blob: 1b39e9ae7ac1788c49fa2501242ffab865344a70 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016, Semihalf
* Author: Tomasz Nowicki <tn@semihalf.com>
*
* This file implements early detection/parsing of I/O mapping
* reported to OS through firmware via I/O Remapping Table (IORT)
* IORT document number: ARM DEN 0049A
*/
#define pr_fmt(fmt) "ACPI: IORT: " fmt
#include <linux/acpi_iort.h>
#include <linux/bitfield.h>
#include <linux/iommu.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/dma-map-ops.h>
#include "init.h"
#define IORT_TYPE_MASK(type) (1 << (type))
#define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
#define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
(1 << ACPI_IORT_NODE_SMMU_V3))
struct iort_its_msi_chip {
struct list_head list;
struct fwnode_handle *fw_node;
phys_addr_t base_addr;
u32 translation_id;
};
struct iort_fwnode {
struct list_head list;
struct acpi_iort_node *iort_node;
struct fwnode_handle *fwnode;
};
static LIST_HEAD(iort_fwnode_list);
static DEFINE_SPINLOCK(iort_fwnode_lock);
/**
* iort_set_fwnode() - Create iort_fwnode and use it to register
* iommu data in the iort_fwnode_list
*
* @iort_node: IORT table node associated with the IOMMU
* @fwnode: fwnode associated with the IORT node
*
* Returns: 0 on success
* <0 on failure
*/
static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
struct fwnode_handle *fwnode)
{
struct iort_fwnode *np;
np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
if (WARN_ON(!np))
return -ENOMEM;
INIT_LIST_HEAD(&np->list);
np->iort_node = iort_node;
np->fwnode = fwnode;
spin_lock(&iort_fwnode_lock);
list_add_tail(&np->list, &iort_fwnode_list);
spin_unlock(&iort_fwnode_lock);
return 0;
}
/**
* iort_get_fwnode() - Retrieve fwnode associated with an IORT node
*
* @node: IORT table node to be looked-up
*
* Returns: fwnode_handle pointer on success, NULL on failure
*/
static inline struct fwnode_handle *iort_get_fwnode(
struct acpi_iort_node *node)
{
struct iort_fwnode *curr;
struct fwnode_handle *fwnode = NULL;
spin_lock(&iort_fwnode_lock);
list_for_each_entry(curr, &iort_fwnode_list, list) {
if (curr->iort_node == node) {
fwnode = curr->fwnode;
break;
}
}
spin_unlock(&iort_fwnode_lock);
return fwnode;
}
/**
* iort_delete_fwnode() - Delete fwnode associated with an IORT node
*
* @node: IORT table node associated with fwnode to delete
*/
static inline void iort_delete_fwnode(struct acpi_iort_node *node)
{
struct iort_fwnode *curr, *tmp;
spin_lock(&iort_fwnode_lock);
list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
if (curr->iort_node == node) {
list_del(&curr->list);
kfree(curr);
break;
}
}
spin_unlock(&iort_fwnode_lock);
}
/**
* iort_get_iort_node() - Retrieve iort_node associated with an fwnode
*
* @fwnode: fwnode associated with device to be looked-up
*
* Returns: iort_node pointer on success, NULL on failure
*/
static inline struct acpi_iort_node *iort_get_iort_node(
struct fwnode_handle *fwnode)
{
struct iort_fwnode *curr;
struct acpi_iort_node *iort_node = NULL;
spin_lock(&iort_fwnode_lock);
list_for_each_entry(curr, &iort_fwnode_list, list) {
if (curr->fwnode == fwnode) {
iort_node = curr->iort_node;
break;
}
}
spin_unlock(&iort_fwnode_lock);
return iort_node;
}
typedef acpi_status (*iort_find_node_callback)
(struct acpi_iort_node *node, void *context);
/* Root pointer to the mapped IORT table */
static struct acpi_table_header *iort_table;
static LIST_HEAD(iort_msi_chip_list);
static DEFINE_SPINLOCK(iort_msi_chip_lock);
/**
* iort_register_domain_token() - register domain token along with related
* ITS ID and base address to the list from where we can get it back later on.
* @trans_id: ITS ID.
* @base: ITS base address.
* @fw_node: Domain token.
*
* Returns: 0 on success, -ENOMEM if no memory when allocating list element
*/
int iort_register_domain_token(int trans_id, phys_addr_t base,
struct fwnode_handle *fw_node)
{
struct iort_its_msi_chip *its_msi_chip;
its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
if (!its_msi_chip)
return -ENOMEM;
its_msi_chip->fw_node = fw_node;
its_msi_chip->translation_id = trans_id;
its_msi_chip->base_addr = base;
spin_lock(&iort_msi_chip_lock);
list_add(&its_msi_chip->list, &iort_msi_chip_list);
spin_unlock(&iort_msi_chip_lock);
return 0;
}
/**
* iort_deregister_domain_token() - Deregister domain token based on ITS ID
* @trans_id: ITS ID.
*
* Returns: none.
*/
void iort_deregister_domain_token(int trans_id)
{
struct iort_its_msi_chip *its_msi_chip, *t;
spin_lock(&iort_msi_chip_lock);
list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
if (its_msi_chip->translation_id == trans_id) {
list_del(&its_msi_chip->list);
kfree(its_msi_chip);
break;
}
}
spin_unlock(&iort_msi_chip_lock);
}
/**
* iort_find_domain_token() - Find domain token based on given ITS ID
* @trans_id: ITS ID.
