blob: 5e7242304ee2a3c80f43bc19c927f789b6120c8d [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#include <linux/stddef.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <linux/dma-mapping.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/vmalloc.h>
#include <linux/crash_dump.h>
#include <linux/crc32.h>
#include <linux/qed/qed_if.h>
#include <linux/qed/qed_ll2_if.h>
#include <net/devlink.h>
#include <linux/aer.h>
#include <linux/phylink.h>
#include "qed.h"
#include "qed_sriov.h"
#include "qed_sp.h"
#include "qed_dev_api.h"
#include "qed_ll2.h"
#include "qed_fcoe.h"
#include "qed_iscsi.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_hw.h"
#include "qed_selftest.h"
#include "qed_debug.h"
#include "qed_devlink.h"
#define QED_ROCE_QPS (8192)
#define QED_ROCE_DPIS (8)
#define QED_RDMA_SRQS QED_ROCE_QPS
#define QED_NVM_CFG_GET_FLAGS 0xA
#define QED_NVM_CFG_GET_PF_FLAGS 0x1A
#define QED_NVM_CFG_MAX_ATTRS 50
static char version[] =
"QLogic FastLinQ 4xxxx Core Module qed\n";
MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Core Module");
MODULE_LICENSE("GPL");
#define FW_FILE_VERSION \
__stringify(FW_MAJOR_VERSION) "." \
__stringify(FW_MINOR_VERSION) "." \
__stringify(FW_REVISION_VERSION) "." \
__stringify(FW_ENGINEERING_VERSION)
#define QED_FW_FILE_NAME \
"qed/qed_init_values_zipped-" FW_FILE_VERSION ".bin"
MODULE_FIRMWARE(QED_FW_FILE_NAME);
/* MFW speed capabilities maps */
struct qed_mfw_speed_map {
u32 mfw_val;
__ETHTOOL_DECLARE_LINK_MODE_MASK(caps);
const u32 *cap_arr;
u32 arr_size;
};
#define QED_MFW_SPEED_MAP(type, arr) \
{ \
.mfw_val = (type), \
.cap_arr = (arr), \
.arr_size = ARRAY_SIZE(arr), \
}
static const u32 qed_mfw_ext_1g[] __initconst = {
ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
};
static const u32 qed_mfw_ext_10g[] __initconst = {
ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseLRM_Full_BIT,
};
static const u32 qed_mfw_ext_25g[] __initconst = {
ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
};
static const u32 qed_mfw_ext_40g[] __initconst = {
ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
};
static const u32 qed_mfw_ext_50g_base_r[] __initconst = {
ETHTOOL_LINK_MODE_50000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseDR_Full_BIT,
};
static const u32 qed_mfw_ext_50g_base_r2[] __initconst = {
ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
};
static const u32 qed_mfw_ext_100g_base_r2[] __initconst = {
ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseDR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT,
};
static const u32 qed_mfw_ext_100g_base_r4[] __initconst = {
ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
};
static struct qed_mfw_speed_map qed_mfw_ext_maps[] __ro_after_init = {
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_1G, qed_mfw_ext_1g),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_10G, qed_mfw_ext_10g),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_25G, qed_mfw_ext_25g),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_40G, qed_mfw_ext_40g),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_50G_BASE_R,
qed_mfw_ext_50g_base_r),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_50G_BASE_R2,
qed_mfw_ext_50g_base_r2),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_100G_BASE_R2,
qed_mfw_ext_100g_base_r2),
QED_MFW_SPEED_MAP(ETH_EXT_ADV_SPEED_100G_BASE_R4,
qed_mfw_ext_100g_base_r4),
};
static const u32 qed_mfw_legacy_1g[] __initconst = {
ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
};
static const u32 qed_mfw_legacy_10g[] __initconst = {
ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseLRM_Full_BIT,
};
static const u32 qed_mfw_legacy_20g[] __initconst = {
ETHTOOL_LINK_MODE_20000baseKR2_Full_BIT,
};
static const u32 qed_mfw_legacy_25g[] __initconst = {
ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
};
static const u32 qed_mfw_legacy_40g[] __initconst = {
ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
};
static const u32 qed_mfw_legacy_50g[] __initconst = {
ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
};
static const u32 qed_mfw_legacy_bb_100g[] __initconst = {
ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
};
static struct qed_mfw_speed_map qed_mfw_legacy_maps[] __ro_after_init = {
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G,
qed_mfw_legacy_1g),
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G,
qed_mfw_legacy_10g),
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G,
qed_mfw_legacy_20g),
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G,
qed_mfw_legacy_25g),
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G,
qed_mfw_legacy_40g),
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G,
qed_mfw_legacy_50g),
QED_MFW_SPEED_MAP(NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G,
qed_mfw_legacy_bb_100g),
};
static void __init qed_mfw_speed_map_populate(struct qed_mfw_speed_map *map)
{
linkmode_set_bit_array(map->cap_arr, map->arr_size, map->caps);
map->cap_arr = NULL;
map->arr_size = 0;
}
static void __init qed_mfw_speed_maps_init(void)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(qed_mfw_ext_maps); i++)
qed_mfw_speed_map_populate(qed_mfw_ext_maps + i);
for (i = 0; i < ARRAY_SIZE(qed_mfw_legacy_maps); i++)
qed_mfw_speed_map_populate(qed_mfw_legacy_maps + i);
}
static int __init qed_init(void)
{
pr_info("%s", version);
qed_mfw_speed_maps_init();
return 0;
}
module_init(qed_init);
static void __exit qed_exit(void)
{
/* To prevent marking this module as "permanent" */
}
module_exit(qed_exit);
/* Check if the DMA controller on the machine can properly handle the DMA
* addressing required by the device.
*/
static int qed_set_coherency_mask(struct qed_dev *cdev)
{
struct device *dev = &cdev->pdev->dev;
if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
DP_NOTICE(cdev,
"Can't request 64-bit consistent allocations\n");
return -EIO;
}
} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
DP_NOTICE(cdev, "Can't request 64b/32b DMA addresses\n");
return -EIO;
}
return 0;
}
static void qed_free_pci(struct qed_dev *cdev)
{
struct pci_dev *pdev = cdev->pdev;
pci_disable_pcie_error_reporting(pdev);
if (cdev->doorbells && cdev->db_size)
iounmap(cdev->doorbells);
if (cdev->regview)
iounmap(cdev->regview);
if (atomic_read(&pdev->enable_cnt) == 1)
pci_release_regions(pdev);
pci_disable_device(pdev);
}
#define PCI_REVISION_ID_ERROR_VAL 0xff
/* Performs PCI initializations as well as initializing PCI-related parameters
* in the device structrue. Returns 0 in case of success.
*/
static int qed_init_pci(struct qed_dev *cdev, struct pci_dev *pdev)
{
u8 rev_id;
int rc;
cdev->pdev = pdev;
rc = pci_enable_device(pdev);
if (rc) {
DP_NOTICE(cdev, "Cannot enable PCI device\n");
goto err0;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
DP_NOTICE(cdev, "No memory region found in bar #0\n");
rc = -EIO;
goto err1;
}
if (IS_PF(cdev) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
DP_NOTICE(cdev, "No memory region found in bar #2\n");
rc = -EIO;
goto err1;
}
if (atomic_read(&pdev->enable_cnt) == 1) {
rc = pci_request_regions(pdev, "qed");
if (rc) {
DP_NOTICE(cdev,
"Failed to request PCI memory resources\n");
goto err1;
}
pci_set_master(pdev);
pci_save_state(pdev);
}
pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
if (rev_id == PCI_REVISION_ID_ERROR_VAL) {
DP_NOTICE(cdev,
"Detected PCI device error [rev_id 0x%x]. Probably due to prior indication. Aborting.\n",
rev_id);
rc = -ENODEV;
goto err2;
}
if (!pci_is_pcie(pdev)) {
DP_NOTICE(cdev, "The bus is not PCI Express\n");
rc = -EIO;
goto err2;
}
cdev->pci_params.pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (IS_PF(cdev) && !cdev->pci_params.pm_cap)
DP_NOTICE(cdev, "Cannot find power management capability\n");
rc = qed_set_coherency_mask(cdev);
if (rc)
goto err2;
cdev->pci_params.mem_start = pci_resource_start(pdev, 0);
cdev->pci_params.mem_end = pci_resource_end(pdev, 0);
cdev->pci_params.irq = pdev->irq;
cdev->regview = pci_ioremap_bar(pdev, 0);
if (!cdev->regview) {
DP_NOTICE(cdev, "Cannot map register space, aborting\n");
rc = -ENOMEM;
goto err2;
}
cdev->db_phys_addr = pci_resource_start(cdev->pdev, 2);
cdev->db_size = pci_resource_len(cdev->pdev, 2);
if (!cdev->db_size) {
if (IS_PF(cdev)) {
DP_NOTICE(cdev, "No Doorbell bar available\n");
return -EINVAL;
} else {
return 0;
}
}
cdev->doorbells = ioremap_wc(cdev->db_phys_addr, cdev->db_size);
if (!cdev->doorbells) {
DP_NOTICE(cdev, "Cannot map doorbell space\n");
return -ENOMEM;
}
/* AER (Advanced Error reporting) configuration */
rc = pci_enable_pcie_error_reporting(pdev);
if (rc)
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"Failed to configure PCIe AER [%d]\n", rc);
return 0;
err2:
pci_release_regions(pdev);
err1:
pci_disable_device(pdev);
err0:
return rc;
}
int qed_fill_dev_info(struct qed_dev *cdev,
struct qed_dev_info *dev_info)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_hw_info *hw_info = &p_hwfn->hw_info;
struct qed_tunnel_info *tun = &cdev->tunnel;
struct qed_ptt *ptt;
memset(dev_info, 0, sizeof(struct qed_dev_info));
if (tun->vxlan.tun_cls == QED_TUNN_CLSS_MAC_VLAN &&
tun->vxlan.b_mode_enabled)
dev_info->vxlan_enable = true;
if (tun->l2_gre.b_mode_enabled && tun->ip_gre.b_mode_enabled &&
