
| hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) |
| if (l->hash == hash && !memcmp(&l->key, key, key_size)) |
| return l; |
| |
| return NULL; |
| } |
| |
| /* can be called without bucket lock. it will repeat the loop in |
| * the unlikely event when elements moved from one bucket into another |
| * while link list is being walked |
| */ |
| static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, |
| u32 hash, void *key, |
| u32 key_size, u32 n_buckets) |
| { |
| struct hlist_nulls_node *n; |
| struct htab_elem *l; |
| |
| again: |
| hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) |
| if (l->hash == hash && !memcmp(&l->key, key, key_size)) |
| return l; |
| |
| if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) |
| goto again; |
| |
| return NULL; |
| } |
| |
| /* Called from syscall or from eBPF program directly, so |
| * arguments have to match bpf_map_lookup_elem() exactly. |
| * The return value is adjusted by BPF instructions |
| * in htab_map_gen_lookup(). |
| */ |
| static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_nulls_head *head; |
| struct htab_elem *l; |
| u32 hash, key_size; |
| |
| /* Must be called with rcu_read_lock. */ |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| |
| head = select_bucket(htab, hash); |
| |
| l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); |
| |
| return l; |
| } |
| |
| static void *htab_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct htab_elem *l = __htab_map_lookup_elem(map, key); |
| |
| if (l) |
| return l->key + round_up(map->key_size, 8); |
| |
| return NULL; |
| } |
| |
| /* inline bpf_map_lookup_elem() call. |
| * Instead of: |
| * bpf_prog |
| * bpf_map_lookup_elem |
| * map->ops->map_lookup_elem |
| * htab_map_lookup_elem |
| * __htab_map_lookup_elem |
| * do: |
| * bpf_prog |
| * __htab_map_lookup_elem |
| */ |
| static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) |
| { |
| struct bpf_insn *insn = insn_buf; |
| const int ret = BPF_REG_0; |
| |
| BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, |
| (void *(*)(struct bpf_map *map, void *key))NULL)); |
| *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); |
| *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); |
| *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, |
| offsetof(struct htab_elem, key) + |
| round_up(map->key_size, 8)); |
| return insn - insn_buf; |
| } |
| |
| static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, |
| void *key, const bool mark) |
| { |
| struct htab_elem *l = __htab_map_lookup_elem(map, key); |
| |
| if (l) { |
| if (mark) |
| bpf_lru_node_set_ref(&l->lru_node); |
| return l->key + round_up(map->key_size, 8); |
| } |
| |
| return NULL; |
| } |
| |
| static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| return __htab_lru_map_lookup_elem(map, key, true); |
| } |
| |
| static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) |
| { |
| return __htab_lru_map_lookup_elem(map, key, false); |
| } |
| |
| static u32 htab_lru_map_gen_lookup(struct bpf_map *map, |
| struct bpf_insn *insn_buf) |
| { |
| struct bpf_insn *insn = insn_buf; |
| const int ret = BPF_REG_0; |
| const int ref_reg = BPF_REG_1; |
| |
| BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, |
| (void *(*)(struct bpf_map *map, void *key))NULL)); |
| *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); |
| *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); |
| *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, |
| offsetof(struct htab_elem, lru_node) + |
| offsetof(struct bpf_lru_node, ref)); |
| *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); |
| *insn++ = BPF_ST_MEM(BPF_B, ret, |
| offsetof(struct htab_elem, lru_node) + |
| offsetof(struct bpf_lru_node, ref), |
| 1); |
| *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, |
| offsetof(struct htab_elem, key) + |
| round_up(map->key_size, 8)); |
| return insn - insn_buf; |
| } |
| |
| /* It is called from the bpf_lru_list when the LRU needs to delete |
| * older elements from the htab. |
| */ |
| static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) |
| { |
| struct bpf_htab *htab = (struct bpf_htab *)arg; |
| struct htab_elem *l = NULL, *tgt_l; |
| struct hlist_nulls_head *head; |
| struct hlist_nulls_node *n; |
| unsigned long flags; |
| struct bucket *b; |
