| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * A hack to create a platform device from a DMI entry. This will |
| * allow autoloading of the IPMI drive based on SMBIOS entries. |
| */ |
| |
| #define pr_fmt(fmt) "%s" fmt, "ipmi:dmi: " |
| #define dev_fmt pr_fmt |
| |
| #include <linux/ipmi.h> |
| #include <linux/init.h> |
| #include <linux/dmi.h> |
| #include <linux/platform_device.h> |
| #include <linux/property.h> |
| #include "ipmi_si_sm.h" |
| #include "ipmi_dmi.h" |
| |
| #define IPMI_DMI_TYPE_KCS 0x01 |
| #define IPMI_DMI_TYPE_SMIC 0x02 |
| #define IPMI_DMI_TYPE_BT 0x03 |
| #define IPMI_DMI_TYPE_SSIF 0x04 |
| |
| struct ipmi_dmi_info { |
| enum si_type si_type; |
| u32 flags; |
| unsigned long addr; |
| u8 slave_addr; |
| struct ipmi_dmi_info *next; |
| }; |
| |
| static struct ipmi_dmi_info *ipmi_dmi_infos; |
| |
| static int ipmi_dmi_nr __initdata; |
| |
| static void __init dmi_add_platform_ipmi(unsigned long base_addr, |
| u32 flags, |
| u8 slave_addr, |
| int irq, |
| int offset, |
| int type) |
| { |
| struct platform_device *pdev; |
| struct resource r[4]; |
| unsigned int num_r = 1, size; |
| struct property_entry p[5]; |
| unsigned int pidx = 0; |
| char *name; |
| int rv; |
| enum si_type si_type; |
| struct ipmi_dmi_info *info; |
| |
| memset(p, 0, sizeof(p)); |
| |
| name = "dmi-ipmi-si"; |
| switch (type) { |
| case IPMI_DMI_TYPE_SSIF: |
| name = "dmi-ipmi-ssif"; |
| offset = 1; |
| size = 1; |
| si_type = SI_TYPE_INVALID; |
| break; |
| case IPMI_DMI_TYPE_BT: |
| size = 3; |
| si_type = SI_BT; |
| break; |
| case IPMI_DMI_TYPE_KCS: |
| size = 2; |
| si_type = SI_KCS; |
| break; |
| case IPMI_DMI_TYPE_SMIC: |
| size = 2; |
| si_type = SI_SMIC; |
| break; |
| default: |
| pr_err("Invalid IPMI type: %d\n", type); |
| return; |
| } |
| |
| if (si_type != SI_TYPE_INVALID) |
| p[pidx++] = PROPERTY_ENTRY_U8("ipmi-type", si_type); |
| |
| p[pidx++] = PROPERTY_ENTRY_U8("slave-addr", slave_addr); |
| p[pidx++] = PROPERTY_ENTRY_U8("addr-source", SI_SMBIOS); |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) { |
| pr_warn("Could not allocate dmi info\n"); |
| } else { |
| info->si_type = si_type; |
| info->flags = flags; |
| info->addr = base_addr; |
| info->slave_addr = slave_addr; |
| info->next = ipmi_dmi_infos; |
| ipmi_dmi_infos = info; |
| } |
| |
| pdev = platform_device_alloc(name, ipmi_dmi_nr); |
| if (!pdev) { |
| pr_err("Error allocation IPMI platform device\n"); |
| return; |
| } |
| |
| if (type == IPMI_DMI_TYPE_SSIF) { |
| p[pidx++] = PROPERTY_ENTRY_U16("i2c-addr", base_addr); |
| goto add_properties; |
| } |
| |
| memset(r, 0, sizeof(r)); |
| |
| r[0].start = base_addr; |
| r[0].end = r[0].start + offset - 1; |
| r[0].name = "IPMI Address 1"; |
| r[0].flags = flags; |
| |
| if (size > 1) { |
| r[1].start = r[0].start + offset; |
| r[1].end = r[1].start + offset - 1; |
| r[1].name = "IPMI Address 2"; |
| r[1].flags = flags; |
| num_r++; |
| } |
| |
| if (size > 2) { |
| r[2].start = r[1].start + offset; |
| r[2].end = r[2].start + offset - 1; |
| r[2].name = "IPMI Address 3"; |
| r[2].flags = flags; |
| num_r++; |
| } |
| |
| if (irq) { |
| r[num_r].start = irq; |
| r[num_r].end = irq; |
| r[num_r].name = "IPMI IRQ"; |
| r[num_r].flags = IORESOURCE_IRQ; |
| num_r++; |
| } |
| |
| rv = platform_device_add_resources(pdev, r, num_r); |
| if (rv) { |
| dev_err(&pdev->dev, "Unable to add resources: %d\n", rv); |
| goto err; |
| } |
| |
| add_properties: |
| rv = platform_device_add_properties(pdev, p); |
| if (rv) { |
| dev_err(&pdev->dev, "Unable to add properties: %d\n", rv); |
| goto err; |
| } |
| |
| rv = platform_device_add(pdev); |
| if (rv) { |