tun->l2_gre.tun_cls == QED_TUNN_CLSS_MAC_VLAN &&
tun->ip_gre.tun_cls == QED_TUNN_CLSS_MAC_VLAN)
dev_info->gre_enable = true;
if (tun->l2_geneve.b_mode_enabled && tun->ip_geneve.b_mode_enabled &&
tun->l2_geneve.tun_cls == QED_TUNN_CLSS_MAC_VLAN &&
tun->ip_geneve.tun_cls == QED_TUNN_CLSS_MAC_VLAN)
dev_info->geneve_enable = true;
dev_info->num_hwfns = cdev->num_hwfns;
dev_info->pci_mem_start = cdev->pci_params.mem_start;
dev_info->pci_mem_end = cdev->pci_params.mem_end;
dev_info->pci_irq = cdev->pci_params.irq;
dev_info->rdma_supported = QED_IS_RDMA_PERSONALITY(p_hwfn);
dev_info->dev_type = cdev->type;
ether_addr_copy(dev_info->hw_mac, hw_info->hw_mac_addr);
if (IS_PF(cdev)) {
dev_info->fw_major = FW_MAJOR_VERSION;
dev_info->fw_minor = FW_MINOR_VERSION;
dev_info->fw_rev = FW_REVISION_VERSION;
dev_info->fw_eng = FW_ENGINEERING_VERSION;
dev_info->b_inter_pf_switch = test_bit(QED_MF_INTER_PF_SWITCH,
&cdev->mf_bits);
if (!test_bit(QED_MF_DISABLE_ARFS, &cdev->mf_bits))
dev_info->b_arfs_capable = true;
dev_info->tx_switching = true;
if (hw_info->b_wol_support == QED_WOL_SUPPORT_PME)
dev_info->wol_support = true;
dev_info->smart_an = qed_mcp_is_smart_an_supported(p_hwfn);
dev_info->abs_pf_id = QED_LEADING_HWFN(cdev)->abs_pf_id;
} else {
qed_vf_get_fw_version(&cdev->hwfns[0], &dev_info->fw_major,
&dev_info->fw_minor, &dev_info->fw_rev,
&dev_info->fw_eng);
}
if (IS_PF(cdev)) {
ptt = qed_ptt_acquire(QED_LEADING_HWFN(cdev));
if (ptt) {
qed_mcp_get_mfw_ver(QED_LEADING_HWFN(cdev), ptt,
&dev_info->mfw_rev, NULL);
qed_mcp_get_mbi_ver(QED_LEADING_HWFN(cdev), ptt,
&dev_info->mbi_version);
qed_mcp_get_flash_size(QED_LEADING_HWFN(cdev), ptt,
&dev_info->flash_size);
qed_ptt_release(QED_LEADING_HWFN(cdev), ptt);
}
} else {
qed_mcp_get_mfw_ver(QED_LEADING_HWFN(cdev), NULL,
&dev_info->mfw_rev, NULL);
}
dev_info->mtu = hw_info->mtu;
cdev->common_dev_info = *dev_info;
return 0;
}
static void qed_free_cdev(struct qed_dev *cdev)
{
kfree((void *)cdev);
}
static struct qed_dev *qed_alloc_cdev(struct pci_dev *pdev)
{
struct qed_dev *cdev;
cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
if (!cdev)
return cdev;
qed_init_struct(cdev);
return cdev;
}
/* Sets the requested power state */
static int qed_set_power_state(struct qed_dev *cdev, pci_power_t state)
{
if (!cdev)
return -ENODEV;
DP_VERBOSE(cdev, NETIF_MSG_DRV, "Omitting Power state change\n");
return 0;
}
/* probing */
static struct qed_dev *qed_probe(struct pci_dev *pdev,
struct qed_probe_params *params)
{
struct qed_dev *cdev;
int rc;
cdev = qed_alloc_cdev(pdev);
if (!cdev)
goto err0;
cdev->drv_type = DRV_ID_DRV_TYPE_LINUX;
cdev->protocol = params->protocol;
if (params->is_vf)
cdev->b_is_vf = true;
qed_init_dp(cdev, params->dp_module, params->dp_level);
cdev->recov_in_prog = params->recov_in_prog;
rc = qed_init_pci(cdev, pdev);
if (rc) {
DP_ERR(cdev, "init pci failed\n");
goto err1;
}
DP_INFO(cdev, "PCI init completed successfully\n");
rc = qed_hw_prepare(cdev, QED_PCI_DEFAULT);
if (rc) {
DP_ERR(cdev, "hw prepare failed\n");
goto err2;
}
DP_INFO(cdev, "%s completed successfully\n", __func__);
return cdev;
err2:
qed_free_pci(cdev);
err1:
qed_free_cdev(cdev);
err0:
return NULL;
}
static void qed_remove(struct qed_dev *cdev)
{
if (!cdev)
return;
qed_hw_remove(cdev);
qed_free_pci(cdev);
qed_set_power_state(cdev, PCI_D3hot);
qed_free_cdev(cdev);
}
static void qed_disable_msix(struct qed_dev *cdev)
{
if (cdev->int_params.out.int_mode == QED_INT_MODE_MSIX) {
pci_disable_msix(cdev->pdev);
kfree(cdev->int_params.msix_table);
} else if (cdev->int_params.out.int_mode == QED_INT_MODE_MSI) {
pci_disable_msi(cdev->pdev);
}
memset(&cdev->int_params.out, 0, sizeof(struct qed_int_param));
}
static int qed_enable_msix(struct qed_dev *cdev,
struct qed_int_params *int_params)
{
int i, rc, cnt;
cnt = int_params->in.num_vectors;
for (i = 0; i < cnt; i++)
int_params->msix_table[i].entry = i;
rc = pci_enable_msix_range(cdev->pdev, int_params->msix_table,
int_params->in.min_msix_cnt, cnt);
if (rc < cnt && rc >= int_params->in.min_msix_cnt &&
(rc % cdev->num_hwfns)) {
pci_disable_msix(cdev->pdev);
/* If fastpath is initialized, we need at least one interrupt
* per hwfn [and the slow path interrupts]. New requested number
* should be a multiple of the number of hwfns.
*/
cnt = (rc / cdev->num_hwfns) * cdev->num_hwfns;
DP_NOTICE(cdev,
"Trying to enable MSI-X with less vectors (%d out of %d)\n",
cnt, int_params->in.num_vectors);
rc = pci_enable_msix_exact(cdev->pdev, int_params->msix_table,
cnt);
if (!rc)
rc = cnt;
}
/* For VFs, we should return with an error in case we didn't get the
* exact number of msix vectors as we requested.
* Not doing that will lead to a crash when starting queues for
* this VF.
*/
if ((IS_PF(cdev) && rc > 0) || (IS_VF(cdev) && rc == cnt)) {
/* MSI-x configuration was achieved */
int_params->out.int_mode = QED_INT_MODE_MSIX;
int_params->out.num_vectors = rc;
rc = 0;
} else {
DP_NOTICE(cdev,
"Failed to enable MSI-X [Requested %d vectors][rc %d]\n",
cnt, rc);
}
return rc;
}
/* This function outputs the int mode and the number of enabled msix vector */
static int qed_set_int_mode(struct qed_dev *cdev, bool force_mode)
{
struct qed_int_params *int_params = &cdev->int_params;
struct msix_entry *tbl;
int rc = 0, cnt;
switch (int_params->in.int_mode) {
case QED_INT_MODE_MSIX:
/* Allocate MSIX table */
cnt = int_params->in.num_vectors;
int_params->msix_table = kcalloc(cnt, sizeof(*tbl), GFP_KERNEL);
if (!int_params->msix_table) {
rc = -ENOMEM;
goto out;
}
/* Enable MSIX */
rc = qed_enable_msix(cdev, int_params);
if (!rc)
goto out;
DP_NOTICE(cdev, "Failed to enable MSI-X\n");
kfree(int_params->msix_table);
if (force_mode)
goto out;
fallthrough;
case QED_INT_MODE_MSI:
if (cdev->num_hwfns == 1) {
rc = pci_enable_msi(cdev->pdev);
if (!rc) {
int_params->out.int_mode = QED_INT_MODE_MSI;
goto out;
}
DP_NOTICE(cdev, "Failed to enable MSI\n");
if (force_mode)
goto out;
}
fallthrough;
case QED_INT_MODE_INTA:
int_params->out.int_mode = QED_INT_MODE_INTA;
rc = 0;
goto out;
default:
DP_NOTICE(cdev, "Unknown int_mode value %d\n",
int_params->in.int_mode);
rc = -EINVAL;
}
out:
if (!rc)
DP_INFO(cdev, "Using %s interrupts\n",
int_params->out.int_mode == QED_INT_MODE_INTA ?
"INTa" : int_params->out.int_mode == QED_INT_MODE_MSI ?
"MSI" : "MSIX");
cdev->int_coalescing_mode = QED_COAL_MODE_ENABLE;
return rc;
}
static void qed_simd_handler_config(struct qed_dev *cdev, void *token,
int index, void(*handler)(void *))
{
struct qed_hwfn *hwfn = &cdev->hwfns[index % cdev->num_hwfns];
int relative_idx = index / cdev->num_hwfns;
hwfn->simd_proto_handler[relative_idx].func = handler;
hwfn->simd_proto_handler[relative_idx].token = token;
}
static void qed_simd_handler_clean(struct qed_dev *cdev, int index)
{
struct qed_hwfn *hwfn = &cdev->hwfns[index % cdev->num_hwfns];
int relative_idx = index / cdev->num_hwfns;
memset(&hwfn->simd_proto_handler[relative_idx], 0,
sizeof(struct qed_simd_fp_handler));
}
static irqreturn_t qed_msix_sp_int(int irq, void *tasklet)
{
tasklet_schedule((struct tasklet_struct *)tasklet);
return IRQ_HANDLED;
}
static irqreturn_t qed_single_int(int irq, void *dev_instance)
{
struct qed_dev *cdev = (struct qed_dev *)dev_instance;
struct qed_hwfn *hwfn;
irqreturn_t rc = IRQ_NONE;
u64 status;
int i, j;
for (i = 0; i < cdev->num_hwfns; i++) {
status = qed_int_igu_read_sisr_reg(&cdev->hwfns[i]);
if (!status)
continue;
hwfn = &cdev->hwfns[i];
/* Slowpath interrupt */
if (unlikely(status & 0x1)) {
tasklet_schedule(&hwfn->sp_dpc);
status &= ~0x1;
rc = IRQ_HANDLED;
}
/* Fastpath interrupts */
for (j = 0; j < 64; j++) {
if ((0x2ULL << j) & status) {
struct qed_simd_fp_handler *p_handler =
&hwfn->simd_proto_handler[j];
if (p_handler->func)
p_handler->func(p_handler->token);
else
DP_NOTICE(hwfn,
"Not calling fastpath handler as it is NULL [handler #%d, status 0x%llx]\n",
j, status);
status &= ~(0x2ULL << j);
rc = IRQ_HANDLED;
}
}
if (unlikely(status))
DP_VERBOSE(hwfn, NETIF_MSG_INTR,
"got an unknown interrupt status 0x%llx\n",
status);
}
return rc;
}
int qed_slowpath_irq_req(struct qed_hwfn *hwfn)
{
struct qed_dev *cdev = hwfn->cdev;
u32 int_mode;
int rc = 0;
u8 id;
int_mode = cdev->int_params.out.int_mode;
if (int_mode == QED_INT_MODE_MSIX) {
id = hwfn->my_id;
snprintf(hwfn->name, NAME_SIZE, "sp-%d-%02x:%02x.%02x",
id, cdev->pdev->bus->number,
PCI_SLOT(cdev->pdev->devfn), hwfn->abs_pf_id);
rc = request_irq(cdev->int_params.msix_table[id].vector,
qed_msix_sp_int, 0, hwfn->name, &hwfn->sp_dpc);
} else {
unsigned long flags = 0;
snprintf(cdev->name, NAME_SIZE, "%02x:%02x.%02x",
cdev->pdev->bus->number, PCI_SLOT(cdev->pdev->devfn),
PCI_FUNC(cdev->pdev->devfn));
if (cdev->int_params.out.int_mode == QED_INT_MODE_INTA)
flags |= IRQF_SHARED;
rc = request_irq(cdev->pdev->irq, qed_single_int,
flags, cdev->name, cdev);
}
if (rc)
DP_NOTICE(cdev, "request_irq failed, rc = %d\n", rc);
else
DP_VERBOSE(hwfn, (NETIF_MSG_INTR | QED_MSG_SP),
"Requested slowpath %s\n",
(int_mode == QED_INT_MODE_MSIX) ? "MSI-X" : "IRQ");
return rc;
}
static void qed_slowpath_tasklet_flush(struct qed_hwfn *p_hwfn)
{
/* Calling the disable function will make sure that any
* currently-running function is completed. The following call to the
* enable function makes this sequence a flush-like operation.