| |
| tgt_l = container_of(node, struct htab_elem, lru_node); |
| b = __select_bucket(htab, tgt_l->hash); |
| head = &b->head; |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) |
| if (l == tgt_l) { |
| hlist_nulls_del_rcu(&l->hash_node); |
| break; |
| } |
| |
| htab_unlock_bucket(htab, b, flags); |
| |
| return l == tgt_l; |
| } |
| |
| /* Called from syscall */ |
| static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_nulls_head *head; |
| struct htab_elem *l, *next_l; |
| u32 hash, key_size; |
| int i = 0; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| if (!key) |
| goto find_first_elem; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| |
| head = select_bucket(htab, hash); |
| |
| /* lookup the key */ |
| l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); |
| |
| if (!l) |
| goto find_first_elem; |
| |
| /* key was found, get next key in the same bucket */ |
| next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), |
| struct htab_elem, hash_node); |
| |
| if (next_l) { |
| /* if next elem in this hash list is non-zero, just return it */ |
| memcpy(next_key, next_l->key, key_size); |
| return 0; |
| } |
| |
| /* no more elements in this hash list, go to the next bucket */ |
| i = hash & (htab->n_buckets - 1); |
| i++; |
| |
| find_first_elem: |
| /* iterate over buckets */ |
| for (; i < htab->n_buckets; i++) { |
| head = select_bucket(htab, i); |
| |
| /* pick first element in the bucket */ |
| next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), |
| struct htab_elem, hash_node); |
| if (next_l) { |
| /* if it's not empty, just return it */ |
| memcpy(next_key, next_l->key, key_size); |
| return 0; |
| } |
| } |
| |
| /* iterated over all buckets and all elements */ |
| return -ENOENT; |
| } |
| |
| static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) |
| { |
| if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) |
| free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); |
| kfree(l); |
| } |
| |
| static void htab_elem_free_rcu(struct rcu_head *head) |
| { |
| struct htab_elem *l = container_of(head, struct htab_elem, rcu); |
| struct bpf_htab *htab = l->htab; |
| |
| htab_elem_free(htab, l); |
| } |
| |
| static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) |
| { |
| struct bpf_map *map = &htab->map; |
| |
| if (map->ops->map_fd_put_ptr) { |
| void *ptr = fd_htab_map_get_ptr(map, l); |
| |
| map->ops->map_fd_put_ptr(ptr); |
| } |
| |
| if (htab_is_prealloc(htab)) { |
| __pcpu_freelist_push(&htab->freelist, &l->fnode); |
| } else { |
| atomic_dec(&htab->count); |
| l->htab = htab; |
| call_rcu(&l->rcu, htab_elem_free_rcu); |
| } |
| } |
| |
| static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, |
| void *value, bool onallcpus) |
| { |
| if (!onallcpus) { |
| /* copy true value_size bytes */ |
| memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); |
| } else { |
| u32 size = round_up(htab->map.value_size, 8); |
| int off = 0, cpu; |
| |
| for_each_possible_cpu(cpu) { |
| bpf_long_memcpy(per_cpu_ptr(pptr, cpu), |
| value + off, size); |
| off += size; |
| } |
| } |
| } |
| |
| static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) |
| { |
| return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && |
| BITS_PER_LONG == 64; |
| } |
| |
| static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, |
| void *value, u32 key_size, u32 hash, |
| bool percpu, bool onallcpus, |
| struct htab_elem *old_elem) |
| { |
| u32 size = htab->map.value_size; |
| bool prealloc = htab_is_prealloc(htab); |
| struct htab_elem *l_new, **pl_new; |
| void __percpu *pptr; |
| |
| if (prealloc) { |
| if (old_elem) { |
| /* if we're updating the existing element, |
| * use per-cpu extra elems to avoid freelist_pop/push |
| */ |
| pl_new = this_cpu_ptr(htab->extra_elems); |
| l_new = *pl_new; |
| *pl_new = old_elem; |
| } else { |
| struct pcpu_freelist_node *l; |
| |
| l = __pcpu_freelist_pop(&htab->freelist); |
| if (!l) |
| return ERR_PTR(-E2BIG); |
| l_new = container_of(l, struct htab_elem, fnode); |
| } |
| } else { |
| if (atomic_inc_return(&htab->count) > htab->map.max_entries) |
| if (!old_elem) { |
| /* when map is full and update() is replacing |
| * old element, it's ok to allocate, since |
| * old element will be freed immediately. |
| * Otherwise return an error |
