blob: e67a66fbf27b830f9c911ab9a469860d3496fff0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* IPV4 GSO/GRO offload support
* Linux INET implementation
*
* UDPv4 GSO support
*/
#include <linux/skbuff.h>
#include <net/udp.h>
#include <net/protocol.h>
#include <net/inet_common.h>
static struct sk_buff *__skb_udp_tunnel_segment(struct sk_buff *skb,
netdev_features_t features,
struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb,
netdev_features_t features),
__be16 new_protocol, bool is_ipv6)
{
int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
bool remcsum, need_csum, offload_csum, gso_partial;
struct sk_buff *segs = ERR_PTR(-EINVAL);
struct udphdr *uh = udp_hdr(skb);
u16 mac_offset = skb->mac_header;
__be16 protocol = skb->protocol;
u16 mac_len = skb->mac_len;
int udp_offset, outer_hlen;
__wsum partial;
bool need_ipsec;
if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
goto out;
/* Adjust partial header checksum to negate old length.
* We cannot rely on the value contained in uh->len as it is
* possible that the actual value exceeds the boundaries of the
* 16 bit length field due to the header being added outside of an
* IP or IPv6 frame that was already limited to 64K - 1.
*/
if (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)
partial = (__force __wsum)uh->len;
else
partial = (__force __wsum)htonl(skb->len);
partial = csum_sub(csum_unfold(uh->check), partial);
/* setup inner skb. */
skb->encapsulation = 0;
SKB_GSO_CB(skb)->encap_level = 0;
__skb_pull(skb, tnl_hlen);
skb_reset_mac_header(skb);
skb_set_network_header(skb, skb_inner_network_offset(skb));
skb->mac_len = skb_inner_network_offset(skb);
skb->protocol = new_protocol;
need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM);
skb->encap_hdr_csum = need_csum;
remcsum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TUNNEL_REMCSUM);
skb->remcsum_offload = remcsum;
need_ipsec = skb_dst(skb) && dst_xfrm(skb_dst(skb));
/* Try to offload checksum if possible */
offload_csum = !!(need_csum &&
!need_ipsec &&
(skb->dev->features &
(is_ipv6 ? (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM) :
(NETIF_F_HW_CSUM | NETIF_F_IP_CSUM))));
features &= skb->dev->hw_enc_features;
/* The only checksum offload we care about from here on out is the
* outer one so strip the existing checksum feature flags and
* instead set the flag based on our outer checksum offload value.
*/
if (remcsum) {
features &= ~NETIF_F_CSUM_MASK;
if (!need_csum || offload_csum)
features |= NETIF_F_HW_CSUM;
}
/* segment inner packet. */
segs = gso_inner_segment(skb, features);
if (IS_ERR_OR_NULL(segs)) {
skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset,
mac_len);
goto out;
}
gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
outer_hlen = skb_tnl_header_len(skb);
udp_offset = outer_hlen - tnl_hlen;
skb = segs;
do {
unsigned int len;
if (remcsum)
skb->ip_summed = CHECKSUM_NONE;
/* Set up inner headers if we are offloading inner checksum */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
skb_reset_inner_headers(skb);
skb->encapsulation = 1;
}
skb->mac_len = mac_len;
skb->protocol = protocol;
__skb_push(skb, outer_hlen);
skb_reset_mac_header(skb);
skb_set_network_header(skb, mac_len);
skb_set_transport_header(skb, udp_offset);
len = skb->len - udp_offset;
uh = udp_hdr(skb);
/* If we are only performing partial GSO the inner header
* will be using a length value equal to only one MSS sized
* segment instead of the entire frame.