*/
if (p_hwfn->b_sp_dpc_enabled) {
tasklet_disable(&p_hwfn->sp_dpc);
tasklet_enable(&p_hwfn->sp_dpc);
}
}
void qed_slowpath_irq_sync(struct qed_hwfn *p_hwfn)
{
struct qed_dev *cdev = p_hwfn->cdev;
u8 id = p_hwfn->my_id;
u32 int_mode;
int_mode = cdev->int_params.out.int_mode;
if (int_mode == QED_INT_MODE_MSIX)
synchronize_irq(cdev->int_params.msix_table[id].vector);
else
synchronize_irq(cdev->pdev->irq);
qed_slowpath_tasklet_flush(p_hwfn);
}
static void qed_slowpath_irq_free(struct qed_dev *cdev)
{
int i;
if (cdev->int_params.out.int_mode == QED_INT_MODE_MSIX) {
for_each_hwfn(cdev, i) {
if (!cdev->hwfns[i].b_int_requested)
break;
synchronize_irq(cdev->int_params.msix_table[i].vector);
free_irq(cdev->int_params.msix_table[i].vector,
&cdev->hwfns[i].sp_dpc);
}
} else {
if (QED_LEADING_HWFN(cdev)->b_int_requested)
free_irq(cdev->pdev->irq, cdev);
}
qed_int_disable_post_isr_release(cdev);
}
static int qed_nic_stop(struct qed_dev *cdev)
{
int i, rc;
rc = qed_hw_stop(cdev);
for (i = 0; i < cdev->num_hwfns; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (p_hwfn->b_sp_dpc_enabled) {
tasklet_disable(&p_hwfn->sp_dpc);
p_hwfn->b_sp_dpc_enabled = false;
DP_VERBOSE(cdev, NETIF_MSG_IFDOWN,
"Disabled sp tasklet [hwfn %d] at %p\n",
i, &p_hwfn->sp_dpc);
}
}
qed_dbg_pf_exit(cdev);
return rc;
}
static int qed_nic_setup(struct qed_dev *cdev)
{
int rc, i;
/* Determine if interface is going to require LL2 */
if (QED_LEADING_HWFN(cdev)->hw_info.personality != QED_PCI_ETH) {
for (i = 0; i < cdev->num_hwfns; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->using_ll2 = true;
}
}
rc = qed_resc_alloc(cdev);
if (rc)
return rc;
DP_INFO(cdev, "Allocated qed resources\n");
qed_resc_setup(cdev);
return rc;
}
static int qed_set_int_fp(struct qed_dev *cdev, u16 cnt)
{
int limit = 0;
/* Mark the fastpath as free/used */
cdev->int_params.fp_initialized = cnt ? true : false;
if (cdev->int_params.out.int_mode != QED_INT_MODE_MSIX)
limit = cdev->num_hwfns * 63;
else if (cdev->int_params.fp_msix_cnt)
limit = cdev->int_params.fp_msix_cnt;
if (!limit)
return -ENOMEM;
return min_t(int, cnt, limit);
}
static int qed_get_int_fp(struct qed_dev *cdev, struct qed_int_info *info)
{
memset(info, 0, sizeof(struct qed_int_info));
if (!cdev->int_params.fp_initialized) {
DP_INFO(cdev,
"Protocol driver requested interrupt information, but its support is not yet configured\n");
return -EINVAL;
}
/* Need to expose only MSI-X information; Single IRQ is handled solely
* by qed.
*/
if (cdev->int_params.out.int_mode == QED_INT_MODE_MSIX) {
int msix_base = cdev->int_params.fp_msix_base;
info->msix_cnt = cdev->int_params.fp_msix_cnt;
info->msix = &cdev->int_params.msix_table[msix_base];
}
return 0;
}
static int qed_slowpath_setup_int(struct qed_dev *cdev,
enum qed_int_mode int_mode)
{
struct qed_sb_cnt_info sb_cnt_info;
int num_l2_queues = 0;
int rc;
int i;
if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
return -EINVAL;
}
memset(&cdev->int_params, 0, sizeof(struct qed_int_params));
cdev->int_params.in.int_mode = int_mode;
for_each_hwfn(cdev, i) {
memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
qed_int_get_num_sbs(&cdev->hwfns[i], &sb_cnt_info);
cdev->int_params.in.num_vectors += sb_cnt_info.cnt;
cdev->int_params.in.num_vectors++; /* slowpath */
}
/* We want a minimum of one slowpath and one fastpath vector per hwfn */
cdev->int_params.in.min_msix_cnt = cdev->num_hwfns * 2;
if (is_kdump_kernel()) {
DP_INFO(cdev,
"Kdump kernel: Limit the max number of requested MSI-X vectors to %hd\n",
cdev->int_params.in.min_msix_cnt);
cdev->int_params.in.num_vectors =
cdev->int_params.in.min_msix_cnt;
}
rc = qed_set_int_mode(cdev, false);
if (rc) {
DP_ERR(cdev, "%s ERR\n", __func__);
return rc;
}
cdev->int_params.fp_msix_base = cdev->num_hwfns;
cdev->int_params.fp_msix_cnt = cdev->int_params.out.num_vectors -
cdev->num_hwfns;
if (!IS_ENABLED(CONFIG_QED_RDMA) ||
!QED_IS_RDMA_PERSONALITY(QED_LEADING_HWFN(cdev)))
return 0;
for_each_hwfn(cdev, i)
num_l2_queues += FEAT_NUM(&cdev->hwfns[i], QED_PF_L2_QUE);
DP_VERBOSE(cdev, QED_MSG_RDMA,
"cdev->int_params.fp_msix_cnt=%d num_l2_queues=%d\n",
cdev->int_params.fp_msix_cnt, num_l2_queues);
if (cdev->int_params.fp_msix_cnt > num_l2_queues) {
cdev->int_params.rdma_msix_cnt =
(cdev->int_params.fp_msix_cnt - num_l2_queues)
/ cdev->num_hwfns;
cdev->int_params.rdma_msix_base =
cdev->int_params.fp_msix_base + num_l2_queues;
cdev->int_params.fp_msix_cnt = num_l2_queues;
} else {
cdev->int_params.rdma_msix_cnt = 0;
}
DP_VERBOSE(cdev, QED_MSG_RDMA, "roce_msix_cnt=%d roce_msix_base=%d\n",
cdev->int_params.rdma_msix_cnt,
cdev->int_params.rdma_msix_base);
return 0;
}
static int qed_slowpath_vf_setup_int(struct qed_dev *cdev)
{
int rc;
memset(&cdev->int_params, 0, sizeof(struct qed_int_params));
cdev->int_params.in.int_mode = QED_INT_MODE_MSIX;
qed_vf_get_num_rxqs(QED_LEADING_HWFN(cdev),
&cdev->int_params.in.num_vectors);
if (cdev->num_hwfns > 1) {
u8 vectors = 0;
qed_vf_get_num_rxqs(&cdev->hwfns[1], &vectors);
cdev->int_params.in.num_vectors += vectors;
}
/* We want a minimum of one fastpath vector per vf hwfn */
cdev->int_params.in.min_msix_cnt = cdev->num_hwfns;
rc = qed_set_int_mode(cdev, true);
if (rc)
return rc;
cdev->int_params.fp_msix_base = 0;
cdev->int_params.fp_msix_cnt = cdev->int_params.out.num_vectors;
return 0;
}
u32 qed_unzip_data(struct qed_hwfn *p_hwfn, u32 input_len,
u8 *input_buf, u32 max_size, u8 *unzip_buf)
{
int rc;
p_hwfn->stream->next_in = input_buf;
p_hwfn->stream->avail_in = input_len;
p_hwfn->stream->next_out = unzip_buf;
p_hwfn->stream->avail_out = max_size;
rc = zlib_inflateInit2(p_hwfn->stream, MAX_WBITS);
if (rc != Z_OK) {
DP_VERBOSE(p_hwfn, NETIF_MSG_DRV, "zlib init failed, rc = %d\n",
rc);
return 0;
}
rc = zlib_inflate(p_hwfn->stream, Z_FINISH);
zlib_inflateEnd(p_hwfn->stream);
if (rc != Z_OK && rc != Z_STREAM_END) {
DP_VERBOSE(p_hwfn, NETIF_MSG_DRV, "FW unzip error: %s, rc=%d\n",
p_hwfn->stream->msg, rc);
return 0;
}
return p_hwfn->stream->total_out / 4;
}
static int qed_alloc_stream_mem(struct qed_dev *cdev)
{
int i;
void *workspace;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->stream = kzalloc(sizeof(*p_hwfn->stream), GFP_KERNEL);
if (!p_hwfn->stream)
return -ENOMEM;
workspace = vzalloc(zlib_inflate_workspacesize());
if (!workspace)
return -ENOMEM;
p_hwfn->stream->workspace = workspace;
}
return 0;
}
static void qed_free_stream_mem(struct qed_dev *cdev)
{
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (!p_hwfn->stream)
return;
vfree(p_hwfn->stream->workspace);
kfree(p_hwfn->stream);
}
}
static void qed_update_pf_params(struct qed_dev *cdev,
struct qed_pf_params *params)
{
int i;
if (IS_ENABLED(CONFIG_QED_RDMA)) {
params->rdma_pf_params.num_qps = QED_ROCE_QPS;
params->rdma_pf_params.min_dpis = QED_ROCE_DPIS;
params->rdma_pf_params.num_srqs = QED_RDMA_SRQS;
/* divide by 3 the MRs to avoid MF ILT overflow */
params->rdma_pf_params.gl_pi = QED_ROCE_PROTOCOL_INDEX;
}
if (cdev->num_hwfns > 1 || IS_VF(cdev))
params->eth_pf_params.num_arfs_filters = 0;
/* In case we might support RDMA, don't allow qede to be greedy
* with the L2 contexts. Allow for 64 queues [rx, tx cos, xdp]
* per hwfn.