| */ |
| l_new = ERR_PTR(-E2BIG); |
| goto dec_count; |
| } |
| l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, |
| htab->map.numa_node); |
| if (!l_new) { |
| l_new = ERR_PTR(-ENOMEM); |
| goto dec_count; |
| } |
| check_and_init_map_lock(&htab->map, |
| l_new->key + round_up(key_size, 8)); |
| } |
| |
| memcpy(l_new->key, key, key_size); |
| if (percpu) { |
| size = round_up(size, 8); |
| if (prealloc) { |
| pptr = htab_elem_get_ptr(l_new, key_size); |
| } else { |
| /* alloc_percpu zero-fills */ |
| pptr = __alloc_percpu_gfp(size, 8, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (!pptr) { |
| kfree(l_new); |
| l_new = ERR_PTR(-ENOMEM); |
| goto dec_count; |
| } |
| } |
| |
| pcpu_copy_value(htab, pptr, value, onallcpus); |
| |
| if (!prealloc) |
| htab_elem_set_ptr(l_new, key_size, pptr); |
| } else if (fd_htab_map_needs_adjust(htab)) { |
| size = round_up(size, 8); |
| memcpy(l_new->key + round_up(key_size, 8), value, size); |
| } else { |
| copy_map_value(&htab->map, |
| l_new->key + round_up(key_size, 8), |
| value); |
| } |
| |
| l_new->hash = hash; |
| return l_new; |
| dec_count: |
| atomic_dec(&htab->count); |
| return l_new; |
| } |
| |
| static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, |
| u64 map_flags) |
| { |
| if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) |
| /* elem already exists */ |
| return -EEXIST; |
| |
| if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) |
| /* elem doesn't exist, cannot update it */ |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, |
| u64 map_flags) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct htab_elem *l_new = NULL, *l_old; |
| struct hlist_nulls_head *head; |
| unsigned long flags; |
| struct bucket *b; |
| u32 key_size, hash; |
| int ret; |
| |
| if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) |
| /* unknown flags */ |
| return -EINVAL; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| if (unlikely(map_flags & BPF_F_LOCK)) { |
| if (unlikely(!map_value_has_spin_lock(map))) |
| return -EINVAL; |
| /* find an element without taking the bucket lock */ |
| l_old = lookup_nulls_elem_raw(head, hash, key, key_size, |
| htab->n_buckets); |
| ret = check_flags(htab, l_old, map_flags); |
| if (ret) |
| return ret; |
| if (l_old) { |
| /* grab the element lock and update value in place */ |
| copy_map_value_locked(map, |
| l_old->key + round_up(key_size, 8), |
| value, false); |
| return 0; |
| } |
| /* fall through, grab the bucket lock and lookup again. |
| * 99.9% chance that the element won't be found, |
| * but second lookup under lock has to be done. |
| */ |
| } |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| l_old = lookup_elem_raw(head, hash, key, key_size); |
| |
| ret = check_flags(htab, l_old, map_flags); |
| if (ret) |
| goto err; |
| |
| if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { |
| /* first lookup without the bucket lock didn't find the element, |
| * but second lookup with the bucket lock found it. |
| * This case is highly unlikely, but has to be dealt with: |
| * grab the element lock in addition to the bucket lock |
| * and update element in place |
| */ |
| copy_map_value_locked(map, |
| l_old->key + round_up(key_size, 8), |
| value, false); |
| ret = 0; |
| goto err; |
| } |
| |
| l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, |
| l_old); |
| if (IS_ERR(l_new)) { |
| /* all pre-allocated elements are in use or memory exhausted */ |
| ret = PTR_ERR(l_new); |
| goto err; |
| } |
| |
| /* add new element to the head of the list, so that |
| * concurrent search will find it before old elem |
| */ |
| hlist_nulls_add_head_rcu(&l_new->hash_node, head); |
| if (l_old) { |
| hlist_nulls_del_rcu(&l_old->hash_node); |
| if (!htab_is_prealloc(htab)) |
| free_htab_elem(htab, l_old); |
| } |
| ret = 0; |
| err: |
| htab_unlock_bucket(htab, b, flags); |
| return ret; |
| } |
| |
| static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, |
| u64 map_flags) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct htab_elem *l_new, *l_old = NULL; |
| struct hlist_nulls_head *head; |
| unsigned long flags; |
| struct bucket *b; |
| u32 key_size, hash; |
| int ret; |
| |
| if (unlikely(map_flags > BPF_EXIST)) |
| /* unknown flags */ |