*/
if (gso_partial && skb_is_gso(skb)) {
uh->len = htons(skb_shinfo(skb)->gso_size +
SKB_GSO_CB(skb)->data_offset +
skb->head - (unsigned char *)uh);
} else {
uh->len = htons(len);
}
if (!need_csum)
continue;
uh->check = ~csum_fold(csum_add(partial,
(__force __wsum)htonl(len)));
if (skb->encapsulation || !offload_csum) {
uh->check = gso_make_checksum(skb, ~uh->check);
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
} else {
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct udphdr, check);
}
} while ((skb = skb->next));
out:
return segs;
}
struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
netdev_features_t features,
bool is_ipv6)
{
__be16 protocol = skb->protocol;
const struct net_offload **offloads;
const struct net_offload *ops;
struct sk_buff *segs = ERR_PTR(-EINVAL);
struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb,
netdev_features_t features);
rcu_read_lock();
switch (skb->inner_protocol_type) {
case ENCAP_TYPE_ETHER:
protocol = skb->inner_protocol;
gso_inner_segment = skb_mac_gso_segment;
break;
case ENCAP_TYPE_IPPROTO:
offloads = is_ipv6 ? inet6_offloads : inet_offloads;
ops = rcu_dereference(offloads[skb->inner_ipproto]);
if (!ops || !ops->callbacks.gso_segment)
goto out_unlock;
gso_inner_segment = ops->callbacks.gso_segment;
break;
default:
goto out_unlock;
}
segs = __skb_udp_tunnel_segment(skb, features, gso_inner_segment,
protocol, is_ipv6);
out_unlock:
rcu_read_unlock();
return segs;
}
EXPORT_SYMBOL(skb_udp_tunnel_segment);
static struct sk_buff *__udp_gso_segment_list(struct sk_buff *skb,
netdev_features_t features)
{
unsigned int mss = skb_shinfo(skb)->gso_size;
skb = skb_segment_list(skb, features, skb_mac_header_len(skb));
if (IS_ERR(skb))
return skb;
udp_hdr(skb)->len = htons(sizeof(struct udphdr) + mss);
return skb;
}
struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
netdev_features_t features)
{
struct sock *sk = gso_skb->sk;
unsigned int sum_truesize = 0;
struct sk_buff *segs, *seg;
struct udphdr *uh;
unsigned int mss;
bool copy_dtor;
__sum16 check;
__be16 newlen;
if (skb_shinfo(gso_skb)->gso_type & SKB_GSO_FRAGLIST)
return __udp_gso_segment_list(gso_skb, features);
mss = skb_shinfo(gso_skb)->gso_size;
if (gso_skb->len <= sizeof(*uh) + mss)
return ERR_PTR(-EINVAL);
skb_pull(gso_skb, sizeof(*uh));
/* clear destructor to avoid skb_segment assigning it to tail */
copy_dtor = gso_skb->destructor == sock_wfree;
if (copy_dtor)
gso_skb->destructor = NULL;
segs = skb_segment(gso_skb, features);
if (IS_ERR_OR_NULL(segs)) {
if (copy_dtor)
gso_skb->destructor = sock_wfree;
return segs;
}
/* GSO partial and frag_list segmentation only requires splitting
* the frame into an MSS multiple and possibly a remainder, both
* cases return a GSO skb. So update the mss now.
*/
if (skb_is_gso(segs))
mss *= skb_shinfo(segs)->gso_segs;
seg = segs;
uh = udp_hdr(seg);
/* preserve TX timestamp flags and TS key for first segment */
skb_shinfo(seg)->tskey = skb_shinfo(gso_skb)->tskey;
skb_shinfo(seg)->tx_flags |=
(skb_shinfo(gso_skb)->tx_flags & SKBTX_ANY_TSTAMP);
/* compute checksum adjustment based on old length versus new */
newlen = htons(sizeof(*uh) + mss);
check = csum16_add(csum16_sub(uh->check, uh->len), newlen);
for (;;) {
if (copy_dtor) {
seg->destructor = sock_wfree;
seg->sk = sk;
sum_truesize += seg->truesize;
}
if (!seg->next)
break;
uh->len = newlen;
uh->check = check;
if (seg->ip_summed == CHECKSUM_PARTIAL)
gso_reset_checksum(seg, ~check);
else
uh->check = gso_make_checksum(seg, ~check) ? :
CSUM_MANGLED_0;
seg = seg->next;
uh = udp_hdr(seg);
}
/* last packet can be partial gso_size, account for that in checksum */
newlen = htons(skb_tail_pointer(seg) - skb_transport_header(seg) +
seg->data_len);
check = csum16_add(csum16_sub(uh->check, uh->len), newlen);
uh->len = newlen;
uh->check = check;
if (seg->ip_summed == CHECKSUM_PARTIAL)
gso_reset_checksum(seg, ~check);
else
uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0;
/* update refcount for the packet */
if (copy_dtor) {
int delta = sum_truesize - gso_skb->truesize;
/* In some pathological cases, delta can be negative.
* We need to either use refcount_add() or refcount_sub_and_test()
*/
if (likely(delta >= 0))
refcount_add(delta, &sk->sk_wmem_alloc);
else
WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
}
return segs;
}
EXPORT_SYMBOL_GPL(__udp_gso_segment);
static struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
netdev_features_t features)
{
struct sk_buff *segs = ERR_PTR(-EINVAL);
unsigned int mss;
__wsum csum;
struct udphdr *uh;
struct iphdr *iph;
if (skb->encapsulation &&
(skb_shinfo(skb)->gso_type &
(SKB_GSO_UDP_TUNNEL|SKB_GSO_UDP_TUNNEL_CSUM))) {
segs = skb_udp_tunnel_segment(skb, features, false);
goto out;
}
if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_UDP | SKB_GSO_UDP_L4)))
goto out;
if (!pskb_may_pull(skb, sizeof(struct udphdr)))
goto out;
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
return __udp_gso_segment(skb, features);
mss = skb_shinfo(skb)->gso_size;
if (unlikely(skb->len <= mss))
goto out;
/* Do software UFO. Complete and fill in the UDP checksum as
* HW cannot do checksum of UDP packets sent as multiple
* IP fragments.