*/
if (QED_IS_RDMA_PERSONALITY(QED_LEADING_HWFN(cdev))) {
u16 *num_cons;
num_cons = &params->eth_pf_params.num_cons;
*num_cons = min_t(u16, *num_cons, QED_MAX_L2_CONS);
}
for (i = 0; i < cdev->num_hwfns; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->pf_params = *params;
}
}
#define QED_PERIODIC_DB_REC_COUNT 10
#define QED_PERIODIC_DB_REC_INTERVAL_MS 100
#define QED_PERIODIC_DB_REC_INTERVAL \
msecs_to_jiffies(QED_PERIODIC_DB_REC_INTERVAL_MS)
static int qed_slowpath_delayed_work(struct qed_hwfn *hwfn,
enum qed_slowpath_wq_flag wq_flag,
unsigned long delay)
{
if (!hwfn->slowpath_wq_active)
return -EINVAL;
/* Memory barrier for setting atomic bit */
smp_mb__before_atomic();
set_bit(wq_flag, &hwfn->slowpath_task_flags);
/* Memory barrier after setting atomic bit */
smp_mb__after_atomic();
queue_delayed_work(hwfn->slowpath_wq, &hwfn->slowpath_task, delay);
return 0;
}
void qed_periodic_db_rec_start(struct qed_hwfn *p_hwfn)
{
/* Reset periodic Doorbell Recovery counter */
p_hwfn->periodic_db_rec_count = QED_PERIODIC_DB_REC_COUNT;
/* Don't schedule periodic Doorbell Recovery if already scheduled */
if (test_bit(QED_SLOWPATH_PERIODIC_DB_REC,
&p_hwfn->slowpath_task_flags))
return;
qed_slowpath_delayed_work(p_hwfn, QED_SLOWPATH_PERIODIC_DB_REC,
QED_PERIODIC_DB_REC_INTERVAL);
}
static void qed_slowpath_wq_stop(struct qed_dev *cdev)
{
int i;
if (IS_VF(cdev))
return;
for_each_hwfn(cdev, i) {
if (!cdev->hwfns[i].slowpath_wq)
continue;
/* Stop queuing new delayed works */
cdev->hwfns[i].slowpath_wq_active = false;
cancel_delayed_work(&cdev->hwfns[i].slowpath_task);
destroy_workqueue(cdev->hwfns[i].slowpath_wq);
}
}
static void qed_slowpath_task(struct work_struct *work)
{
struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
slowpath_task.work);
struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
if (hwfn->slowpath_wq_active)
queue_delayed_work(hwfn->slowpath_wq,
&hwfn->slowpath_task, 0);
return;
}
if (test_and_clear_bit(QED_SLOWPATH_MFW_TLV_REQ,
&hwfn->slowpath_task_flags))
qed_mfw_process_tlv_req(hwfn, ptt);
if (test_and_clear_bit(QED_SLOWPATH_PERIODIC_DB_REC,
&hwfn->slowpath_task_flags)) {
/* skip qed_db_rec_handler during recovery/unload */
if (hwfn->cdev->recov_in_prog || !hwfn->slowpath_wq_active)
goto out;
qed_db_rec_handler(hwfn, ptt);
if (hwfn->periodic_db_rec_count--)
qed_slowpath_delayed_work(hwfn,
QED_SLOWPATH_PERIODIC_DB_REC,
QED_PERIODIC_DB_REC_INTERVAL);
}
out:
qed_ptt_release(hwfn, ptt);
}
static int qed_slowpath_wq_start(struct qed_dev *cdev)
{
struct qed_hwfn *hwfn;
char name[NAME_SIZE];
int i;
if (IS_VF(cdev))
return 0;
for_each_hwfn(cdev, i) {
hwfn = &cdev->hwfns[i];
snprintf(name, NAME_SIZE, "slowpath-%02x:%02x.%02x",
cdev->pdev->bus->number,
PCI_SLOT(cdev->pdev->devfn), hwfn->abs_pf_id);
hwfn->slowpath_wq = alloc_workqueue(name, 0, 0);
if (!hwfn->slowpath_wq) {
DP_NOTICE(hwfn, "Cannot create slowpath workqueue\n");
return -ENOMEM;
}
INIT_DELAYED_WORK(&hwfn->slowpath_task, qed_slowpath_task);
hwfn->slowpath_wq_active = true;
}
return 0;
}
static int qed_slowpath_start(struct qed_dev *cdev,
struct qed_slowpath_params *params)
{
struct qed_drv_load_params drv_load_params;
struct qed_hw_init_params hw_init_params;
struct qed_mcp_drv_version drv_version;
struct qed_tunnel_info tunn_info;
const u8 *data = NULL;
struct qed_hwfn *hwfn;
struct qed_ptt *p_ptt;
int rc = -EINVAL;
if (qed_iov_wq_start(cdev))
goto err;
if (qed_slowpath_wq_start(cdev))
goto err;
if (IS_PF(cdev)) {
rc = request_firmware(&cdev->firmware, QED_FW_FILE_NAME,
&cdev->pdev->dev);
if (rc) {
DP_NOTICE(cdev,
"Failed to find fw file - /lib/firmware/%s\n",
QED_FW_FILE_NAME);
goto err;
}
if (cdev->num_hwfns == 1) {
p_ptt = qed_ptt_acquire(QED_LEADING_HWFN(cdev));
if (p_ptt) {
QED_LEADING_HWFN(cdev)->p_arfs_ptt = p_ptt;
} else {
DP_NOTICE(cdev,
"Failed to acquire PTT for aRFS\n");
goto err;
}
}
}
cdev->rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
rc = qed_nic_setup(cdev);
if (rc)
goto err;
if (IS_PF(cdev))
rc = qed_slowpath_setup_int(cdev, params->int_mode);
else
rc = qed_slowpath_vf_setup_int(cdev);
if (rc)
goto err1;
if (IS_PF(cdev)) {
/* Allocate stream for unzipping */
rc = qed_alloc_stream_mem(cdev);
if (rc)
goto err2;
/* First Dword used to differentiate between various sources */
data = cdev->firmware->data + sizeof(u32);
qed_dbg_pf_init(cdev);
}
/* Start the slowpath */
memset(&hw_init_params, 0, sizeof(hw_init_params));
memset(&tunn_info, 0, sizeof(tunn_info));
tunn_info.vxlan.b_mode_enabled = true;
tunn_info.l2_gre.b_mode_enabled = true;
tunn_info.ip_gre.b_mode_enabled = true;
tunn_info.l2_geneve.b_mode_enabled = true;
tunn_info.ip_geneve.b_mode_enabled = true;
tunn_info.vxlan.tun_cls = QED_TUNN_CLSS_MAC_VLAN;
tunn_info.l2_gre.tun_cls = QED_TUNN_CLSS_MAC_VLAN;
tunn_info.ip_gre.tun_cls = QED_TUNN_CLSS_MAC_VLAN;
tunn_info.l2_geneve.tun_cls = QED_TUNN_CLSS_MAC_VLAN;
tunn_info.ip_geneve.tun_cls = QED_TUNN_CLSS_MAC_VLAN;
hw_init_params.p_tunn = &tunn_info;
hw_init_params.b_hw_start = true;
hw_init_params.int_mode = cdev->int_params.out.int_mode;
hw_init_params.allow_npar_tx_switch = true;
hw_init_params.bin_fw_data = data;
memset(&drv_load_params, 0, sizeof(drv_load_params));
drv_load_params.is_crash_kernel = is_kdump_kernel();
drv_load_params.mfw_timeout_val = QED_LOAD_REQ_LOCK_TO_DEFAULT;
drv_load_params.avoid_eng_reset = false;
drv_load_params.override_force_load = QED_OVERRIDE_FORCE_LOAD_NONE;
hw_init_params.p_drv_load_params = &drv_load_params;
rc = qed_hw_init(cdev, &hw_init_params);
if (rc)
goto err2;
DP_INFO(cdev,
"HW initialization and function start completed successfully\n");
if (IS_PF(cdev)) {
cdev->tunn_feature_mask = (BIT(QED_MODE_VXLAN_TUNN) |
BIT(QED_MODE_L2GENEVE_TUNN) |
BIT(QED_MODE_IPGENEVE_TUNN) |
BIT(QED_MODE_L2GRE_TUNN) |
BIT(QED_MODE_IPGRE_TUNN));
}
/* Allocate LL2 interface if needed */
if (QED_LEADING_HWFN(cdev)->using_ll2) {
rc = qed_ll2_alloc_if(cdev);
if (rc)
goto err3;
}
if (IS_PF(cdev)) {
hwfn = QED_LEADING_HWFN(cdev);
drv_version.version = (params->drv_major << 24) |
(params->drv_minor << 16) |
(params->drv_rev << 8) |
(params->drv_eng);
strscpy(drv_version.name, params->name,
MCP_DRV_VER_STR_SIZE - 4);
rc = qed_mcp_send_drv_version(hwfn, hwfn->p_main_ptt,
&drv_version);
if (rc) {
DP_NOTICE(cdev, "Failed sending drv version command\n");
goto err4;
}
}
qed_reset_vport_stats(cdev);
return 0;
err4:
qed_ll2_dealloc_if(cdev);
err3:
qed_hw_stop(cdev);
err2:
qed_hw_timers_stop_all(cdev);
if (IS_PF(cdev))
qed_slowpath_irq_free(cdev);
qed_free_stream_mem(cdev);
qed_disable_msix(cdev);
err1:
qed_resc_free(cdev);
err:
if (IS_PF(cdev))
release_firmware(cdev->firmware);
if (IS_PF(cdev) && (cdev->num_hwfns == 1) &&
QED_LEADING_HWFN(cdev)->p_arfs_ptt)
qed_ptt_release(QED_LEADING_HWFN(cdev),
QED_LEADING_HWFN(cdev)->p_arfs_ptt);
qed_iov_wq_stop(cdev, false);
qed_slowpath_wq_stop(cdev);
return rc;
}
static int qed_slowpath_stop(struct qed_dev *cdev)
{
if (!cdev)
return -ENODEV;
qed_slowpath_wq_stop(cdev);
qed_ll2_dealloc_if(cdev);
if (IS_PF(cdev)) {
if (cdev->num_hwfns == 1)
qed_ptt_release(QED_LEADING_HWFN(cdev),
QED_LEADING_HWFN(cdev)->p_arfs_ptt);
qed_free_stream_mem(cdev);
if (IS_QED_ETH_IF(cdev))
qed_sriov_disable(cdev, true);
}
qed_nic_stop(cdev);
if (IS_PF(cdev))
qed_slowpath_irq_free(cdev);
qed_disable_msix(cdev);
qed_resc_free(cdev);
qed_iov_wq_stop(cdev, true);
if (IS_PF(cdev))
release_firmware(cdev->firmware);
return 0;
}
static void qed_set_name(struct qed_dev *cdev, char name[NAME_SIZE])
{
int i;
memcpy(cdev->name, name, NAME_SIZE);
for_each_hwfn(cdev, i)
snprintf(cdev->hwfns[i].name, NAME_SIZE, "%s-%d", name, i);
}
static u32 qed_sb_init(struct qed_dev *cdev,
struct qed_sb_info *sb_info,
void *sb_virt_addr,
dma_addr_t sb_phy_addr, u16 sb_id,
enum qed_sb_type type)
{
struct qed_hwfn *p_hwfn;
struct qed_ptt *p_ptt;
u16 rel_sb_id;
u32 rc;
/* RoCE/Storage use a single engine in CMT mode while L2 uses both */
if (type == QED_SB_TYPE_L2_QUEUE) {
p_hwfn = &cdev->hwfns[sb_id % cdev->num_hwfns];
rel_sb_id = sb_id / cdev->num_hwfns;
} else {
p_hwfn = QED_AFFIN_HWFN(cdev);
rel_sb_id = sb_id;
}
DP_VERBOSE(cdev, NETIF_MSG_INTR,
"hwfn [%d] <--[init]-- SB %04x [0x%04x upper]\n",
IS_LEAD_HWFN(p_hwfn) ? 0 : 1, rel_sb_id, sb_id);
if (IS_PF(p_hwfn->cdev)) {
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = qed_int_sb_init(p_hwfn, p_ptt, sb_info, sb_virt_addr,
sb_phy_addr, rel_sb_id);
qed_ptt_release(p_hwfn, p_ptt);
} else {
rc = qed_int_sb_init(p_hwfn, NULL, sb_info, sb_virt_addr,
sb_phy_addr, rel_sb_id);
}
return rc;
}
static u32 qed_sb_release(struct qed_dev *cdev,
struct qed_sb_info *sb_info,
u16 sb_id,
enum qed_sb_type type)
{
struct qed_hwfn *p_hwfn;
u16 rel_sb_id;
u32 rc;
/* RoCE/Storage use a single engine in CMT mode while L2 uses both */
if (type == QED_SB_TYPE_L2_QUEUE) {
p_hwfn = &cdev->hwfns[sb_id % cdev->num_hwfns];
rel_sb_id = sb_id / cdev->num_hwfns;
} else {
p_hwfn = QED_AFFIN_HWFN(cdev);
rel_sb_id = sb_id;
}
DP_VERBOSE(cdev, NETIF_MSG_INTR,
"hwfn [%d] <--[init]-- SB %04x [0x%04x upper]\n",
IS_LEAD_HWFN(p_hwfn) ? 0 : 1, rel_sb_id, sb_id);
rc = qed_int_sb_release(p_hwfn, sb_info, rel_sb_id);
return rc;
}
static bool qed_can_link_change(struct qed_dev *cdev)
{
return true;
}
static void qed_set_ext_speed_params(struct qed_mcp_link_params *link_params,
const struct qed_link_params *params)
{
struct qed_mcp_link_speed_params *ext_speed = &link_params->ext_speed;
const struct qed_mfw_speed_map *map;
u32 i;
if (params->override_flags & QED_LINK_OVERRIDE_SPEED_AUTONEG)
ext_speed->autoneg = !!params->autoneg;
if (params->override_flags & QED_LINK_OVERRIDE_SPEED_ADV_SPEEDS) {
ext_speed->advertised_speeds = 0;