| return -EINVAL; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| /* For LRU, we need to alloc before taking bucket's |
| * spinlock because getting free nodes from LRU may need |
| * to remove older elements from htab and this removal |
| * operation will need a bucket lock. |
| */ |
| l_new = prealloc_lru_pop(htab, key, hash); |
| if (!l_new) |
| return -ENOMEM; |
| memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size); |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| l_old = lookup_elem_raw(head, hash, key, key_size); |
| |
| ret = check_flags(htab, l_old, map_flags); |
| if (ret) |
| goto err; |
| |
| /* add new element to the head of the list, so that |
| * concurrent search will find it before old elem |
| */ |
| hlist_nulls_add_head_rcu(&l_new->hash_node, head); |
| if (l_old) { |
| bpf_lru_node_set_ref(&l_new->lru_node); |
| hlist_nulls_del_rcu(&l_old->hash_node); |
| } |
| ret = 0; |
| |
| err: |
| htab_unlock_bucket(htab, b, flags); |
| |
| if (ret) |
| bpf_lru_push_free(&htab->lru, &l_new->lru_node); |
| else if (l_old) |
| bpf_lru_push_free(&htab->lru, &l_old->lru_node); |
| |
| return ret; |
| } |
| |
| static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, |
| void *value, u64 map_flags, |
| bool onallcpus) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct htab_elem *l_new = NULL, *l_old; |
| struct hlist_nulls_head *head; |
| unsigned long flags; |
| struct bucket *b; |
| u32 key_size, hash; |
| int ret; |
| |
| if (unlikely(map_flags > BPF_EXIST)) |
| /* unknown flags */ |
| return -EINVAL; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| l_old = lookup_elem_raw(head, hash, key, key_size); |
| |
| ret = check_flags(htab, l_old, map_flags); |
| if (ret) |
| goto err; |
| |
| if (l_old) { |
| /* per-cpu hash map can update value in-place */ |
| pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), |
| value, onallcpus); |
| } else { |
| l_new = alloc_htab_elem(htab, key, value, key_size, |
| hash, true, onallcpus, NULL); |
| if (IS_ERR(l_new)) { |
| ret = PTR_ERR(l_new); |
| goto err; |
| } |
| hlist_nulls_add_head_rcu(&l_new->hash_node, head); |
| } |
| ret = 0; |
| err: |
| htab_unlock_bucket(htab, b, flags); |
| return ret; |
| } |
| |
| static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, |
| void *value, u64 map_flags, |
| bool onallcpus) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct htab_elem *l_new = NULL, *l_old; |
| struct hlist_nulls_head *head; |
| unsigned long flags; |
| struct bucket *b; |
| u32 key_size, hash; |
| int ret; |
| |
| if (unlikely(map_flags > BPF_EXIST)) |
| /* unknown flags */ |
| return -EINVAL; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| /* For LRU, we need to alloc before taking bucket's |
| * spinlock because LRU's elem alloc may need |
| * to remove older elem from htab and this removal |
| * operation will need a bucket lock. |
| */ |
| if (map_flags != BPF_EXIST) { |
| l_new = prealloc_lru_pop(htab, key, hash); |
| if (!l_new) |
| return -ENOMEM; |
| } |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| l_old = lookup_elem_raw(head, hash, key, key_size); |
| |
| ret = check_flags(htab, l_old, map_flags); |
| if (ret) |
| goto err; |
| |
| if (l_old) { |
| bpf_lru_node_set_ref(&l_old->lru_node); |
| |
| /* per-cpu hash map can update value in-place */ |
| pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), |
| value, onallcpus); |
| } else { |
| pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size), |
| value, onallcpus); |
| hlist_nulls_add_head_rcu(&l_new->hash_node, head); |
| l_new = NULL; |
| } |
| ret = 0; |
| err: |
| htab_unlock_bucket(htab, b, flags); |
| if (l_new) |
| bpf_lru_push_free(&htab->lru, &l_new->lru_node); |
| return ret; |
| } |
| |
| static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, |
| void *value, u64 map_flags) |
| { |
| return __htab_percpu_map_update_elem(map, key, value, map_flags, false); |
| } |
| |
| static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, |
| void *value, u64 map_flags) |
| { |
| return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, |
| false); |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static int htab_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_nulls_head *head; |
| struct bucket *b; |
| struct htab_elem *l; |
| unsigned long flags; |
| u32 hash, key_size; |