*
* Returns: domain token when find on the list, NULL otherwise
*/
struct fwnode_handle *iort_find_domain_token(int trans_id)
{
struct fwnode_handle *fw_node = NULL;
struct iort_its_msi_chip *its_msi_chip;
spin_lock(&iort_msi_chip_lock);
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
if (its_msi_chip->translation_id == trans_id) {
fw_node = its_msi_chip->fw_node;
break;
}
}
spin_unlock(&iort_msi_chip_lock);
return fw_node;
}
static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
iort_find_node_callback callback,
void *context)
{
struct acpi_iort_node *iort_node, *iort_end;
struct acpi_table_iort *iort;
int i;
if (!iort_table)
return NULL;
/* Get the first IORT node */
iort = (struct acpi_table_iort *)iort_table;
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort->node_offset);
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
iort_table->length);
for (i = 0; i < iort->node_count; i++) {
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
"IORT node pointer overflows, bad table!\n"))
return NULL;
if (iort_node->type == type &&
ACPI_SUCCESS(callback(iort_node, context)))
return iort_node;
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
iort_node->length);
}
return NULL;
}
static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
void *context)
{
struct device *dev = context;
acpi_status status = AE_NOT_FOUND;
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_device *adev;
struct acpi_iort_named_component *ncomp;
struct device *nc_dev = dev;
/*
* Walk the device tree to find a device with an
* ACPI companion; there is no point in scanning
* IORT for a device matching a named component if
* the device does not have an ACPI companion to
* start with.
*/
do {
adev = ACPI_COMPANION(nc_dev);
if (adev)
break;
nc_dev = nc_dev->parent;
} while (nc_dev);
if (!adev)
goto out;
status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
if (ACPI_FAILURE(status)) {
dev_warn(nc_dev, "Can't get device full path name\n");
goto out;
}
ncomp = (struct acpi_iort_named_component *)node->node_data;
status = !strcmp(ncomp->device_name, buf.pointer) ?
AE_OK : AE_NOT_FOUND;
acpi_os_free(buf.pointer);
} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
struct acpi_iort_root_complex *pci_rc;
struct pci_bus *bus;
bus = to_pci_bus(dev);
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
/*
* It is assumed that PCI segment numbers maps one-to-one
* with root complexes. Each segment number can represent only
* one root complex.
*/
status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
AE_OK : AE_NOT_FOUND;
}
out:
return status;
}
static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
u32 *rid_out, bool check_overlap)
{
/* Single mapping does not care for input id */
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
*rid_out = map->output_base;
return 0;
}
pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
map, type);
return -ENXIO;
}
if (rid_in < map->input_base ||
(rid_in > map->input_base + map->id_count))
return -ENXIO;
if (check_overlap) {
/*
* We already found a mapping for this input ID at the end of
* another region. If it coincides with the start of this
* region, we assume the prior match was due to the off-by-1
* issue mentioned below, and allow it to be superseded.
* Otherwise, things are *really* broken, and we just disregard
* duplicate matches entirely to retain compatibility.
*/
pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
map, rid_in);
if (rid_in != map->input_base)
return -ENXIO;
pr_err(FW_BUG "applying workaround.\n");
}
*rid_out = map->output_base + (rid_in - map->input_base);
/*
* Due to confusion regarding the meaning of the id_count field (which
* carries the number of IDs *minus 1*), we may have to disregard this
* match if it is at the end of the range, and overlaps with the start
* of another one.
*/
if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
return -EAGAIN;
return 0;
}
static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
u32 *id_out, int index)
{
struct acpi_iort_node *parent;
struct acpi_iort_id_mapping *map;
if (!node->mapping_offset || !node->mapping_count ||
index >= node->mapping_count)
return NULL;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
node->mapping_offset + index * sizeof(*map));
/* Firmware bug! */
if (!map->output_reference) {
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
node, node->type);
return NULL;
}
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
map->output_reference);
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
node->type == ACPI_IORT_NODE_SMMU_V3 ||
node->type == ACPI_IORT_NODE_PMCG) {
*id_out = map->output_base;
return parent;
}
}
return NULL;
}
#ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
#define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
#endif
static int iort_get_id_mapping_index(struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
struct acpi_iort_pmcg *pmcg;
switch (node->type) {
case ACPI_IORT_NODE_SMMU_V3:
/*
* SMMUv3 dev ID mapping index was introduced in revision 1
* table, not available in revision 0
*/
if (node->revision < 1)
return -EINVAL;
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
/*
* Until IORT E.e (node rev. 5), the ID mapping index was
* defined to be valid unless all interrupts are GSIV-based.
*/
if (node->revision < 5) {
if (smmu->event_gsiv && smmu->pri_gsiv &&
smmu->gerr_gsiv && smmu->sync_gsiv)
return -EINVAL;
} else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
return -EINVAL;
}
if (smmu->id_mapping_index >= node->mapping_count) {
pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
node, node->type);
return -EINVAL;
}
return smmu->id_mapping_index;
case ACPI_IORT_NODE_PMCG:
pmcg = (struct acpi_iort_pmcg *)node->node_data;
if (pmcg->overflow_gsiv || node->mapping_count == 0)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
u32 id_in, u32 *id_out,
u8 type_mask)
{
u32 id = id_in;
/* Parse the ID mapping tree to find specified node type */
while (node) {
struct acpi_iort_id_mapping *map;
int i, index, rc = 0;
u32 out_ref = 0, map_id = id;
if (IORT_TYPE_MASK(node->type) & type_mask) {
if (id_out)
*id_out = id;
return node;
}
if (!node->mapping_offset || !node->mapping_count)
goto fail_map;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
node->mapping_offset);
/* Firmware bug! */
if (!map->output_reference) {
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
node, node->type);
goto fail_map;
}
/*
* Get the special ID mapping index (if any) and skip its
* associated ID map to prevent erroneous multi-stage
* IORT ID translations.