for (i = 0; i < ARRAY_SIZE(qed_mfw_ext_maps); i++) {
map = qed_mfw_ext_maps + i;
if (linkmode_intersects(params->adv_speeds, map->caps))
ext_speed->advertised_speeds |= map->mfw_val;
}
}
if (params->override_flags & QED_LINK_OVERRIDE_SPEED_FORCED_SPEED) {
switch (params->forced_speed) {
case SPEED_1000:
ext_speed->forced_speed = QED_EXT_SPEED_1G;
break;
case SPEED_10000:
ext_speed->forced_speed = QED_EXT_SPEED_10G;
break;
case SPEED_20000:
ext_speed->forced_speed = QED_EXT_SPEED_20G;
break;
case SPEED_25000:
ext_speed->forced_speed = QED_EXT_SPEED_25G;
break;
case SPEED_40000:
ext_speed->forced_speed = QED_EXT_SPEED_40G;
break;
case SPEED_50000:
ext_speed->forced_speed = QED_EXT_SPEED_50G_R |
QED_EXT_SPEED_50G_R2;
break;
case SPEED_100000:
ext_speed->forced_speed = QED_EXT_SPEED_100G_R2 |
QED_EXT_SPEED_100G_R4 |
QED_EXT_SPEED_100G_P4;
break;
default:
break;
}
}
if (!(params->override_flags & QED_LINK_OVERRIDE_FEC_CONFIG))
return;
switch (params->forced_speed) {
case SPEED_25000:
switch (params->fec) {
case FEC_FORCE_MODE_NONE:
link_params->ext_fec_mode = ETH_EXT_FEC_25G_NONE;
break;
case FEC_FORCE_MODE_FIRECODE:
link_params->ext_fec_mode = ETH_EXT_FEC_25G_BASE_R;
break;
case FEC_FORCE_MODE_RS:
link_params->ext_fec_mode = ETH_EXT_FEC_25G_RS528;
break;
case FEC_FORCE_MODE_AUTO:
link_params->ext_fec_mode = ETH_EXT_FEC_25G_RS528 |
ETH_EXT_FEC_25G_BASE_R |
ETH_EXT_FEC_25G_NONE;
break;
default:
break;
}
break;
case SPEED_40000:
switch (params->fec) {
case FEC_FORCE_MODE_NONE:
link_params->ext_fec_mode = ETH_EXT_FEC_40G_NONE;
break;
case FEC_FORCE_MODE_FIRECODE:
link_params->ext_fec_mode = ETH_EXT_FEC_40G_BASE_R;
break;
case FEC_FORCE_MODE_AUTO:
link_params->ext_fec_mode = ETH_EXT_FEC_40G_BASE_R |
ETH_EXT_FEC_40G_NONE;
break;
default:
break;
}
break;
case SPEED_50000:
switch (params->fec) {
case FEC_FORCE_MODE_NONE:
link_params->ext_fec_mode = ETH_EXT_FEC_50G_NONE;
break;
case FEC_FORCE_MODE_FIRECODE:
link_params->ext_fec_mode = ETH_EXT_FEC_50G_BASE_R;
break;
case FEC_FORCE_MODE_RS:
link_params->ext_fec_mode = ETH_EXT_FEC_50G_RS528;
break;
case FEC_FORCE_MODE_AUTO:
link_params->ext_fec_mode = ETH_EXT_FEC_50G_RS528 |
ETH_EXT_FEC_50G_BASE_R |
ETH_EXT_FEC_50G_NONE;
break;
default:
break;
}
break;
case SPEED_100000:
switch (params->fec) {
case FEC_FORCE_MODE_NONE:
link_params->ext_fec_mode = ETH_EXT_FEC_100G_NONE;
break;
case FEC_FORCE_MODE_FIRECODE:
link_params->ext_fec_mode = ETH_EXT_FEC_100G_BASE_R;
break;
case FEC_FORCE_MODE_RS:
link_params->ext_fec_mode = ETH_EXT_FEC_100G_RS528;
break;
case FEC_FORCE_MODE_AUTO:
link_params->ext_fec_mode = ETH_EXT_FEC_100G_RS528 |
ETH_EXT_FEC_100G_BASE_R |
ETH_EXT_FEC_100G_NONE;
break;
default:
break;
}
break;
default:
break;
}
}
static int qed_set_link(struct qed_dev *cdev, struct qed_link_params *params)
{
struct qed_mcp_link_params *link_params;
struct qed_mcp_link_speed_params *speed;
const struct qed_mfw_speed_map *map;
struct qed_hwfn *hwfn;
struct qed_ptt *ptt;
int rc;
u32 i;
if (!cdev)
return -ENODEV;
/* The link should be set only once per PF */
hwfn = &cdev->hwfns[0];
/* When VF wants to set link, force it to read the bulletin instead.
* This mimics the PF behavior, where a noitification [both immediate
* and possible later] would be generated when changing properties.
*/
if (IS_VF(cdev)) {
qed_schedule_iov(hwfn, QED_IOV_WQ_VF_FORCE_LINK_QUERY_FLAG);
return 0;
}
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EBUSY;
link_params = qed_mcp_get_link_params(hwfn);
if (!link_params)
return -ENODATA;
speed = &link_params->speed;
if (params->override_flags & QED_LINK_OVERRIDE_SPEED_AUTONEG)
speed->autoneg = !!params->autoneg;
if (params->override_flags & QED_LINK_OVERRIDE_SPEED_ADV_SPEEDS) {
speed->advertised_speeds = 0;
for (i = 0; i < ARRAY_SIZE(qed_mfw_legacy_maps); i++) {
map = qed_mfw_legacy_maps + i;
if (linkmode_intersects(params->adv_speeds, map->caps))
speed->advertised_speeds |= map->mfw_val;
}
}
if (params->override_flags & QED_LINK_OVERRIDE_SPEED_FORCED_SPEED)
speed->forced_speed = params->forced_speed;
if (qed_mcp_is_ext_speed_supported(hwfn))
qed_set_ext_speed_params(link_params, params);
if (params->override_flags & QED_LINK_OVERRIDE_PAUSE_CONFIG) {
if (params->pause_config & QED_LINK_PAUSE_AUTONEG_ENABLE)
link_params->pause.autoneg = true;
else
link_params->pause.autoneg = false;
if (params->pause_config & QED_LINK_PAUSE_RX_ENABLE)
link_params->pause.forced_rx = true;
else
link_params->pause.forced_rx = false;
if (params->pause_config & QED_LINK_PAUSE_TX_ENABLE)
link_params->pause.forced_tx = true;
else
link_params->pause.forced_tx = false;
}
if (params->override_flags & QED_LINK_OVERRIDE_LOOPBACK_MODE) {
switch (params->loopback_mode) {
case QED_LINK_LOOPBACK_INT_PHY:
link_params->loopback_mode = ETH_LOOPBACK_INT_PHY;
break;
case QED_LINK_LOOPBACK_EXT_PHY:
link_params->loopback_mode = ETH_LOOPBACK_EXT_PHY;
break;
case QED_LINK_LOOPBACK_EXT:
link_params->loopback_mode = ETH_LOOPBACK_EXT;
break;
case QED_LINK_LOOPBACK_MAC:
link_params->loopback_mode = ETH_LOOPBACK_MAC;
break;
case QED_LINK_LOOPBACK_CNIG_AH_ONLY_0123:
link_params->loopback_mode =
ETH_LOOPBACK_CNIG_AH_ONLY_0123;
break;
case QED_LINK_LOOPBACK_CNIG_AH_ONLY_2301:
link_params->loopback_mode =
ETH_LOOPBACK_CNIG_AH_ONLY_2301;
break;
case QED_LINK_LOOPBACK_PCS_AH_ONLY:
link_params->loopback_mode = ETH_LOOPBACK_PCS_AH_ONLY;
break;
case QED_LINK_LOOPBACK_REVERSE_MAC_AH_ONLY:
link_params->loopback_mode =
ETH_LOOPBACK_REVERSE_MAC_AH_ONLY;
break;
case QED_LINK_LOOPBACK_INT_PHY_FEA_AH_ONLY:
link_params->loopback_mode =
ETH_LOOPBACK_INT_PHY_FEA_AH_ONLY;
break;
default:
link_params->loopback_mode = ETH_LOOPBACK_NONE;
break;
}
}
if (params->override_flags & QED_LINK_OVERRIDE_EEE_CONFIG)
memcpy(&link_params->eee, &params->eee,
sizeof(link_params->eee));
if (params->override_flags & QED_LINK_OVERRIDE_FEC_CONFIG)
link_params->fec = params->fec;
rc = qed_mcp_set_link(hwfn, ptt, params->link_up);
qed_ptt_release(hwfn, ptt);
return rc;
}
static int qed_get_port_type(u32 media_type)
{
int port_type;
switch (media_type) {
case MEDIA_SFPP_10G_FIBER:
case MEDIA_SFP_1G_FIBER:
case MEDIA_XFP_FIBER:
case MEDIA_MODULE_FIBER:
port_type = PORT_FIBRE;
break;
case MEDIA_DA_TWINAX:
port_type = PORT_DA;
break;
case MEDIA_BASE_T:
port_type = PORT_TP;
break;
case MEDIA_KR:
case MEDIA_NOT_PRESENT:
port_type = PORT_NONE;
break;
case MEDIA_UNSPECIFIED:
default:
port_type = PORT_OTHER;
break;
}
return port_type;
}
static int qed_get_link_data(struct qed_hwfn *hwfn,
struct qed_mcp_link_params *params,
struct qed_mcp_link_state *link,
struct qed_mcp_link_capabilities *link_caps)
{
void *p;
if (!IS_PF(hwfn->cdev)) {
qed_vf_get_link_params(hwfn, params);
qed_vf_get_link_state(hwfn, link);
qed_vf_get_link_caps(hwfn, link_caps);
return 0;
}
p = qed_mcp_get_link_params(hwfn);
if (!p)
return -ENXIO;
memcpy(params, p, sizeof(*params));
p = qed_mcp_get_link_state(hwfn);
if (!p)
return -ENXIO;
memcpy(link, p, sizeof(*link));
p = qed_mcp_get_link_capabilities(hwfn);
if (!p)
return -ENXIO;
memcpy(link_caps, p, sizeof(*link_caps));
return 0;
}
static void qed_fill_link_capability(struct qed_hwfn *hwfn,
struct qed_ptt *ptt, u32 capability,
unsigned long *if_caps)
{
u32 media_type, tcvr_state, tcvr_type;
u32 speed_mask, board_cfg;
if (qed_mcp_get_media_type(hwfn, ptt, &media_type))
media_type = MEDIA_UNSPECIFIED;
if (qed_mcp_get_transceiver_data(hwfn, ptt, &tcvr_state, &tcvr_type))
tcvr_type = ETH_TRANSCEIVER_STATE_UNPLUGGED;
if (qed_mcp_trans_speed_mask(hwfn, ptt, &speed_mask))
speed_mask = 0xFFFFFFFF;
if (qed_mcp_get_board_config(hwfn, ptt, &board_cfg))
board_cfg = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED;
DP_VERBOSE(hwfn->cdev, NETIF_MSG_DRV,
"Media_type = 0x%x tcvr_state = 0x%x tcvr_type = 0x%x speed_mask = 0x%x board_cfg = 0x%x\n",
media_type, tcvr_state, tcvr_type, speed_mask, board_cfg);
switch (media_type) {
case MEDIA_DA_TWINAX:
phylink_set(if_caps, FIBRE);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G)
phylink_set(if_caps, 20000baseKR2_Full);
/* For DAC media multiple speed capabilities are supported */
capability |= speed_mask;
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
phylink_set(if_caps, 1000baseKX_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
phylink_set(if_caps, 10000baseCR_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_40G_CR4:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR:
phylink_set(if_caps, 40000baseCR4_Full);
break;
default:
break;
}
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G)
phylink_set(if_caps, 25000baseCR_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G)
phylink_set(if_caps, 50000baseCR2_Full);
if (capability &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_100G_CR4:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR:
phylink_set(if_caps, 100000baseCR4_Full);
break;
default:
break;
}
break;
case MEDIA_BASE_T:
phylink_set(if_caps, TP);
if (board_cfg & NVM_CFG1_PORT_PORT_TYPE_EXT_PHY) {
if (capability &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
phylink_set(if_caps, 1000baseT_Full);
if (capability &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
phylink_set(if_caps, 10000baseT_Full);
}
if (board_cfg & NVM_CFG1_PORT_PORT_TYPE_MODULE) {
phylink_set(if_caps, FIBRE);
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_1000BASET:
phylink_set(if_caps, 1000baseT_Full);
break;
case ETH_TRANSCEIVER_TYPE_10G_BASET:
phylink_set(if_caps, 10000baseT_Full);
break;
default:
break;
}
}
break;
case MEDIA_SFP_1G_FIBER:
case MEDIA_SFPP_10G_FIBER:
case MEDIA_XFP_FIBER:
case MEDIA_MODULE_FIBER:
phylink_set(if_caps, FIBRE);
capability |= speed_mask;