*/
uh = udp_hdr(skb);
iph = ip_hdr(skb);
uh->check = 0;
csum = skb_checksum(skb, 0, skb->len, 0);
uh->check = udp_v4_check(skb->len, iph->saddr, iph->daddr, csum);
if (uh->check == 0)
uh->check = CSUM_MANGLED_0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* If there is no outer header we can fake a checksum offload
* due to the fact that we have already done the checksum in
* software prior to segmenting the frame.
*/
if (!skb->encap_hdr_csum)
features |= NETIF_F_HW_CSUM;
/* Fragment the skb. IP headers of the fragments are updated in
* inet_gso_segment()
*/
segs = skb_segment(skb, features);
out:
return segs;
}
#define UDP_GRO_CNT_MAX 64
static struct sk_buff *udp_gro_receive_segment(struct list_head *head,
struct sk_buff *skb)
{
struct udphdr *uh = udp_hdr(skb);
struct sk_buff *pp = NULL;
struct udphdr *uh2;
struct sk_buff *p;
unsigned int ulen;
int ret = 0;
/* requires non zero csum, for symmetry with GSO */
if (!uh->check) {
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
/* Do not deal with padded or malicious packets, sorry ! */
ulen = ntohs(uh->len);
if (ulen <= sizeof(*uh) || ulen != skb_gro_len(skb)) {
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
/* pull encapsulating udp header */
skb_gro_pull(skb, sizeof(struct udphdr));
list_for_each_entry(p, head, list) {
if (!NAPI_GRO_CB(p)->same_flow)
continue;
uh2 = udp_hdr(p);
/* Match ports only, as csum is always non zero */
if ((*(u32 *)&uh->source != *(u32 *)&uh2->source)) {
NAPI_GRO_CB(p)->same_flow = 0;
continue;
}
if (NAPI_GRO_CB(skb)->is_flist != NAPI_GRO_CB(p)->is_flist) {
NAPI_GRO_CB(skb)->flush = 1;
return p;
}
/* Terminate the flow on len mismatch or if it grow "too much".
* Under small packet flood GRO count could elsewhere grow a lot
* leading to excessive truesize values.
* On len mismatch merge the first packet shorter than gso_size,
* otherwise complete the GRO packet.
*/
if (ulen > ntohs(uh2->len)) {
pp = p;
} else {
if (NAPI_GRO_CB(skb)->is_flist) {
if (!pskb_may_pull(skb, skb_gro_offset(skb))) {
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
if ((skb->ip_summed != p->ip_summed) ||
(skb->csum_level != p->csum_level)) {
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
ret = skb_gro_receive_list(p, skb);
} else {
skb_gro_postpull_rcsum(skb, uh,
sizeof(struct udphdr));
ret = skb_gro_receive(p, skb);
}
}
if (ret || ulen != ntohs(uh2->len) ||
NAPI_GRO_CB(p)->count >= UDP_GRO_CNT_MAX)
pp = p;
return pp;
}
/* mismatch, but we never need to flush */
return NULL;
}
struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb,
struct udphdr *uh, struct sock *sk)
{
struct sk_buff *pp = NULL;
struct sk_buff *p;
struct udphdr *uh2;
unsigned int off = skb_gro_offset(skb);
int flush = 1;
NAPI_GRO_CB(skb)->is_flist = 0;
if (skb->dev->features & NETIF_F_GRO_FRAGLIST)
NAPI_GRO_CB(skb)->is_flist = sk ? !udp_sk(sk)->gro_enabled: 1;
if ((sk && udp_sk(sk)->gro_enabled) || NAPI_GRO_CB(skb)->is_flist) {
pp = call_gro_receive(udp_gro_receive_segment, head, skb);
return pp;
}
if (!sk || NAPI_GRO_CB(skb)->encap_mark ||
(skb->ip_summed != CHECKSUM_PARTIAL &&
NAPI_GRO_CB(skb)->csum_cnt == 0 &&
!NAPI_GRO_CB(skb)->csum_valid) ||
!udp_sk(sk)->gro_receive)
goto out;
/* mark that this skb passed once through the tunnel gro layer */
NAPI_GRO_CB(skb)->encap_mark = 1;
flush = 0;
list_for_each_entry(p, head, list) {
if (!NAPI_GRO_CB(p)->same_flow)
continue;
uh2 = (struct udphdr *)(p->data + off);
/* Match ports and either checksums are either both zero
* or nonzero.