*/
index = iort_get_id_mapping_index(node);
/* Do the ID translation */
for (i = 0; i < node->mapping_count; i++, map++) {
/* if it is special mapping index, skip it */
if (i == index)
continue;
rc = iort_id_map(map, node->type, map_id, &id, out_ref);
if (!rc)
break;
if (rc == -EAGAIN)
out_ref = map->output_reference;
}
if (i == node->mapping_count && !out_ref)
goto fail_map;
node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
rc ? out_ref : map->output_reference);
}
fail_map:
/* Map input ID to output ID unchanged on mapping failure */
if (id_out)
*id_out = id_in;
return NULL;
}
static struct acpi_iort_node *iort_node_map_platform_id(
struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
int index)
{
struct acpi_iort_node *parent;
u32 id;
/* step 1: retrieve the initial dev id */
parent = iort_node_get_id(node, &id, index);
if (!parent)
return NULL;
/*
* optional step 2: map the initial dev id if its parent is not
* the target type we want, map it again for the use cases such
* as NC (named component) -> SMMU -> ITS. If the type is matched,
* return the initial dev id and its parent pointer directly.
*/
if (!(IORT_TYPE_MASK(parent->type) & type_mask))
parent = iort_node_map_id(parent, id, id_out, type_mask);
else
if (id_out)
*id_out = id;
return parent;
}
static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
{
struct pci_bus *pbus;
if (!dev_is_pci(dev)) {
struct acpi_iort_node *node;
/*
* scan iort_fwnode_list to see if it's an iort platform
* device (such as SMMU, PMCG),its iort node already cached
* and associated with fwnode when iort platform devices
* were initialized.
*/
node = iort_get_iort_node(dev->fwnode);
if (node)
return node;
/*
* if not, then it should be a platform device defined in
* DSDT/SSDT (with Named Component node in IORT)
*/
return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
iort_match_node_callback, dev);
}
pbus = to_pci_dev(dev)->bus;
return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
iort_match_node_callback, &pbus->dev);
}
/**
* iort_msi_map_id() - Map a MSI input ID for a device
* @dev: The device for which the mapping is to be done.
* @input_id: The device input ID.
*
* Returns: mapped MSI ID on success, input ID otherwise
*/
u32 iort_msi_map_id(struct device *dev, u32 input_id)
{
struct acpi_iort_node *node;
u32 dev_id;
node = iort_find_dev_node(dev);
if (!node)
return input_id;
iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
return dev_id;
}
/**
* iort_pmsi_get_dev_id() - Get the device id for a device
* @dev: The device for which the mapping is to be done.
* @dev_id: The device ID found.
*
* Returns: 0 for successful find a dev id, -ENODEV on error
*/
int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
{
int i, index;
struct acpi_iort_node *node;
node = iort_find_dev_node(dev);
if (!node)
return -ENODEV;
index = iort_get_id_mapping_index(node);
/* if there is a valid index, go get the dev_id directly */
if (index >= 0) {
if (iort_node_get_id(node, dev_id, index))
return 0;
} else {
for (i = 0; i < node->mapping_count; i++) {
if (iort_node_map_platform_id(node, dev_id,
IORT_MSI_TYPE, i))
return 0;
}
}
return -ENODEV;
}
static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
{
struct iort_its_msi_chip *its_msi_chip;
int ret = -ENODEV;
spin_lock(&iort_msi_chip_lock);
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
if (its_msi_chip->translation_id == its_id) {
*base = its_msi_chip->base_addr;
ret = 0;
break;
}
}
spin_unlock(&iort_msi_chip_lock);
return ret;
}
/**
* iort_dev_find_its_id() - Find the ITS identifier for a device
* @dev: The device.
* @id: Device's ID
* @idx: Index of the ITS identifier list.
* @its_id: ITS identifier.
*
* Returns: 0 on success, appropriate error value otherwise
*/
static int iort_dev_find_its_id(struct device *dev, u32 id,
unsigned int idx, int *its_id)
{
struct acpi_iort_its_group *its;
struct acpi_iort_node *node;
node = iort_find_dev_node(dev);
if (!node)
return -ENXIO;
node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
if (!node)
return -ENXIO;
/* Move to ITS specific data */
its = (struct acpi_iort_its_group *)node->node_data;
if (idx >= its->its_count) {
dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
idx, its->its_count);
return -ENXIO;
}
*its_id = its->identifiers[idx];
return 0;
}
/**
* iort_get_device_domain() - Find MSI domain related to a device
* @dev: The device.
* @id: Requester ID for the device.
* @bus_token: irq domain bus token.