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_1G_LX:
case ETH_TRANSCEIVER_TYPE_1G_SX:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_SR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_LR:
phylink_set(if_caps, 1000baseKX_Full);
break;
default:
break;
}
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_10G_SR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_SR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_SR:
phylink_set(if_caps, 10000baseSR_Full);
break;
case ETH_TRANSCEIVER_TYPE_10G_LR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_LR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_LR:
phylink_set(if_caps, 10000baseLR_Full);
break;
case ETH_TRANSCEIVER_TYPE_10G_LRM:
phylink_set(if_caps, 10000baseLRM_Full);
break;
case ETH_TRANSCEIVER_TYPE_10G_ER:
phylink_set(if_caps, 10000baseR_FEC);
break;
default:
break;
}
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G)
phylink_set(if_caps, 20000baseKR2_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_25G_SR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_SR:
phylink_set(if_caps, 25000baseSR_Full);
break;
default:
break;
}
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_40G_LR4:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR:
phylink_set(if_caps, 40000baseLR4_Full);
break;
case ETH_TRANSCEIVER_TYPE_40G_SR4:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR:
phylink_set(if_caps, 40000baseSR4_Full);
break;
default:
break;
}
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G)
phylink_set(if_caps, 50000baseKR2_Full);
if (capability &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G)
switch (tcvr_type) {
case ETH_TRANSCEIVER_TYPE_100G_SR4:
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR:
phylink_set(if_caps, 100000baseSR4_Full);
break;
case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR:
phylink_set(if_caps, 100000baseLR4_ER4_Full);
break;
default:
break;
}
break;
case MEDIA_KR:
phylink_set(if_caps, Backplane);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G)
phylink_set(if_caps, 20000baseKR2_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
phylink_set(if_caps, 1000baseKX_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
phylink_set(if_caps, 10000baseKR_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G)
phylink_set(if_caps, 25000baseKR_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G)
phylink_set(if_caps, 40000baseKR4_Full);
if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G)
phylink_set(if_caps, 50000baseKR2_Full);
if (capability &
NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G)
phylink_set(if_caps, 100000baseKR4_Full);
break;
case MEDIA_UNSPECIFIED:
case MEDIA_NOT_PRESENT:
default:
DP_VERBOSE(hwfn->cdev, QED_MSG_DEBUG,
"Unknown media and transceiver type;\n");
break;
}
}
static void qed_lp_caps_to_speed_mask(u32 caps, u32 *speed_mask)
{
*speed_mask = 0;
if (caps &
(QED_LINK_PARTNER_SPEED_1G_FD | QED_LINK_PARTNER_SPEED_1G_HD))
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
if (caps & QED_LINK_PARTNER_SPEED_10G)
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
if (caps & QED_LINK_PARTNER_SPEED_20G)
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G;
if (caps & QED_LINK_PARTNER_SPEED_25G)
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
if (caps & QED_LINK_PARTNER_SPEED_40G)
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G;
if (caps & QED_LINK_PARTNER_SPEED_50G)
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G;
if (caps & QED_LINK_PARTNER_SPEED_100G)
*speed_mask |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G;
}
static void qed_fill_link(struct qed_hwfn *hwfn,
struct qed_ptt *ptt,
struct qed_link_output *if_link)
{
struct qed_mcp_link_capabilities link_caps;
struct qed_mcp_link_params params;
struct qed_mcp_link_state link;
u32 media_type, speed_mask;
memset(if_link, 0, sizeof(*if_link));
/* Prepare source inputs */
if (qed_get_link_data(hwfn, &params, &link, &link_caps)) {
dev_warn(&hwfn->cdev->pdev->dev, "no link data available\n");
return;
}
/* Set the link parameters to pass to protocol driver */
if (link.link_up)
if_link->link_up = true;
if (IS_PF(hwfn->cdev) && qed_mcp_is_ext_speed_supported(hwfn)) {
if (link_caps.default_ext_autoneg)
phylink_set(if_link->supported_caps, Autoneg);
linkmode_copy(if_link->advertised_caps, if_link->supported_caps);
if (params.ext_speed.autoneg)
phylink_set(if_link->advertised_caps, Autoneg);
else
phylink_clear(if_link->advertised_caps, Autoneg);
qed_fill_link_capability(hwfn, ptt,
params.ext_speed.advertised_speeds,
if_link->advertised_caps);
} else {
if (link_caps.default_speed_autoneg)
phylink_set(if_link->supported_caps, Autoneg);
linkmode_copy(if_link->advertised_caps, if_link->supported_caps);
if (params.speed.autoneg)
phylink_set(if_link->advertised_caps, Autoneg);
else
phylink_clear(if_link->advertised_caps, Autoneg);
}
if (params.pause.autoneg ||
(params.pause.forced_rx && params.pause.forced_tx))
phylink_set(if_link->supported_caps, Asym_Pause);
if (params.pause.autoneg || params.pause.forced_rx ||
params.pause.forced_tx)
phylink_set(if_link->supported_caps, Pause);
if_link->sup_fec = link_caps.fec_default;
if_link->active_fec = params.fec;
/* Fill link advertised capability */
qed_fill_link_capability(hwfn, ptt, params.speed.advertised_speeds,
if_link->advertised_caps);
/* Fill link supported capability */
qed_fill_link_capability(hwfn, ptt, link_caps.speed_capabilities,
if_link->supported_caps);
/* Fill partner advertised capability */
qed_lp_caps_to_speed_mask(link.partner_adv_speed, &speed_mask);
qed_fill_link_capability(hwfn, ptt, speed_mask, if_link->lp_caps);
if (link.link_up)
if_link->speed = link.speed;
/* TODO - fill duplex properly */
if_link->duplex = DUPLEX_FULL;
qed_mcp_get_media_type(hwfn, ptt, &media_type);
if_link->port = qed_get_port_type(media_type);
if_link->autoneg = params.speed.autoneg;
if (params.pause.autoneg)
if_link->pause_config |= QED_LINK_PAUSE_AUTONEG_ENABLE;
if (params.pause.forced_rx)
if_link->pause_config |= QED_LINK_PAUSE_RX_ENABLE;
if (params.pause.forced_tx)
if_link->pause_config |= QED_LINK_PAUSE_TX_ENABLE;
if (link.an_complete)
phylink_set(if_link->lp_caps, Autoneg);
if (link.partner_adv_pause)
phylink_set(if_link->lp_caps, Pause);
if (link.partner_adv_pause == QED_LINK_PARTNER_ASYMMETRIC_PAUSE ||
link.partner_adv_pause == QED_LINK_PARTNER_BOTH_PAUSE)
phylink_set(if_link->lp_caps, Asym_Pause);
if (link_caps.default_eee == QED_MCP_EEE_UNSUPPORTED) {
if_link->eee_supported = false;
} else {
if_link->eee_supported = true;
if_link->eee_active = link.eee_active;
if_link->sup_caps = link_caps.eee_speed_caps;
/* MFW clears adv_caps on eee disable; use configured value */
if_link->eee.adv_caps = link.eee_adv_caps ? link.eee_adv_caps :
params.eee.adv_caps;
if_link->eee.lp_adv_caps = link.eee_lp_adv_caps;
if_link->eee.enable = params.eee.enable;
if_link->eee.tx_lpi_enable = params.eee.tx_lpi_enable;
if_link->eee.tx_lpi_timer = params.eee.tx_lpi_timer;
}
}
static void qed_get_current_link(struct qed_dev *cdev,
struct qed_link_output *if_link)
{
struct qed_hwfn *hwfn;
struct qed_ptt *ptt;
int i;
hwfn = &cdev->hwfns[0];
if (IS_PF(cdev)) {
ptt = qed_ptt_acquire(hwfn);
if (ptt) {
qed_fill_link(hwfn, ptt, if_link);
qed_ptt_release(hwfn, ptt);
} else {
DP_NOTICE(hwfn, "Failed to fill link; No PTT\n");
}
} else {
qed_fill_link(hwfn, NULL, if_link);
}
for_each_hwfn(cdev, i)
qed_inform_vf_link_state(&cdev->hwfns[i]);
}
void qed_link_update(struct qed_hwfn *hwfn, struct qed_ptt *ptt)
{
void *cookie = hwfn->cdev->ops_cookie;
struct qed_common_cb_ops *op = hwfn->cdev->protocol_ops.common;
struct qed_link_output if_link;
qed_fill_link(hwfn, ptt, &if_link);
qed_inform_vf_link_state(hwfn);
if (IS_LEAD_HWFN(hwfn) && cookie)
op->link_update(cookie, &if_link);
}
void qed_bw_update(struct qed_hwfn *hwfn, struct qed_ptt *ptt)
{
void *cookie = hwfn->cdev->ops_cookie;
struct qed_common_cb_ops *op = hwfn->cdev->protocol_ops.common;
if (IS_LEAD_HWFN(hwfn) && cookie && op && op->bw_update)
op->bw_update(cookie);
}
static int qed_drain(struct qed_dev *cdev)
{
struct qed_hwfn *hwfn;
struct qed_ptt *ptt;
int i, rc;
if (IS_VF(cdev))
return 0;
for_each_hwfn(cdev, i) {
hwfn = &cdev->hwfns[i];
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_NOTICE(hwfn, "Failed to drain NIG; No PTT\n");
return -EBUSY;
}
rc = qed_mcp_drain(hwfn, ptt);
qed_ptt_release(hwfn, ptt);
if (rc)
return rc;
}
return 0;
}
static u32 qed_nvm_flash_image_access_crc(struct qed_dev *cdev,
struct qed_nvm_image_att *nvm_image,
u32 *crc)
{
u8 *buf = NULL;
int rc;
/* Allocate a buffer for holding the nvram image */
buf = kzalloc(nvm_image->length, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Read image into buffer */
rc = qed_mcp_nvm_read(cdev, nvm_image->start_addr,
buf, nvm_image->length);
if (rc) {
DP_ERR(cdev, "Failed reading image from nvm\n");
goto out;
}
/* Convert the buffer into big-endian format (excluding the
* closing 4 bytes of CRC).
*/
cpu_to_be32_array((__force __be32 *)buf, (const u32 *)buf,
DIV_ROUND_UP(nvm_image->length - 4, 4));
/* Calc CRC for the "actual" image buffer, i.e. not including
* the last 4 CRC bytes.
*/
*crc = ~crc32(~0U, buf, nvm_image->length - 4);
*crc = (__force u32)cpu_to_be32p(crc);
out:
kfree(buf);
return rc;
}
/* Binary file format -
* /----------------------------------------------------------------------\
* 0B | 0x4 [command index] |
* 4B | image_type | Options | Number of register settings |
* 8B | Value |
* 12B | Mask |
* 16B | Offset |
* \----------------------------------------------------------------------/
* There can be several Value-Mask-Offset sets as specified by 'Number of...'.