| dev_err(&pdev->dev, "Unable to add device: %d\n", rv); |
| goto err; |
| } |
| |
| ipmi_dmi_nr++; |
| return; |
| |
| err: |
| platform_device_put(pdev); |
| } |
| |
| /* |
| * Look up the slave address for a given interface. This is here |
| * because ACPI doesn't have a slave address while SMBIOS does, but we |
| * prefer using ACPI so the ACPI code can use the IPMI namespace. |
| * This function allows an ACPI-specified IPMI device to look up the |
| * slave address from the DMI table. |
| */ |
| int ipmi_dmi_get_slave_addr(enum si_type si_type, u32 flags, |
| unsigned long base_addr) |
| { |
| struct ipmi_dmi_info *info = ipmi_dmi_infos; |
| |
| while (info) { |
| if (info->si_type == si_type && |
| info->flags == flags && |
| info->addr == base_addr) |
| return info->slave_addr; |
| info = info->next; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ipmi_dmi_get_slave_addr); |
| |
| #define DMI_IPMI_MIN_LENGTH 0x10 |
| #define DMI_IPMI_VER2_LENGTH 0x12 |
| #define DMI_IPMI_TYPE 4 |
| #define DMI_IPMI_SLAVEADDR 6 |
| #define DMI_IPMI_ADDR 8 |
| #define DMI_IPMI_ACCESS 0x10 |
| #define DMI_IPMI_IRQ 0x11 |
| #define DMI_IPMI_IO_MASK 0xfffe |
| |
| static void __init dmi_decode_ipmi(const struct dmi_header *dm) |
| { |
| const u8 *data = (const u8 *) dm; |
| u32 flags = IORESOURCE_IO; |
| unsigned long base_addr; |
| u8 len = dm->length; |
| u8 slave_addr; |
| int irq = 0, offset; |
| int type; |
| |
| if (len < DMI_IPMI_MIN_LENGTH) |
| return; |
| |
| type = data[DMI_IPMI_TYPE]; |
| slave_addr = data[DMI_IPMI_SLAVEADDR]; |
| |
| memcpy(&base_addr, data + DMI_IPMI_ADDR, sizeof(unsigned long)); |
| if (!base_addr) { |
| pr_err("Base address is zero, assuming no IPMI interface\n"); |
| return; |
| } |
| if (len >= DMI_IPMI_VER2_LENGTH) { |
| if (type == IPMI_DMI_TYPE_SSIF) { |
| offset = 0; |
| flags = 0; |
| base_addr = data[DMI_IPMI_ADDR] >> 1; |
| if (base_addr == 0) { |
| /* |
| * Some broken systems put the I2C address in |
| * the slave address field. We try to |
| * accommodate them here. |
| */ |
| base_addr = data[DMI_IPMI_SLAVEADDR] >> 1; |
| slave_addr = 0; |
| } |
| } else { |
| if (base_addr & 1) { |
| /* I/O */ |
| base_addr &= DMI_IPMI_IO_MASK; |
| } else { |
| /* Memory */ |
| flags = IORESOURCE_MEM; |
| } |
| |
| /* |
| * If bit 4 of byte 0x10 is set, then the lsb |
| * for the address is odd. |
| */ |
| base_addr |= (data[DMI_IPMI_ACCESS] >> 4) & 1; |
| |
| irq = data[DMI_IPMI_IRQ]; |
| |
| /* |
| * The top two bits of byte 0x10 hold the |
| * register spacing. |
| */ |
| switch ((data[DMI_IPMI_ACCESS] >> 6) & 3) { |
| case 0: /* Byte boundaries */ |
| offset = 1; |
| break; |
| case 1: /* 32-bit boundaries */ |
| offset = 4; |
| break; |
| case 2: /* 16-byte boundaries */ |
| offset = 16; |
| break; |
| default: |
| pr_err("Invalid offset: 0\n"); |
| return; |
| } |
| } |
| } else { |
| /* Old DMI spec. */ |
| /* |
| * Note that technically, the lower bit of the base |
| * address should be 1 if the address is I/O and 0 if |
| * the address is in memory. So many systems get that |
| * wrong (and all that I have seen are I/O) so we just |
| * ignore that bit and assume I/O. Systems that use |
| * memory should use the newer spec, anyway. |
| */ |
| base_addr = base_addr & DMI_IPMI_IO_MASK; |
| offset = 1; |
| } |
| |
| dmi_add_platform_ipmi(base_addr, flags, slave_addr, irq, |
| offset, type); |
| } |
| |
| static int __init scan_for_dmi_ipmi(void) |
| { |
| const struct dmi_device *dev = NULL; |
| |
| while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) |
| dmi_decode_ipmi((const struct dmi_header *) dev->device_data); |
| |
| return 0; |
| } |
| subsys_initcall(scan_for_dmi_ipmi); |