*
* Returns: the MSI domain for this device, NULL otherwise
*/
struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
enum irq_domain_bus_token bus_token)
{
struct fwnode_handle *handle;
int its_id;
if (iort_dev_find_its_id(dev, id, 0, &its_id))
return NULL;
handle = iort_find_domain_token(its_id);
if (!handle)
return NULL;
return irq_find_matching_fwnode(handle, bus_token);
}
static void iort_set_device_domain(struct device *dev,
struct acpi_iort_node *node)
{
struct acpi_iort_its_group *its;
struct acpi_iort_node *msi_parent;
struct acpi_iort_id_mapping *map;
struct fwnode_handle *iort_fwnode;
struct irq_domain *domain;
int index;
index = iort_get_id_mapping_index(node);
if (index < 0)
return;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
node->mapping_offset + index * sizeof(*map));
/* Firmware bug! */
if (!map->output_reference ||
!(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
node, node->type);
return;
}
msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
map->output_reference);
if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
return;
/* Move to ITS specific data */
its = (struct acpi_iort_its_group *)msi_parent->node_data;
iort_fwnode = iort_find_domain_token(its->identifiers[0]);
if (!iort_fwnode)
return;
domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
if (domain)
dev_set_msi_domain(dev, domain);
}
/**
* iort_get_platform_device_domain() - Find MSI domain related to a
* platform device
* @dev: the dev pointer associated with the platform device
*
* Returns: the MSI domain for this device, NULL otherwise
*/
static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
{
struct acpi_iort_node *node, *msi_parent = NULL;
struct fwnode_handle *iort_fwnode;
struct acpi_iort_its_group *its;
int i;
/* find its associated iort node */
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
iort_match_node_callback, dev);
if (!node)
return NULL;
/* then find its msi parent node */
for (i = 0; i < node->mapping_count; i++) {
msi_parent = iort_node_map_platform_id(node, NULL,
IORT_MSI_TYPE, i);
if (msi_parent)
break;
}
if (!msi_parent)
return NULL;
/* Move to ITS specific data */
its = (struct acpi_iort_its_group *)msi_parent->node_data;
iort_fwnode = iort_find_domain_token(its->identifiers[0]);
if (!iort_fwnode)
return NULL;
return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
}
void acpi_configure_pmsi_domain(struct device *dev)
{
struct irq_domain *msi_domain;
msi_domain = iort_get_platform_device_domain(dev);
if (msi_domain)
dev_set_msi_domain(dev, msi_domain);
}
#ifdef CONFIG_IOMMU_API
static void iort_rmr_free(struct device *dev,
struct iommu_resv_region *region)
{
struct iommu_iort_rmr_data *rmr_data;
rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
kfree(rmr_data->sids);
kfree(rmr_data);
}
static struct iommu_iort_rmr_data *iort_rmr_alloc(
struct acpi_iort_rmr_desc *rmr_desc,
int prot, enum iommu_resv_type type,
u32 *sids, u32 num_sids)
{
struct iommu_iort_rmr_data *rmr_data;
struct iommu_resv_region *region;
u32 *sids_copy;
u64 addr = rmr_desc->base_address, size = rmr_desc->length;
rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
if (!rmr_data)
return NULL;
/* Create a copy of SIDs array to associate with this rmr_data */
sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL);
if (!sids_copy) {
kfree(rmr_data);
return NULL;
}
rmr_data->sids = sids_copy;
rmr_data->num_sids = num_sids;
if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
/* PAGE align base addr and size */
addr &= PAGE_MASK;
size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
rmr_desc->base_address,
rmr_desc->base_address + rmr_desc->length - 1,
addr, addr + size - 1);
}
region = &rmr_data->rr;
INIT_LIST_HEAD(&region->list);
region->start = addr;
region->length = size;
region->prot = prot;
region->type = type;
region->free = iort_rmr_free;
return rmr_data;
}
static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
u32 count)
{
int i, j;
for (i = 0; i < count; i++) {
u64 end, start = desc[i].base_address, length = desc[i].length;
if (!length) {
pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
start);
continue;
}
end = start + length - 1;
/* Check for address overlap */
for (j = i + 1; j < count; j++) {
u64 e_start = desc[j].base_address;
u64 e_end = e_start + desc[j].length - 1;
if (start <= e_end && end >= e_start)
pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
start, end);
}
}
}
/*
* Please note, we will keep the already allocated RMR reserve
* regions in case of a memory allocation failure.
*/
static void iort_get_rmrs(struct acpi_iort_node *node,
struct acpi_iort_node *smmu,
u32 *sids, u32 num_sids,
struct list_head *head)
{
struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
struct acpi_iort_rmr_desc *rmr_desc;
int i;
rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
rmr->rmr_offset);
iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
struct iommu_iort_rmr_data *rmr_data;
enum iommu_resv_type type;
int prot = IOMMU_READ | IOMMU_WRITE;
if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
type = IOMMU_RESV_DIRECT_RELAXABLE;
else
type = IOMMU_RESV_DIRECT;
if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
prot |= IOMMU_PRIV;
/* Attributes 0x00 - 0x03 represents device memory */
if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
ACPI_IORT_RMR_ATTR_DEVICE_GRE)
prot |= IOMMU_MMIO;
else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
prot |= IOMMU_CACHE;
rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
sids, num_sids);
if (!rmr_data)
return;
list_add_tail(&rmr_data->rr.list, head);
}
}
static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
u32 new_count)
{
u32 *new_sids;
u32 total_count = count + new_count;
int i;
new_sids = krealloc_array(sids, count + new_count,
sizeof(*new_sids), GFP_KERNEL);
if (!new_sids)
return NULL;
for (i = count; i < total_count; i++)
new_sids[i] = id_start++;
return new_sids;
}
static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
u32 id_count)
{
int i;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
/*
* Make sure the kernel has preserved the boot firmware PCIe
* configuration. This is required to ensure that the RMR PCIe
* StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
*/
if (dev_is_pci(dev)) {
struct pci_dev *pdev = to_pci_dev(dev);
struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
if (!host->preserve_config)
return false;
}
for (i = 0; i < fwspec->num_ids; i++) {
if (fwspec->ids[i] >= id_start &&
fwspec->ids[i] <= id_start + id_count)
return true;
}
return false;
}
static void iort_node_get_rmr_info(struct acpi_iort_node *node,
struct acpi_iort_node *iommu,
struct device *dev, struct list_head *head)
{
struct acpi_iort_node *smmu = NULL;
struct acpi_iort_rmr *rmr;
struct acpi_iort_id_mapping *map;
u32 *sids = NULL;
u32 num_sids = 0;
int i;
if (!node->mapping_offset || !node->mapping_count) {
pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
node);
return;
}
rmr = (struct acpi_iort_rmr *)node->node_data;
if (!rmr->rmr_offset || !rmr->rmr_count)
return;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
node->mapping_offset);
/*
* Go through the ID mappings and see if we have a match for SMMU
* and dev(if !NULL). If found, get the sids for the Node.