* Options - 0'b - Calculate & Update CRC for image
*/
static int qed_nvm_flash_image_access(struct qed_dev *cdev, const u8 **data,
bool *check_resp)
{
struct qed_nvm_image_att nvm_image;
struct qed_hwfn *p_hwfn;
bool is_crc = false;
u32 image_type;
int rc = 0, i;
u16 len;
*data += 4;
image_type = **data;
p_hwfn = QED_LEADING_HWFN(cdev);
for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
if (image_type == p_hwfn->nvm_info.image_att[i].image_type)
break;
if (i == p_hwfn->nvm_info.num_images) {
DP_ERR(cdev, "Failed to find nvram image of type %08x\n",
image_type);
return -ENOENT;
}
nvm_image.start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
nvm_image.length = p_hwfn->nvm_info.image_att[i].len;
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"Read image %02x; type = %08x; NVM [%08x,...,%08x]\n",
**data, image_type, nvm_image.start_addr,
nvm_image.start_addr + nvm_image.length - 1);
(*data)++;
is_crc = !!(**data & BIT(0));
(*data)++;
len = *((u16 *)*data);
*data += 2;
if (is_crc) {
u32 crc = 0;
rc = qed_nvm_flash_image_access_crc(cdev, &nvm_image, &crc);
if (rc) {
DP_ERR(cdev, "Failed calculating CRC, rc = %d\n", rc);
goto exit;
}
rc = qed_mcp_nvm_write(cdev, QED_NVM_WRITE_NVRAM,
(nvm_image.start_addr +
nvm_image.length - 4), (u8 *)&crc, 4);
if (rc)
DP_ERR(cdev, "Failed writing to %08x, rc = %d\n",
nvm_image.start_addr + nvm_image.length - 4, rc);
goto exit;
}
/* Iterate over the values for setting */
while (len) {
u32 offset, mask, value, cur_value;
u8 buf[4];
value = *((u32 *)*data);
*data += 4;
mask = *((u32 *)*data);
*data += 4;
offset = *((u32 *)*data);
*data += 4;
rc = qed_mcp_nvm_read(cdev, nvm_image.start_addr + offset, buf,
4);
if (rc) {
DP_ERR(cdev, "Failed reading from %08x\n",
nvm_image.start_addr + offset);
goto exit;
}
cur_value = le32_to_cpu(*((__le32 *)buf));
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"NVM %08x: %08x -> %08x [Value %08x Mask %08x]\n",
nvm_image.start_addr + offset, cur_value,
(cur_value & ~mask) | (value & mask), value, mask);
value = (value & mask) | (cur_value & ~mask);
rc = qed_mcp_nvm_write(cdev, QED_NVM_WRITE_NVRAM,
nvm_image.start_addr + offset,
(u8 *)&value, 4);
if (rc) {
DP_ERR(cdev, "Failed writing to %08x\n",
nvm_image.start_addr + offset);
goto exit;
}
len--;
}
exit:
return rc;
}
/* Binary file format -
* /----------------------------------------------------------------------\
* 0B | 0x3 [command index] |
* 4B | b'0: check_response? | b'1-31 reserved |
* 8B | File-type | reserved |
* 12B | Image length in bytes |
* \----------------------------------------------------------------------/
* Start a new file of the provided type
*/
static int qed_nvm_flash_image_file_start(struct qed_dev *cdev,
const u8 **data, bool *check_resp)
{
u32 file_type, file_size = 0;
int rc;
*data += 4;
*check_resp = !!(**data & BIT(0));
*data += 4;
file_type = **data;
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"About to start a new file of type %02x\n", file_type);
if (file_type == DRV_MB_PARAM_NVM_PUT_FILE_BEGIN_MBI) {
*data += 4;
file_size = *((u32 *)(*data));
}
rc = qed_mcp_nvm_write(cdev, QED_PUT_FILE_BEGIN, file_type,
(u8 *)(&file_size), 4);
*data += 4;
return rc;
}
/* Binary file format -
* /----------------------------------------------------------------------\
* 0B | 0x2 [command index] |
* 4B | Length in bytes |
* 8B | b'0: check_response? | b'1-31 reserved |
* 12B | Offset in bytes |
* 16B | Data ... |
* \----------------------------------------------------------------------/
* Write data as part of a file that was previously started. Data should be
* of length equal to that provided in the message
*/
static int qed_nvm_flash_image_file_data(struct qed_dev *cdev,
const u8 **data, bool *check_resp)
{
u32 offset, len;
int rc;
*data += 4;
len = *((u32 *)(*data));
*data += 4;
*check_resp = !!(**data & BIT(0));
*data += 4;
offset = *((u32 *)(*data));
*data += 4;
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"About to write File-data: %08x bytes to offset %08x\n",
len, offset);
rc = qed_mcp_nvm_write(cdev, QED_PUT_FILE_DATA, offset,
(char *)(*data), len);
*data += len;
return rc;
}
/* Binary file format [General header] -
* /----------------------------------------------------------------------\
* 0B | QED_NVM_SIGNATURE |
* 4B | Length in bytes |
* 8B | Highest command in this batchfile | Reserved |
* \----------------------------------------------------------------------/
*/
static int qed_nvm_flash_image_validate(struct qed_dev *cdev,
const struct firmware *image,
const u8 **data)
{
u32 signature, len;
/* Check minimum size */
if (image->size < 12) {
DP_ERR(cdev, "Image is too short [%08x]\n", (u32)image->size);
return -EINVAL;
}
/* Check signature */
signature = *((u32 *)(*data));
if (signature != QED_NVM_SIGNATURE) {
DP_ERR(cdev, "Wrong signature '%08x'\n", signature);
return -EINVAL;
}
*data += 4;
/* Validate internal size equals the image-size */
len = *((u32 *)(*data));
if (len != image->size) {
DP_ERR(cdev, "Size mismatch: internal = %08x image = %08x\n",
len, (u32)image->size);
return -EINVAL;
}
*data += 4;
/* Make sure driver familiar with all commands necessary for this */
if (*((u16 *)(*data)) >= QED_NVM_FLASH_CMD_NVM_MAX) {
DP_ERR(cdev, "File contains unsupported commands [Need %04x]\n",
*((u16 *)(*data)));
return -EINVAL;
}
*data += 4;
return 0;
}
/* Binary file format -
* /----------------------------------------------------------------------\
* 0B | 0x5 [command index] |
* 4B | Number of config attributes | Reserved |
* 4B | Config ID | Entity ID | Length |
* 4B | Value |
* | |
* \----------------------------------------------------------------------/
* There can be several cfg_id-entity_id-Length-Value sets as specified by
* 'Number of config attributes'.
*
* The API parses config attributes from the user provided buffer and flashes
* them to the respective NVM path using Management FW inerface.
*/
static int qed_nvm_flash_cfg_write(struct qed_dev *cdev, const u8 **data)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
u8 entity_id, len, buf[32];
bool need_nvm_init = true;
struct qed_ptt *ptt;
u16 cfg_id, count;
int rc = 0, i;
u32 flags;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
/* NVM CFG ID attribute header */
*data += 4;
count = *((u16 *)*data);
*data += 4;
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"Read config ids: num_attrs = %0d\n", count);
/* NVM CFG ID attributes. Start loop index from 1 to avoid additional
* arithmetic operations in the implementation.
*/
for (i = 1; i <= count; i++) {
cfg_id = *((u16 *)*data);
*data += 2;
entity_id = **data;
(*data)++;
len = **data;
(*data)++;
memcpy(buf, *data, len);
*data += len;
flags = 0;
if (need_nvm_init) {
flags |= QED_NVM_CFG_OPTION_INIT;
need_nvm_init = false;
}
/* Commit to flash and free the resources */
if (!(i % QED_NVM_CFG_MAX_ATTRS) || i == count) {
flags |= QED_NVM_CFG_OPTION_COMMIT |
QED_NVM_CFG_OPTION_FREE;
need_nvm_init = true;
}
if (entity_id)
flags |= QED_NVM_CFG_OPTION_ENTITY_SEL;
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"cfg_id = %d entity = %d len = %d\n", cfg_id,
entity_id, len);
rc = qed_mcp_nvm_set_cfg(hwfn, ptt, cfg_id, entity_id, flags,
buf, len);
if (rc) {
DP_ERR(cdev, "Error %d configuring %d\n", rc, cfg_id);
break;
}
}
qed_ptt_release(hwfn, ptt);
return rc;
}
#define QED_MAX_NVM_BUF_LEN 32
static int qed_nvm_flash_cfg_len(struct qed_dev *cdev, u32 cmd)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
u8 buf[QED_MAX_NVM_BUF_LEN];
struct qed_ptt *ptt;
u32 len;
int rc;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return QED_MAX_NVM_BUF_LEN;
rc = qed_mcp_nvm_get_cfg(hwfn, ptt, cmd, 0, QED_NVM_CFG_GET_FLAGS, buf,
&len);
if (rc || !len) {
DP_ERR(cdev, "Error %d reading %d\n", rc, cmd);
len = QED_MAX_NVM_BUF_LEN;
}
qed_ptt_release(hwfn, ptt);
return len;
}
static int qed_nvm_flash_cfg_read(struct qed_dev *cdev, u8 **data,
u32 cmd, u32 entity_id)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
u32 flags, len;
int rc = 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"Read config cmd = %d entity id %d\n", cmd, entity_id);
flags = entity_id ? QED_NVM_CFG_GET_PF_FLAGS : QED_NVM_CFG_GET_FLAGS;
rc = qed_mcp_nvm_get_cfg(hwfn, ptt, cmd, entity_id, flags, *data, &len);
if (rc)
DP_ERR(cdev, "Error %d reading %d\n", rc, cmd);
qed_ptt_release(hwfn, ptt);
return rc;
}
static int qed_nvm_flash(struct qed_dev *cdev, const char *name)
{
const struct firmware *image;
const u8 *data, *data_end;
u32 cmd_type;
int rc;
rc = request_firmware(&image, name, &cdev->pdev->dev);
if (rc) {
DP_ERR(cdev, "Failed to find '%s'\n", name);
return rc;
}
DP_VERBOSE(cdev, NETIF_MSG_DRV,
"Flashing '%s' - firmware's data at %p, size is %08x\n",
name, image->data, (u32)image->size);
data = image->data;
data_end = data + image->size;
rc = qed_nvm_flash_image_validate(cdev, image, &data);
if (rc)
goto exit;
while (data < data_end) {
bool check_resp = false;
/* Parse the actual command */
cmd_type = *((u32 *)data);
switch (cmd_type) {
case QED_NVM_FLASH_CMD_FILE_DATA:
rc = qed_nvm_flash_image_file_data(cdev, &data,
&check_resp);
break;
case QED_NVM_FLASH_CMD_FILE_START:
rc = qed_nvm_flash_image_file_start(cdev, &data,
&check_resp);
break;
case QED_NVM_FLASH_CMD_NVM_CHANGE:
rc = qed_nvm_flash_image_access(cdev, &data,
&check_resp);
break;
case QED_NVM_FLASH_CMD_NVM_CFG_ID:
rc = qed_nvm_flash_cfg_write(cdev, &data);
break;
default:
DP_ERR(cdev, "Unknown command %08x\n", cmd_type);
rc = -EINVAL;
goto exit;
}
if (rc) {
DP_ERR(cdev, "Command %08x failed\n", cmd_type);
goto exit;
}
/* Check response if needed */
if (check_resp) {
u32 mcp_response = 0;
if (qed_mcp_nvm_resp(cdev, (u8 *)&mcp_response)) {
DP_ERR(cdev, "Failed getting MCP response\n");
rc = -EINVAL;
goto exit;
}
switch (mcp_response & FW_MSG_CODE_MASK) {
case FW_MSG_CODE_OK:
case FW_MSG_CODE_NVM_OK:
case FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK:
case FW_MSG_CODE_PHY_OK:
break;
default:
DP_ERR(cdev, "MFW returns error: %08x\n",
mcp_response);
rc = -EINVAL;
goto exit;
}
}
}
exit:
release_firmware(image);
return rc;
}
static int qed_nvm_get_image(struct qed_dev *cdev, enum qed_nvm_images type,
u8 *buf, u16 len)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
return qed_mcp_get_nvm_image(hwfn, type, buf, len);
}
void qed_schedule_recovery_handler(struct qed_hwfn *p_hwfn)
{
struct qed_common_cb_ops *ops = p_hwfn->cdev->protocol_ops.common;
void *cookie = p_hwfn->cdev->ops_cookie;
if (ops && ops->schedule_recovery_handler)
ops->schedule_recovery_handler(cookie);
}
static const char * const qed_hw_err_type_descr[] = {
[QED_HW_ERR_FAN_FAIL] = "Fan Failure",
[QED_HW_ERR_MFW_RESP_FAIL] = "MFW Response Failure",
[QED_HW_ERR_HW_ATTN] = "HW Attention",
[QED_HW_ERR_DMAE_FAIL] = "DMAE Failure",
[QED_HW_ERR_RAMROD_FAIL] = "Ramrod Failure",
[QED_HW_ERR_FW_ASSERT] = "FW Assertion",
[QED_HW_ERR_LAST] = "Unknown",
};
void qed_hw_error_occurred(struct qed_hwfn *p_hwfn,
enum qed_hw_err_type err_type)
{
struct qed_common_cb_ops *ops = p_hwfn->cdev->protocol_ops.common;
void *cookie = p_hwfn->cdev->ops_cookie;
const char *err_str;
if (err_type > QED_HW_ERR_LAST)
err_type = QED_HW_ERR_LAST;
err_str = qed_hw_err_type_descr[err_type];
DP_NOTICE(p_hwfn, "HW error occurred [%s]\n", err_str);
/* Call the HW error handler of the protocol driver.