| int ret = -ENOENT; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| l = lookup_elem_raw(head, hash, key, key_size); |
| |
| if (l) { |
| hlist_nulls_del_rcu(&l->hash_node); |
| free_htab_elem(htab, l); |
| ret = 0; |
| } |
| |
| htab_unlock_bucket(htab, b, flags); |
| return ret; |
| } |
| |
| static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_nulls_head *head; |
| struct bucket *b; |
| struct htab_elem *l; |
| unsigned long flags; |
| u32 hash, key_size; |
| int ret = -ENOENT; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| |
| hash = htab_map_hash(key, key_size, htab->hashrnd); |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| flags = htab_lock_bucket(htab, b); |
| |
| l = lookup_elem_raw(head, hash, key, key_size); |
| |
| if (l) { |
| hlist_nulls_del_rcu(&l->hash_node); |
| ret = 0; |
| } |
| |
| htab_unlock_bucket(htab, b, flags); |
| if (l) |
| bpf_lru_push_free(&htab->lru, &l->lru_node); |
| return ret; |
| } |
| |
| static void delete_all_elements(struct bpf_htab *htab) |
| { |
| int i; |
| |
| for (i = 0; i < htab->n_buckets; i++) { |
| struct hlist_nulls_head *head = select_bucket(htab, i); |
| struct hlist_nulls_node *n; |
| struct htab_elem *l; |
| |
| hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { |
| hlist_nulls_del_rcu(&l->hash_node); |
| htab_elem_free(htab, l); |
| } |
| } |
| } |
| |
| /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ |
| static void htab_map_free(struct bpf_map *map) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| |
| /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, |
| * so the programs (can be more than one that used this map) were |
| * disconnected from events. Wait for outstanding critical sections in |
| * these programs to complete |
| */ |
| synchronize_rcu(); |
| |
| /* some of free_htab_elem() callbacks for elements of this map may |
| * not have executed. Wait for them. |
| */ |
| rcu_barrier(); |
| if (!htab_is_prealloc(htab)) |
| delete_all_elements(htab); |
| else |
| prealloc_destroy(htab); |
| |
| free_percpu(htab->extra_elems); |
| bpf_map_area_free(htab->buckets); |
| kfree(htab); |
| } |
| |
| static void htab_map_seq_show_elem(struct bpf_map *map, void *key, |
| struct seq_file *m) |
| { |
| void *value; |
| |
| rcu_read_lock(); |
| |
| value = htab_map_lookup_elem(map, key); |
| if (!value) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); |
| seq_puts(m, ": "); |
| btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); |
| seq_puts(m, "\n"); |
| |
| rcu_read_unlock(); |
| } |
| |
| static int |
| __htab_map_lookup_and_delete_batch(struct bpf_map *map, |
| const union bpf_attr *attr, |
| union bpf_attr __user *uattr, |
| bool do_delete, bool is_lru_map, |
| bool is_percpu) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| u32 bucket_cnt, total, key_size, value_size, roundup_key_size; |
| void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; |
| void __user *uvalues = u64_to_user_ptr(attr->batch.values); |
| void __user *ukeys = u64_to_user_ptr(attr->batch.keys); |
| void *ubatch = u64_to_user_ptr(attr->batch.in_batch); |
| u32 batch, max_count, size, bucket_size; |
| struct htab_elem *node_to_free = NULL; |
| u64 elem_map_flags, map_flags; |
| struct hlist_nulls_head *head; |
| struct hlist_nulls_node *n; |
| unsigned long flags = 0; |
| bool locked = false; |
| struct htab_elem *l; |
| struct bucket *b; |
| int ret = 0; |
| |
| elem_map_flags = attr->batch.elem_flags; |
| if ((elem_map_flags & ~BPF_F_LOCK) || |
| ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) |
| return -EINVAL; |
| |
| map_flags = attr->batch.flags; |
| if (map_flags) |
| return -EINVAL; |
| |
| max_count = attr->batch.count; |
| if (!max_count) |
| return 0; |
| |
| if (put_user(0, &uattr->batch.count)) |
| return -EFAULT; |
| |
| batch = 0; |
| if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) |
| return -EFAULT; |
| |
| if (batch >= htab->n_buckets) |
| return -ENOENT; |
| |
| key_size = htab->map.key_size; |
| roundup_key_size = round_up(htab->map.key_size, 8); |
| value_size = htab->map.value_size; |
| size = round_up(value_size, 8); |
| if (is_percpu) |
| value_size = size * num_possible_cpus(); |
| total = 0; |
| /* while experimenting with hash tables with sizes ranging from 10 to |
| * 1000, it was observed that a bucket can have upto 5 entries. |