* Please note, id_count is equal to the number of IDs in the
* range minus one.
*/
for (i = 0; i < node->mapping_count; i++, map++) {
struct acpi_iort_node *parent;
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
map->output_reference);
if (parent != iommu)
continue;
/* If dev is valid, check RMR node corresponds to the dev SID */
if (dev && !iort_rmr_has_dev(dev, map->output_base,
map->id_count))
continue;
/* Retrieve SIDs associated with the Node. */
sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
map->id_count + 1);
if (!sids)
return;
num_sids += map->id_count + 1;
}
if (!sids)
return;
iort_get_rmrs(node, smmu, sids, num_sids, head);
kfree(sids);
}
static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
struct list_head *head)
{
struct acpi_table_iort *iort;
struct acpi_iort_node *iort_node, *iort_end;
int i;
/* Only supports ARM DEN 0049E.d onwards */
if (iort_table->revision < 5)
return;
iort = (struct acpi_table_iort *)iort_table;
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort->node_offset);
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort_table->length);
for (i = 0; i < iort->node_count; i++) {
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
"IORT node pointer overflows, bad table!\n"))
return;
if (iort_node->type == ACPI_IORT_NODE_RMR)
iort_node_get_rmr_info(iort_node, iommu, dev, head);
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
iort_node->length);
}
}
/*
* Populate the RMR list associated with a given IOMMU and dev(if provided).
* If dev is NULL, the function populates all the RMRs associated with the
* given IOMMU.
*/
static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
struct device *dev,
struct list_head *head)
{
struct acpi_iort_node *iommu;
iommu = iort_get_iort_node(iommu_fwnode);
if (!iommu)
return;
iort_find_rmrs(iommu, dev, head);
}
static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
{
struct acpi_iort_node *iommu;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
iommu = iort_get_iort_node(fwspec->iommu_fwnode);
if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
struct acpi_iort_smmu_v3 *smmu;
smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
return iommu;
}
return NULL;
}
/*
* Retrieve platform specific HW MSI reserve regions.
* The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
* associated with the device are the HW MSI reserved regions.
*/
static void iort_iommu_msi_get_resv_regions(struct device *dev,
struct list_head *head)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct acpi_iort_its_group *its;
struct acpi_iort_node *iommu_node, *its_node = NULL;
int i;
iommu_node = iort_get_msi_resv_iommu(dev);
if (!iommu_node)
return;
/*
* Current logic to reserve ITS regions relies on HW topologies
* where a given PCI or named component maps its IDs to only one
* ITS group; if a PCI or named component can map its IDs to
* different ITS groups through IORT mappings this function has
* to be reworked to ensure we reserve regions for all ITS groups
* a given PCI or named component may map IDs to.
*/
for (i = 0; i < fwspec->num_ids; i++) {
its_node = iort_node_map_id(iommu_node,
fwspec->ids[i],
NULL, IORT_MSI_TYPE);
if (its_node)
break;
}
if (!its_node)
return;
/* Move to ITS specific data */
its = (struct acpi_iort_its_group *)its_node->node_data;
for (i = 0; i < its->its_count; i++) {
phys_addr_t base;
if (!iort_find_its_base(its->identifiers[i], &base)) {
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
struct iommu_resv_region *region;
region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
prot, IOMMU_RESV_MSI,
GFP_KERNEL);
if (region)
list_add_tail(&region->list, head);
}
}
}
/**
* iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
* @dev: Device from iommu_get_resv_regions()
* @head: Reserved region list from iommu_get_resv_regions()
*/
void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
iort_iommu_msi_get_resv_regions(dev, head);
iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
}
/**
* iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
* associated StreamIDs information.
* @iommu_fwnode: fwnode associated with IOMMU
* @head: Resereved region list
*/
void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
struct list_head *head)
{
iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
}
EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
/**
* iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
* @iommu_fwnode: fwnode associated with IOMMU
* @head: Resereved region list
*/
void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
struct list_head *head)
{
struct iommu_resv_region *entry, *next;
list_for_each_entry_safe(entry, next, head, list)
entry->free(NULL, entry);
}
EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
static inline bool iort_iommu_driver_enabled(u8 type)
{
switch (type) {
case ACPI_IORT_NODE_SMMU_V3:
return IS_ENABLED(CONFIG_ARM_SMMU_V3);
case ACPI_IORT_NODE_SMMU:
return IS_ENABLED(CONFIG_ARM_SMMU);
default:
pr_warn("IORT node type %u does not describe an SMMU\n", type);
return false;
}
}
static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
{
struct acpi_iort_root_complex *pci_rc;
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
}
static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
u32 streamid)
{
struct fwnode_handle *iort_fwnode;
/* If there's no SMMU driver at all, give up now */
if (!node || !iort_iommu_driver_enabled(node->type))
return -ENODEV;
iort_fwnode = iort_get_fwnode(node);
if (!iort_fwnode)
return -ENODEV;
/*
* If the SMMU drivers are enabled but not loaded/probed
* yet, this will defer.