* If it is not available - perform a minimal handling of preventing
* HW attentions from being reasserted.
*/
if (ops && ops->schedule_hw_err_handler)
ops->schedule_hw_err_handler(cookie, err_type);
else
qed_int_attn_clr_enable(p_hwfn->cdev, true);
}
static int qed_set_coalesce(struct qed_dev *cdev, u16 rx_coal, u16 tx_coal,
void *handle)
{
return qed_set_queue_coalesce(rx_coal, tx_coal, handle);
}
static int qed_set_led(struct qed_dev *cdev, enum qed_led_mode mode)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int status = 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
status = qed_mcp_set_led(hwfn, ptt, mode);
qed_ptt_release(hwfn, ptt);
return status;
}
int qed_recovery_process(struct qed_dev *cdev)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt;
int rc = 0;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EAGAIN;
rc = qed_start_recovery_process(p_hwfn, p_ptt);
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
static int qed_update_wol(struct qed_dev *cdev, bool enabled)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int rc = 0;
if (IS_VF(cdev))
return 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
rc = qed_mcp_ov_update_wol(hwfn, ptt, enabled ? QED_OV_WOL_ENABLED
: QED_OV_WOL_DISABLED);
if (rc)
goto out;
rc = qed_mcp_ov_update_current_config(hwfn, ptt, QED_OV_CLIENT_DRV);
out:
qed_ptt_release(hwfn, ptt);
return rc;
}
static int qed_update_drv_state(struct qed_dev *cdev, bool active)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int status = 0;
if (IS_VF(cdev))
return 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
status = qed_mcp_ov_update_driver_state(hwfn, ptt, active ?
QED_OV_DRIVER_STATE_ACTIVE :
QED_OV_DRIVER_STATE_DISABLED);
qed_ptt_release(hwfn, ptt);
return status;
}
static int qed_update_mac(struct qed_dev *cdev, u8 *mac)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int status = 0;
if (IS_VF(cdev))
return 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
status = qed_mcp_ov_update_mac(hwfn, ptt, mac);
if (status)
goto out;
status = qed_mcp_ov_update_current_config(hwfn, ptt, QED_OV_CLIENT_DRV);
out:
qed_ptt_release(hwfn, ptt);
return status;
}
static int qed_update_mtu(struct qed_dev *cdev, u16 mtu)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int status = 0;
if (IS_VF(cdev))
return 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
status = qed_mcp_ov_update_mtu(hwfn, ptt, mtu);
if (status)
goto out;
status = qed_mcp_ov_update_current_config(hwfn, ptt, QED_OV_CLIENT_DRV);
out:
qed_ptt_release(hwfn, ptt);
return status;
}
static int qed_read_module_eeprom(struct qed_dev *cdev, char *buf,
u8 dev_addr, u32 offset, u32 len)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int rc = 0;
if (IS_VF(cdev))
return 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
rc = qed_mcp_phy_sfp_read(hwfn, ptt, MFW_PORT(hwfn), dev_addr,
offset, len, buf);
qed_ptt_release(hwfn, ptt);
return rc;
}
static int qed_set_grc_config(struct qed_dev *cdev, u32 cfg_id, u32 val)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *ptt;
int rc = 0;
if (IS_VF(cdev))
return 0;
ptt = qed_ptt_acquire(hwfn);
if (!ptt)
return -EAGAIN;
rc = qed_dbg_grc_config(hwfn, cfg_id, val);
qed_ptt_release(hwfn, ptt);
return rc;
}
static u8 qed_get_affin_hwfn_idx(struct qed_dev *cdev)
{
return QED_AFFIN_HWFN_IDX(cdev);
}
static struct qed_selftest_ops qed_selftest_ops_pass = {
.selftest_memory = &qed_selftest_memory,
.selftest_interrupt = &qed_selftest_interrupt,
.selftest_register = &qed_selftest_register,
.selftest_clock = &qed_selftest_clock,
.selftest_nvram = &qed_selftest_nvram,
};
const struct qed_common_ops qed_common_ops_pass = {
.selftest = &qed_selftest_ops_pass,
.probe = &qed_probe,
.remove = &qed_remove,
.set_power_state = &qed_set_power_state,
.set_name = &qed_set_name,
.update_pf_params = &qed_update_pf_params,
.slowpath_start = &qed_slowpath_start,
.slowpath_stop = &qed_slowpath_stop,
.set_fp_int = &qed_set_int_fp,
.get_fp_int = &qed_get_int_fp,
.sb_init = &qed_sb_init,
.sb_release = &qed_sb_release,
.simd_handler_config = &qed_simd_handler_config,
.simd_handler_clean = &qed_simd_handler_clean,
.dbg_grc = &qed_dbg_grc,
.dbg_grc_size = &qed_dbg_grc_size,
.can_link_change = &qed_can_link_change,
.set_link = &qed_set_link,
.get_link = &qed_get_current_link,
.drain = &qed_drain,
.update_msglvl = &qed_init_dp,
.devlink_register = qed_devlink_register,
.devlink_unregister = qed_devlink_unregister,
.report_fatal_error = qed_report_fatal_error,
.dbg_all_data = &qed_dbg_all_data,
.dbg_all_data_size = &qed_dbg_all_data_size,
.chain_alloc = &qed_chain_alloc,
.chain_free = &qed_chain_free,
.nvm_flash = &qed_nvm_flash,
.nvm_get_image = &qed_nvm_get_image,
.set_coalesce = &qed_set_coalesce,
.set_led = &qed_set_led,
.recovery_process = &qed_recovery_process,
.recovery_prolog = &qed_recovery_prolog,
.attn_clr_enable = &qed_int_attn_clr_enable,
.update_drv_state = &qed_update_drv_state,
.update_mac = &qed_update_mac,
.update_mtu = &qed_update_mtu,
.update_wol = &qed_update_wol,
.db_recovery_add = &qed_db_recovery_add,
.db_recovery_del = &qed_db_recovery_del,
.read_module_eeprom = &qed_read_module_eeprom,
.get_affin_hwfn_idx = &qed_get_affin_hwfn_idx,
.read_nvm_cfg = &qed_nvm_flash_cfg_read,
.read_nvm_cfg_len = &qed_nvm_flash_cfg_len,
.set_grc_config = &qed_set_grc_config,
};
void qed_get_protocol_stats(struct qed_dev *cdev,
enum qed_mcp_protocol_type type,
union qed_mcp_protocol_stats *stats)
{
struct qed_eth_stats eth_stats;
memset(stats, 0, sizeof(*stats));
switch (type) {
case QED_MCP_LAN_STATS:
qed_get_vport_stats(cdev, &eth_stats);
stats->lan_stats.ucast_rx_pkts =
eth_stats.common.rx_ucast_pkts;
stats->lan_stats.ucast_tx_pkts =
eth_stats.common.tx_ucast_pkts;
stats->lan_stats.fcs_err = -1;
break;
case QED_MCP_FCOE_STATS:
qed_get_protocol_stats_fcoe(cdev, &stats->fcoe_stats);
break;
case QED_MCP_ISCSI_STATS:
qed_get_protocol_stats_iscsi(cdev, &stats->iscsi_stats);
break;
default:
DP_VERBOSE(cdev, QED_MSG_SP,
"Invalid protocol type = %d\n", type);
return;
}
}
int qed_mfw_tlv_req(struct qed_hwfn *hwfn)
{
DP_VERBOSE(hwfn->cdev, NETIF_MSG_DRV,
"Scheduling slowpath task [Flag: %d]\n",
QED_SLOWPATH_MFW_TLV_REQ);
/* Memory barrier for setting atomic bit */
smp_mb__before_atomic();
set_bit(QED_SLOWPATH_MFW_TLV_REQ, &hwfn->slowpath_task_flags);
/* Memory barrier after setting atomic bit */
smp_mb__after_atomic();
queue_delayed_work(hwfn->slowpath_wq, &hwfn->slowpath_task, 0);
return 0;
}
static void
qed_fill_generic_tlv_data(struct qed_dev *cdev, struct qed_mfw_tlv_generic *tlv)
{
struct qed_common_cb_ops *op = cdev->protocol_ops.common;
struct qed_eth_stats_common *p_common;
struct qed_generic_tlvs gen_tlvs;
struct qed_eth_stats stats;
int i;
memset(&gen_tlvs, 0, sizeof(gen_tlvs));
op->get_generic_tlv_data(cdev->ops_cookie, &gen_tlvs);
if (gen_tlvs.feat_flags & QED_TLV_IP_CSUM)
tlv->flags.ipv4_csum_offload = true;
if (gen_tlvs.feat_flags & QED_TLV_LSO)
tlv->flags.lso_supported = true;
tlv->flags.b_set = true;
for (i = 0; i < QED_TLV_MAC_COUNT; i++) {
if (is_valid_ether_addr(gen_tlvs.mac[i])) {
ether_addr_copy(tlv->mac[i], gen_tlvs.mac[i]);
tlv->mac_set[i] = true;
}
}
qed_get_vport_stats(cdev, &stats);
p_common = &stats.common;
tlv->rx_frames = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
p_common->rx_bcast_pkts;
tlv->rx_frames_set = true;
tlv->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
p_common->rx_bcast_bytes;
tlv->rx_bytes_set = true;
tlv->tx_frames = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
p_common->tx_bcast_pkts;
tlv->tx_frames_set = true;
tlv->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
p_common->tx_bcast_bytes;
tlv->rx_bytes_set = true;
}
int qed_mfw_fill_tlv_data(struct qed_hwfn *hwfn, enum qed_mfw_tlv_type type,
union qed_mfw_tlv_data *tlv_buf)
{
struct qed_dev *cdev = hwfn->cdev;
struct qed_common_cb_ops *ops;
ops = cdev->protocol_ops.common;
if (!ops || !ops->get_protocol_tlv_data || !ops->get_generic_tlv_data) {
DP_NOTICE(hwfn, "Can't collect TLV management info\n");
return -EINVAL;
}
switch (type) {
case QED_MFW_TLV_GENERIC:
qed_fill_generic_tlv_data(hwfn->cdev, &tlv_buf->generic);
break;
case QED_MFW_TLV_ETH:
ops->get_protocol_tlv_data(cdev->ops_cookie, &tlv_buf->eth);
break;
case QED_MFW_TLV_FCOE:
ops->get_protocol_tlv_data(cdev->ops_cookie, &tlv_buf->fcoe);
break;
case QED_MFW_TLV_ISCSI:
ops->get_protocol_tlv_data(cdev->ops_cookie, &tlv_buf->iscsi);
break;
default:
break;
}
return 0;
}
unsigned long qed_get_epoch_time(void)
{
return ktime_get_real_seconds();
}