| */ |
| bucket_size = 5; |
| |
| alloc: |
| /* We cannot do copy_from_user or copy_to_user inside |
| * the rcu_read_lock. Allocate enough space here. |
| */ |
| keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN); |
| values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN); |
| if (!keys || !values) { |
| ret = -ENOMEM; |
| goto after_loop; |
| } |
| |
| again: |
| bpf_disable_instrumentation(); |
| rcu_read_lock(); |
| again_nocopy: |
| dst_key = keys; |
| dst_val = values; |
| b = &htab->buckets[batch]; |
| head = &b->head; |
| /* do not grab the lock unless need it (bucket_cnt > 0). */ |
| if (locked) |
| flags = htab_lock_bucket(htab, b); |
| |
| bucket_cnt = 0; |
| hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) |
| bucket_cnt++; |
| |
| if (bucket_cnt && !locked) { |
| locked = true; |
| goto again_nocopy; |
| } |
| |
| if (bucket_cnt > (max_count - total)) { |
| if (total == 0) |
| ret = -ENOSPC; |
| /* Note that since bucket_cnt > 0 here, it is implicit |
| * that the locked was grabbed, so release it. |
| */ |
| htab_unlock_bucket(htab, b, flags); |
| rcu_read_unlock(); |
| bpf_enable_instrumentation(); |
| goto after_loop; |
| } |
| |
| if (bucket_cnt > bucket_size) { |
| bucket_size = bucket_cnt; |
| /* Note that since bucket_cnt > 0 here, it is implicit |
| * that the locked was grabbed, so release it. |
| */ |
| htab_unlock_bucket(htab, b, flags); |
| rcu_read_unlock(); |
| bpf_enable_instrumentation(); |
| kvfree(keys); |
| kvfree(values); |
| goto alloc; |
| } |
| |
| /* Next block is only safe to run if you have grabbed the lock */ |
| if (!locked) |
| goto next_batch; |
| |
| hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { |
| memcpy(dst_key, l->key, key_size); |
| |
| if (is_percpu) { |
| int off = 0, cpu; |
| void __percpu *pptr; |
| |
| pptr = htab_elem_get_ptr(l, map->key_size); |
| for_each_possible_cpu(cpu) { |
| bpf_long_memcpy(dst_val + off, |
| per_cpu_ptr(pptr, cpu), size); |
| off += size; |
| } |
| } else { |
| value = l->key + roundup_key_size; |
| if (elem_map_flags & BPF_F_LOCK) |
| copy_map_value_locked(map, dst_val, value, |
| true); |
| else |
| copy_map_value(map, dst_val, value); |
| check_and_init_map_lock(map, dst_val); |
| } |
| if (do_delete) { |
| hlist_nulls_del_rcu(&l->hash_node); |
| |
| /* bpf_lru_push_free() will acquire lru_lock, which |
| * may cause deadlock. See comments in function |
| * prealloc_lru_pop(). Let us do bpf_lru_push_free() |
| * after releasing the bucket lock. |
| */ |
| if (is_lru_map) { |
| l->batch_flink = node_to_free; |
| node_to_free = l; |
| } else { |
| free_htab_elem(htab, l); |
| } |
| } |
| dst_key += key_size; |
| dst_val += value_size; |
| } |
| |
| htab_unlock_bucket(htab, b, flags); |
| locked = false; |
| |
| while (node_to_free) { |
| l = node_to_free; |
| node_to_free = node_to_free->batch_flink; |
| bpf_lru_push_free(&htab->lru, &l->lru_node); |
| } |
| |
| next_batch: |
| /* If we are not copying data, we can go to next bucket and avoid |
| * unlocking the rcu. |
| */ |
| if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { |
| batch++; |
| goto again_nocopy; |
| } |
| |
| rcu_read_unlock(); |
| bpf_enable_instrumentation(); |
| if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, |
| key_size * bucket_cnt) || |
| copy_to_user(uvalues + total * value_size, values, |
| value_size * bucket_cnt))) { |
| ret = -EFAULT; |
| goto after_loop; |
| } |
| |
| total += bucket_cnt; |
| batch++; |
| if (batch >= htab->n_buckets) { |
| ret = -ENOENT; |
| goto after_loop; |
| } |
| goto again; |
| |
| after_loop: |
| if (ret == -EFAULT) |
| goto out; |
| |
| /* copy # of entries and next batch */ |
| ubatch = u64_to_user_ptr(attr->batch.out_batch); |
| if (copy_to_user(ubatch, &batch, sizeof(batch)) || |
| put_user(total, &uattr->batch.count)) |
| ret = -EFAULT; |
| |
| out: |
| kvfree(keys); |
| kvfree(values); |
| return ret; |
| } |
| |
| static int |
| htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, |
| false, true); |
| } |
| |
| static int |
| htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, |
| const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, |
| false, true); |
| } |
| |
| static int |
| htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, |
| false, false); |
| } |
| |
| static int |