*/
return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode);
}
struct iort_pci_alias_info {
struct device *dev;
struct acpi_iort_node *node;
};
static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
{
struct iort_pci_alias_info *info = data;
struct acpi_iort_node *parent;
u32 streamid;
parent = iort_node_map_id(info->node, alias, &streamid,
IORT_IOMMU_TYPE);
return iort_iommu_xlate(info->dev, parent, streamid);
}
static void iort_named_component_init(struct device *dev,
struct acpi_iort_node *node)
{
struct property_entry props[3] = {};
struct acpi_iort_named_component *nc;
nc = (struct acpi_iort_named_component *)node->node_data;
props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
FIELD_GET(ACPI_IORT_NC_PASID_BITS,
nc->node_flags));
if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
if (device_create_managed_software_node(dev, props, NULL))
dev_warn(dev, "Could not add device properties\n");
}
static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
{
struct acpi_iort_node *parent;
int err = -ENODEV, i = 0;
u32 streamid = 0;
do {
parent = iort_node_map_platform_id(node, &streamid,
IORT_IOMMU_TYPE,
i++);
if (parent)
err = iort_iommu_xlate(dev, parent, streamid);
} while (parent && !err);
return err;
}
static int iort_nc_iommu_map_id(struct device *dev,
struct acpi_iort_node *node,
const u32 *in_id)
{
struct acpi_iort_node *parent;
u32 streamid;
parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
if (parent)
return iort_iommu_xlate(dev, parent, streamid);
return -ENODEV;
}
/**
* iort_iommu_configure_id - Set-up IOMMU configuration for a device.
*
* @dev: device to configure
* @id_in: optional input id const value pointer
*
* Returns: 0 on success, <0 on failure
*/
int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
{
struct acpi_iort_node *node;
int err = -ENODEV;
if (dev_is_pci(dev)) {
struct iommu_fwspec *fwspec;
struct pci_bus *bus = to_pci_dev(dev)->bus;
struct iort_pci_alias_info info = { .dev = dev };
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
iort_match_node_callback, &bus->dev);
if (!node)
return -ENODEV;
info.node = node;
err = pci_for_each_dma_alias(to_pci_dev(dev),
iort_pci_iommu_init, &info);
fwspec = dev_iommu_fwspec_get(dev);
if (fwspec && iort_pci_rc_supports_ats(node))
fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
} else {
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
iort_match_node_callback, dev);
if (!node)
return -ENODEV;
err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
iort_nc_iommu_map(dev, node);
if (!err)
iort_named_component_init(dev, node);
}
return err;
}
#else
void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
{ }
int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
{ return -ENODEV; }
#endif
static int nc_dma_get_range(struct device *dev, u64 *limit)
{
struct acpi_iort_node *node;
struct acpi_iort_named_component *ncomp;
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
iort_match_node_callback, dev);
if (!node)
return -ENODEV;
ncomp = (struct acpi_iort_named_component *)node->node_data;
if (!ncomp->memory_address_limit) {
pr_warn(FW_BUG "Named component missing memory address limit\n");
return -EINVAL;
}
*limit = ncomp->memory_address_limit >= 64 ? U64_MAX :
(1ULL << ncomp->memory_address_limit) - 1;
return 0;
}
static int rc_dma_get_range(struct device *dev, u64 *limit)
{
struct acpi_iort_node *node;
struct acpi_iort_root_complex *rc;
struct pci_bus *pbus = to_pci_dev(dev)->bus;
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
iort_match_node_callback, &pbus->dev);
if (!node || node->revision < 1)
return -ENODEV;
rc = (struct acpi_iort_root_complex *)node->node_data;
if (!rc->memory_address_limit) {
pr_warn(FW_BUG "Root complex missing memory address limit\n");
return -EINVAL;
}
*limit = rc->memory_address_limit >= 64 ? U64_MAX :
(1ULL << rc->memory_address_limit) - 1;
return 0;
}
/**
* iort_dma_get_ranges() - Look up DMA addressing limit for the device
* @dev: device to lookup
* @limit: DMA limit result pointer
*
* Return: 0 on success, an error otherwise.
*/
int iort_dma_get_ranges(struct device *dev, u64 *limit)
{
if (dev_is_pci(dev))
return rc_dma_get_range(dev, limit);
else
return nc_dma_get_range(dev, limit);
}
static void __init acpi_iort_register_irq(int hwirq, const char *name,
int trigger,
struct resource *res)
{
int irq = acpi_register_gsi(NULL, hwirq, trigger,
ACPI_ACTIVE_HIGH);
if (irq <= 0) {
pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
name);
return;
}
res->start = irq;
res->end = irq;
res->flags = IORESOURCE_IRQ;
res->name = name;
}
static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
/* Always present mem resource */
int num_res = 1;
/* Retrieve SMMUv3 specific data */
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
if (smmu->event_gsiv)
num_res++;
if (smmu->pri_gsiv)
num_res++;
if (smmu->gerr_gsiv)
num_res++;
if (smmu->sync_gsiv)
num_res++;
return num_res;
}
static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
{
/*
* Cavium ThunderX2 implementation doesn't not support unique
* irq line. Use single irq line for all the SMMUv3 interrupts.
*/
if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
return false;
/*
* ThunderX2 doesn't support MSIs from the SMMU, so we're checking
* SPI numbers here.
*/
return smmu->event_gsiv == smmu->pri_gsiv &&
smmu->event_gsiv == smmu->gerr_gsiv &&
smmu->event_gsiv == smmu->sync_gsiv;
}
static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
{
/*
* Override the size, for Cavium ThunderX2 implementation
* which doesn't support the page 1 SMMU register space.