*/
if ((*(u32 *)&uh->source != *(u32 *)&uh2->source) ||
(!uh->check ^ !uh2->check)) {
NAPI_GRO_CB(p)->same_flow = 0;
continue;
}
}
skb_gro_pull(skb, sizeof(struct udphdr)); /* pull encapsulating udp header */
skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr));
pp = call_gro_receive_sk(udp_sk(sk)->gro_receive, sk, head, skb);
out:
skb_gro_flush_final(skb, pp, flush);
return pp;
}
EXPORT_SYMBOL(udp_gro_receive);
INDIRECT_CALLABLE_SCOPE
struct sk_buff *udp4_gro_receive(struct list_head *head, struct sk_buff *skb)
{
struct udphdr *uh = udp_gro_udphdr(skb);
struct sk_buff *pp;
struct sock *sk;
if (unlikely(!uh))
goto flush;
/* Don't bother verifying checksum if we're going to flush anyway. */
if (NAPI_GRO_CB(skb)->flush)
goto skip;
if (skb_gro_checksum_validate_zero_check(skb, IPPROTO_UDP, uh->check,
inet_gro_compute_pseudo))
goto flush;
else if (uh->check)
skb_gro_checksum_try_convert(skb, IPPROTO_UDP,
inet_gro_compute_pseudo);
skip:
NAPI_GRO_CB(skb)->is_ipv6 = 0;
rcu_read_lock();
sk = static_branch_unlikely(&udp_encap_needed_key) ? udp4_lib_lookup_skb(skb, uh->source, uh->dest) : NULL;
pp = udp_gro_receive(head, skb, uh, sk);
rcu_read_unlock();
return pp;
flush:
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
static int udp_gro_complete_segment(struct sk_buff *skb)
{
struct udphdr *uh = udp_hdr(skb);
skb->csum_start = (unsigned char *)uh - skb->head;
skb->csum_offset = offsetof(struct udphdr, check);
skb->ip_summed = CHECKSUM_PARTIAL;
skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_L4;
return 0;
}
int udp_gro_complete(struct sk_buff *skb, int nhoff,
udp_lookup_t lookup)
{
__be16 newlen = htons(skb->len - nhoff);
struct udphdr *uh = (struct udphdr *)(skb->data + nhoff);
int err = -ENOSYS;
struct sock *sk;
uh->len = newlen;
rcu_read_lock();
sk = INDIRECT_CALL_INET(lookup, udp6_lib_lookup_skb,
udp4_lib_lookup_skb, skb, uh->source, uh->dest);
if (sk && udp_sk(sk)->gro_complete) {
skb_shinfo(skb)->gso_type = uh->check ? SKB_GSO_UDP_TUNNEL_CSUM
: SKB_GSO_UDP_TUNNEL;
/* Set encapsulation before calling into inner gro_complete()
* functions to make them set up the inner offsets.
*/
skb->encapsulation = 1;
err = udp_sk(sk)->gro_complete(sk, skb,
nhoff + sizeof(struct udphdr));
} else {
err = udp_gro_complete_segment(skb);
}
rcu_read_unlock();
if (skb->remcsum_offload)
skb_shinfo(skb)->gso_type |= SKB_GSO_TUNNEL_REMCSUM;
return err;
}
EXPORT_SYMBOL(udp_gro_complete);
INDIRECT_CALLABLE_SCOPE int udp4_gro_complete(struct sk_buff *skb, int nhoff)
{
const struct iphdr *iph = ip_hdr(skb);
struct udphdr *uh = (struct udphdr *)(skb->data + nhoff);
if (NAPI_GRO_CB(skb)->is_flist) {
uh->len = htons(skb->len - nhoff);
skb_shinfo(skb)->gso_type |= (SKB_GSO_FRAGLIST|SKB_GSO_UDP_L4);
skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
skb->csum_level++;
} else {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = 0;
}
return 0;
}
if (uh->check)
uh->check = ~udp_v4_check(skb->len - nhoff, iph->saddr,
iph->daddr, 0);
return udp_gro_complete(skb, nhoff, udp4_lib_lookup_skb);
}
static const struct net_offload udpv4_offload = {
.callbacks = {
.gso_segment = udp4_ufo_fragment,
.gro_receive = udp4_gro_receive,
.gro_complete = udp4_gro_complete,
},
};
int __init udpv4_offload_init(void)
{
return inet_add_offload(&udpv4_offload, IPPROTO_UDP);
}