| htab_map_lookup_and_delete_batch(struct bpf_map *map, |
| const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, |
| false, false); |
| } |
| |
| static int |
| htab_lru_percpu_map_lookup_batch(struct bpf_map *map, |
| const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, |
| true, true); |
| } |
| |
| static int |
| htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, |
| const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, |
| true, true); |
| } |
| |
| static int |
| htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, |
| true, false); |
| } |
| |
| static int |
| htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, |
| const union bpf_attr *attr, |
| union bpf_attr __user *uattr) |
| { |
| return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, |
| true, false); |
| } |
| |
| static int htab_map_btf_id; |
| const struct bpf_map_ops htab_map_ops = { |
| .map_alloc_check = htab_map_alloc_check, |
| .map_alloc = htab_map_alloc, |
| .map_free = htab_map_free, |
| .map_get_next_key = htab_map_get_next_key, |
| .map_lookup_elem = htab_map_lookup_elem, |
| .map_update_elem = htab_map_update_elem, |
| .map_delete_elem = htab_map_delete_elem, |
| .map_gen_lookup = htab_map_gen_lookup, |
| .map_seq_show_elem = htab_map_seq_show_elem, |
| BATCH_OPS(htab), |
| .map_btf_name = "bpf_htab", |
| .map_btf_id = &htab_map_btf_id, |
| }; |
| |
| const struct bpf_map_ops htab_lru_map_ops = { |
| .map_alloc_check = htab_map_alloc_check, |
| .map_alloc = htab_map_alloc, |
| .map_free = htab_map_free, |
| .map_get_next_key = htab_map_get_next_key, |
| .map_lookup_elem = htab_lru_map_lookup_elem, |
| .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, |
| .map_update_elem = htab_lru_map_update_elem, |
| .map_delete_elem = htab_lru_map_delete_elem, |
| .map_gen_lookup = htab_lru_map_gen_lookup, |
| .map_seq_show_elem = htab_map_seq_show_elem, |
| BATCH_OPS(htab_lru), |
| }; |
| |
| /* Called from eBPF program */ |
| static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct htab_elem *l = __htab_map_lookup_elem(map, key); |
| |
| if (l) |
| return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); |
| else |
| return NULL; |
| } |
| |
| static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct htab_elem *l = __htab_map_lookup_elem(map, key); |
| |
| if (l) { |
| bpf_lru_node_set_ref(&l->lru_node); |
| return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); |
| } |
| |
| return NULL; |
| } |
| |
| int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) |
| { |
| struct htab_elem *l; |
| void __percpu *pptr; |
| int ret = -ENOENT; |
| int cpu, off = 0; |
| u32 size; |
| |
| /* per_cpu areas are zero-filled and bpf programs can only |
| * access 'value_size' of them, so copying rounded areas |
| * will not leak any kernel data |
| */ |
| size = round_up(map->value_size, 8); |
| rcu_read_lock(); |
| l = __htab_map_lookup_elem(map, key); |
| if (!l) |
| goto out; |
| /* We do not mark LRU map element here in order to not mess up |
| * eviction heuristics when user space does a map walk. |
| */ |
| pptr = htab_elem_get_ptr(l, map->key_size); |
| for_each_possible_cpu(cpu) { |
| bpf_long_memcpy(value + off, |
| per_cpu_ptr(pptr, cpu), size); |
| off += size; |
| } |
| ret = 0; |
| out: |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, |
| u64 map_flags) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| int ret; |
| |
| rcu_read_lock(); |
| if (htab_is_lru(htab)) |
| ret = __htab_lru_percpu_map_update_elem(map, key, value, |
| map_flags, true); |
| else |
| ret = __htab_percpu_map_update_elem(map, key, value, map_flags, |
| true); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, |
| struct seq_file *m) |
| { |
| struct htab_elem *l; |
| void __percpu *pptr; |
| int cpu; |
| |
| rcu_read_lock(); |
| |
| l = __htab_map_lookup_elem(map, key); |
| if (!l) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); |
| seq_puts(m, ": {\n"); |
| pptr = htab_elem_get_ptr(l, map->key_size); |
| for_each_possible_cpu(cpu) { |
| seq_printf(m, "\tcpu%d: ", cpu); |
| btf_type_seq_show(map->btf, map->btf_value_type_id, |
| per_cpu_ptr(pptr, cpu), m); |
| seq_puts(m, "\n"); |
| } |
| seq_puts(m, "}\n"); |
| |
| rcu_read_unlock(); |
| } |
| |
| const struct bpf_map_ops htab_percpu_map_ops = { |