*/
if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
return SZ_64K;
return SZ_128K;
}
static void __init arm_smmu_v3_init_resources(struct resource *res,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
int num_res = 0;
/* Retrieve SMMUv3 specific data */
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
res[num_res].start = smmu->base_address;
res[num_res].end = smmu->base_address +
arm_smmu_v3_resource_size(smmu) - 1;
res[num_res].flags = IORESOURCE_MEM;
num_res++;
if (arm_smmu_v3_is_combined_irq(smmu)) {
if (smmu->event_gsiv)
acpi_iort_register_irq(smmu->event_gsiv, "combined",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
} else {
if (smmu->event_gsiv)
acpi_iort_register_irq(smmu->event_gsiv, "eventq",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
if (smmu->pri_gsiv)
acpi_iort_register_irq(smmu->pri_gsiv, "priq",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
if (smmu->gerr_gsiv)
acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
if (smmu->sync_gsiv)
acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
}
}
static void __init arm_smmu_v3_dma_configure(struct device *dev,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
enum dev_dma_attr attr;
/* Retrieve SMMUv3 specific data */
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
dev->dma_mask = &dev->coherent_dma_mask;
/* Configure DMA for the page table walker */
acpi_dma_configure(dev, attr);
}
#if defined(CONFIG_ACPI_NUMA)
/*
* set numa proximity domain for smmuv3 device
*/
static int __init arm_smmu_v3_set_proximity(struct device *dev,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
int dev_node = pxm_to_node(smmu->pxm);
if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
return -EINVAL;
set_dev_node(dev, dev_node);
pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
smmu->base_address,
smmu->pxm);
}
return 0;
}
#else
#define arm_smmu_v3_set_proximity NULL
#endif
static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
{
struct acpi_iort_smmu *smmu;
/* Retrieve SMMU specific data */
smmu = (struct acpi_iort_smmu *)node->node_data;
/*
* Only consider the global fault interrupt and ignore the
* configuration access interrupt.
*
* MMIO address and global fault interrupt resources are always
* present so add them to the context interrupt count as a static
* value.
*/
return smmu->context_interrupt_count + 2;
}
static void __init arm_smmu_init_resources(struct resource *res,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu *smmu;
int i, hw_irq, trigger, num_res = 0;
u64 *ctx_irq, *glb_irq;
/* Retrieve SMMU specific data */
smmu = (struct acpi_iort_smmu *)node->node_data;
res[num_res].start = smmu->base_address;
res[num_res].end = smmu->base_address + smmu->span - 1;
res[num_res].flags = IORESOURCE_MEM;
num_res++;
glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
/* Global IRQs */
hw_irq = IORT_IRQ_MASK(glb_irq[0]);
trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
&res[num_res++]);
/* Context IRQs */
ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
for (i = 0; i < smmu->context_interrupt_count; i++) {
hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
&res[num_res++]);
}
}
static void __init arm_smmu_dma_configure(struct device *dev,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu *smmu;
enum dev_dma_attr attr;
/* Retrieve SMMU specific data */
smmu = (struct acpi_iort_smmu *)node->node_data;
attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
/* We expect the dma masks to be equivalent for SMMU set-ups */
dev->dma_mask = &dev->coherent_dma_mask;
/* Configure DMA for the page table walker */
acpi_dma_configure(dev, attr);
}
static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
{
struct acpi_iort_pmcg *pmcg;
/* Retrieve PMCG specific data */
pmcg = (struct acpi_iort_pmcg *)node->node_data;
/*
* There are always 2 memory resources.
* If the overflow_gsiv is present then add that for a total of 3.
*/
return pmcg->overflow_gsiv ? 3 : 2;
}
static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
struct acpi_iort_node *node)
{
struct acpi_iort_pmcg *pmcg;
/* Retrieve PMCG specific data */
pmcg = (struct acpi_iort_pmcg *)node->node_data;
res[0].start = pmcg->page0_base_address;
res[0].end = pmcg->page0_base_address + SZ_4K - 1;
res[0].flags = IORESOURCE_MEM;
/*
* The initial version in DEN0049C lacked a way to describe register
* page 1, which makes it broken for most PMCG implementations; in
* that case, just let the driver fail gracefully if it expects to
* find a second memory resource.
*/
if (node->revision > 0) {
res[1].start = pmcg->page1_base_address;
res[1].end = pmcg->page1_base_address + SZ_4K - 1;
res[1].flags = IORESOURCE_MEM;
}
if (pmcg->overflow_gsiv)
acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
ACPI_EDGE_SENSITIVE, &res[2]);
}
static struct acpi_platform_list pmcg_plat_info[] __initdata = {
/* HiSilicon Hip08 Platform */
{"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
"Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
/* HiSilicon Hip09 Platform */
{"HISI ", "HIP09 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
{ }
};
static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
{
u32 model;
int idx;
idx = acpi_match_platform_list(pmcg_plat_info);
if (idx >= 0)
model = pmcg_plat_info[idx].data;
else
model = IORT_SMMU_V3_PMCG_GENERIC;
return platform_device_add_data(pdev, &model, sizeof(model));
}
struct iort_dev_config {
const char *name;
int (*dev_init)(struct acpi_iort_node *node);
void (*dev_dma_configure)(struct device *dev,
struct acpi_iort_node *node);
int (*dev_count_resources)(struct acpi_iort_node *node);
void (*dev_init_resources)(struct resource *res,
struct acpi_iort_node *node);
int (*dev_set_proximity)(struct device *dev,
struct acpi_iort_node *node);
int (*dev_add_platdata)(struct platform_device *pdev);
};
static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
.name = "arm-smmu-v3",
.dev_dma_configure = arm_smmu_v3_dma_configure,
.dev_count_resources = arm_smmu_v3_count_resources,
.dev_init_resources = arm_smmu_v3_init_resources,
.dev_set_proximity = arm_smmu_v3_set_proximity,
};
static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
.name = "arm-smmu",
.dev_dma_configure = arm_smmu_dma_configure,
.dev_count_resources = arm_smmu_count_resources,
.dev_init_resources = arm_smmu_init_resources,
};
static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
.name = "arm-smmu-v3-pmcg",
.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
};
static __init const struct iort_dev_config *iort_get_dev_cfg(
struct acpi_iort_node *node)
{
switch (node->type) {
case ACPI_IORT_NODE_SMMU_V3:
return &iort_arm_smmu_v3_cfg;
case ACPI_IORT_NODE_SMMU:
return &iort_arm_smmu_cfg;
case ACPI_IORT_NODE_PMCG:
return &iort_arm_smmu_v3_pmcg_cfg;
default:
return NULL;
}
}
/**
* iort_add_platform_device() - Allocate a platform device for IORT node
* @node: Pointer to device ACPI IORT node
* @ops: Pointer to IORT device config struct
*
* Returns: 0 on success, <0 failure
*/
static int __init iort_add_platform_device(struct acpi_iort_node *node,
const struct iort_dev_config *ops)
{
struct fwnode_handle *fwnode;
struct platform_device *pdev;
struct resource *r;
int ret, count;
pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
if (!pdev)
return -ENOMEM;
if (ops->dev_set_proximity) {
ret = ops->dev_set_proximity(&pdev->dev, node);
if (ret)
goto dev_put;
}
count = ops->dev_count_resources(node);
r = kcalloc(count, sizeof(*r), GFP_KERNEL);
if (!r) {
ret = -ENOMEM;
goto dev_put;
}
ops->dev_init_resources(r, node);
ret = platform_device_add_resources(pdev, r, count);
/*
* Resources are duplicated in platform_device_add_resources,
* free their allocated memory
*/
kfree(r);
if (ret)
goto dev_put;
/*
* Platform devices based on PMCG nodes uses platform_data to
* pass the hardware model info to the driver. For others, add
* a copy of IORT node pointer to platform_data to be used to
* retrieve IORT data information.