| .map_alloc_check = htab_map_alloc_check, |
| .map_alloc = htab_map_alloc, |
| .map_free = htab_map_free, |
| .map_get_next_key = htab_map_get_next_key, |
| .map_lookup_elem = htab_percpu_map_lookup_elem, |
| .map_update_elem = htab_percpu_map_update_elem, |
| .map_delete_elem = htab_map_delete_elem, |
| .map_seq_show_elem = htab_percpu_map_seq_show_elem, |
| BATCH_OPS(htab_percpu), |
| }; |
| |
| const struct bpf_map_ops htab_lru_percpu_map_ops = { |
| .map_alloc_check = htab_map_alloc_check, |
| .map_alloc = htab_map_alloc, |
| .map_free = htab_map_free, |
| .map_get_next_key = htab_map_get_next_key, |
| .map_lookup_elem = htab_lru_percpu_map_lookup_elem, |
| .map_update_elem = htab_lru_percpu_map_update_elem, |
| .map_delete_elem = htab_lru_map_delete_elem, |
| .map_seq_show_elem = htab_percpu_map_seq_show_elem, |
| BATCH_OPS(htab_lru_percpu), |
| }; |
| |
| static int fd_htab_map_alloc_check(union bpf_attr *attr) |
| { |
| if (attr->value_size != sizeof(u32)) |
| return -EINVAL; |
| return htab_map_alloc_check(attr); |
| } |
| |
| static void fd_htab_map_free(struct bpf_map *map) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_nulls_node *n; |
| struct hlist_nulls_head *head; |
| struct htab_elem *l; |
| int i; |
| |
| for (i = 0; i < htab->n_buckets; i++) { |
| head = select_bucket(htab, i); |
| |
| hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { |
| void *ptr = fd_htab_map_get_ptr(map, l); |
| |
| map->ops->map_fd_put_ptr(ptr); |
| } |
| } |
| |
| htab_map_free(map); |
| } |
| |
| /* only called from syscall */ |
| int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) |
| { |
| void **ptr; |
| int ret = 0; |
| |
| if (!map->ops->map_fd_sys_lookup_elem) |
| return -ENOTSUPP; |
| |
| rcu_read_lock(); |
| ptr = htab_map_lookup_elem(map, key); |
| if (ptr) |
| *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); |
| else |
| ret = -ENOENT; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* only called from syscall */ |
| int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, |
| void *key, void *value, u64 map_flags) |
| { |
| void *ptr; |
| int ret; |
| u32 ufd = *(u32 *)value; |
| |
| ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); |
| if (IS_ERR(ptr)) |
| return PTR_ERR(ptr); |
| |
| ret = htab_map_update_elem(map, key, &ptr, map_flags); |
| if (ret) |
| map->ops->map_fd_put_ptr(ptr); |
| |
| return ret; |
| } |
| |
| static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_map *map, *inner_map_meta; |
| |
| inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); |
| if (IS_ERR(inner_map_meta)) |
| return inner_map_meta; |
| |
| map = htab_map_alloc(attr); |
| if (IS_ERR(map)) { |
| bpf_map_meta_free(inner_map_meta); |
| return map; |
| } |
| |
| map->inner_map_meta = inner_map_meta; |
| |
| return map; |
| } |
| |
| static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_map **inner_map = htab_map_lookup_elem(map, key); |
| |
| if (!inner_map) |
| return NULL; |
| |
| return READ_ONCE(*inner_map); |
| } |
| |
| static u32 htab_of_map_gen_lookup(struct bpf_map *map, |
| struct bpf_insn *insn_buf) |
| { |
| struct bpf_insn *insn = insn_buf; |
| const int ret = BPF_REG_0; |
| |
| BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, |
| (void *(*)(struct bpf_map *map, void *key))NULL)); |
| *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); |
| *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); |
| *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, |
| offsetof(struct htab_elem, key) + |
| round_up(map->key_size, 8)); |
| *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); |
| |
| return insn - insn_buf; |
| } |
| |
| static void htab_of_map_free(struct bpf_map *map) |
| { |
| bpf_map_meta_free(map->inner_map_meta); |
| fd_htab_map_free(map); |
| } |
| |
| const struct bpf_map_ops htab_of_maps_map_ops = { |
| .map_alloc_check = fd_htab_map_alloc_check, |
| .map_alloc = htab_of_map_alloc, |
| .map_free = htab_of_map_free, |
| .map_get_next_key = htab_map_get_next_key, |
| .map_lookup_elem = htab_of_map_lookup_elem, |
| .map_delete_elem = htab_map_delete_elem, |
| .map_fd_get_ptr = bpf_map_fd_get_ptr, |
| .map_fd_put_ptr = bpf_map_fd_put_ptr, |
| .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, |
| .map_gen_lookup = htab_of_map_gen_lookup, |
| .map_check_btf = map_check_no_btf, |
| }; |