*/
if (ops->dev_add_platdata)
ret = ops->dev_add_platdata(pdev);
else
ret = platform_device_add_data(pdev, &node, sizeof(node));
if (ret)
goto dev_put;
fwnode = iort_get_fwnode(node);
if (!fwnode) {
ret = -ENODEV;
goto dev_put;
}
pdev->dev.fwnode = fwnode;
if (ops->dev_dma_configure)
ops->dev_dma_configure(&pdev->dev, node);
iort_set_device_domain(&pdev->dev, node);
ret = platform_device_add(pdev);
if (ret)
goto dma_deconfigure;
return 0;
dma_deconfigure:
arch_teardown_dma_ops(&pdev->dev);
dev_put:
platform_device_put(pdev);
return ret;
}
#ifdef CONFIG_PCI
static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
{
static bool acs_enabled __initdata;
if (acs_enabled)
return;
if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
struct acpi_iort_node *parent;
struct acpi_iort_id_mapping *map;
int i;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
iort_node->mapping_offset);
for (i = 0; i < iort_node->mapping_count; i++, map++) {
if (!map->output_reference)
continue;
parent = ACPI_ADD_PTR(struct acpi_iort_node,
iort_table, map->output_reference);
/*
* If we detect a RC->SMMU mapping, make sure
* we enable ACS on the system.
*/
if ((parent->type == ACPI_IORT_NODE_SMMU) ||
(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
pci_request_acs();
acs_enabled = true;
return;
}
}
}
}
#else
static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
#endif
static void __init iort_init_platform_devices(void)
{
struct acpi_iort_node *iort_node, *iort_end;
struct acpi_table_iort *iort;
struct fwnode_handle *fwnode;
int i, ret;
const struct iort_dev_config *ops;
/*
* iort_table and iort both point to the start of IORT table, but
* have different struct types
*/
iort = (struct acpi_table_iort *)iort_table;
/* Get the first IORT node */
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort->node_offset);
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort_table->length);
for (i = 0; i < iort->node_count; i++) {
if (iort_node >= iort_end) {
pr_err("iort node pointer overflows, bad table\n");
return;
}
iort_enable_acs(iort_node);
ops = iort_get_dev_cfg(iort_node);
if (ops) {
fwnode = acpi_alloc_fwnode_static();
if (!fwnode)
return;
iort_set_fwnode(iort_node, fwnode);
ret = iort_add_platform_device(iort_node, ops);
if (ret) {
iort_delete_fwnode(iort_node);
acpi_free_fwnode_static(fwnode);
return;
}
}
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
iort_node->length);
}
}
void __init acpi_iort_init(void)
{
acpi_status status;
/* iort_table will be used at runtime after the iort init,
* so we don't need to call acpi_put_table() to release
* the IORT table mapping.
*/
status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND) {
const char *msg = acpi_format_exception(status);
pr_err("Failed to get table, %s\n", msg);
}
return;
}
iort_init_platform_devices();
}
#ifdef CONFIG_ZONE_DMA
/*
* Extract the highest CPU physical address accessible to all DMA masters in
* the system. PHYS_ADDR_MAX is returned when no constrained device is found.
*/
phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
{
phys_addr_t limit = PHYS_ADDR_MAX;
struct acpi_iort_node *node, *end;
struct acpi_table_iort *iort;
acpi_status status;
int i;
if (acpi_disabled)
return limit;
status = acpi_get_table(ACPI_SIG_IORT, 0,
(struct acpi_table_header **)&iort);
if (ACPI_FAILURE(status))
return limit;
node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
for (i = 0; i < iort->node_count; i++) {
if (node >= end)
break;
switch (node->type) {
struct acpi_iort_named_component *ncomp;
struct acpi_iort_root_complex *rc;
phys_addr_t local_limit;
case ACPI_IORT_NODE_NAMED_COMPONENT:
ncomp = (struct acpi_iort_named_component *)node->node_data;
local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
limit = min_not_zero(limit, local_limit);
break;
case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
if (node->revision < 1)
break;
rc = (struct acpi_iort_root_complex *)node->node_data;
local_limit = DMA_BIT_MASK(rc->memory_address_limit);
limit = min_not_zero(limit, local_limit);
break;
}
node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
}
acpi_put_table(&iort->header);
return limit;
}
#endif