|  | /* | 
|  | * Procedures for maintaining information about logical memory blocks. | 
|  | * | 
|  | * Peter Bergner, IBM Corp.	June 2001. | 
|  | * Copyright (C) 2001 Peter Bergner. | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/memblock.h> | 
|  |  | 
|  | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; | 
|  | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; | 
|  |  | 
|  | struct memblock memblock __initdata_memblock = { | 
|  | .memory.regions		= memblock_memory_init_regions, | 
|  | .memory.cnt		= 1,	/* empty dummy entry */ | 
|  | .memory.max		= INIT_MEMBLOCK_REGIONS, | 
|  |  | 
|  | .reserved.regions	= memblock_reserved_init_regions, | 
|  | .reserved.cnt		= 1,	/* empty dummy entry */ | 
|  | .reserved.max		= INIT_MEMBLOCK_REGIONS, | 
|  |  | 
|  | .current_limit		= MEMBLOCK_ALLOC_ANYWHERE, | 
|  | }; | 
|  |  | 
|  | int memblock_debug __initdata_memblock; | 
|  | static int memblock_can_resize __initdata_memblock; | 
|  | static int memblock_memory_in_slab __initdata_memblock = 0; | 
|  | static int memblock_reserved_in_slab __initdata_memblock = 0; | 
|  |  | 
|  | /* inline so we don't get a warning when pr_debug is compiled out */ | 
|  | static __init_memblock const char * | 
|  | memblock_type_name(struct memblock_type *type) | 
|  | { | 
|  | if (type == &memblock.memory) | 
|  | return "memory"; | 
|  | else if (type == &memblock.reserved) | 
|  | return "reserved"; | 
|  | else | 
|  | return "unknown"; | 
|  | } | 
|  |  | 
|  | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ | 
|  | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) | 
|  | { | 
|  | return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Address comparison utilities | 
|  | */ | 
|  | static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, | 
|  | phys_addr_t base2, phys_addr_t size2) | 
|  | { | 
|  | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | 
|  | } | 
|  |  | 
|  | static long __init_memblock memblock_overlaps_region(struct memblock_type *type, | 
|  | phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | phys_addr_t rgnbase = type->regions[i].base; | 
|  | phys_addr_t rgnsize = type->regions[i].size; | 
|  | if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return (i < type->cnt) ? i : -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_find_in_range_node - find free area in given range and node | 
|  | * @start: start of candidate range | 
|  | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} | 
|  | * @size: size of free area to find | 
|  | * @align: alignment of free area to find | 
|  | * @nid: nid of the free area to find, %MAX_NUMNODES for any node | 
|  | * | 
|  | * Find @size free area aligned to @align in the specified range and node. | 
|  | * | 
|  | * If we have CONFIG_HAVE_MEMBLOCK_NODE_MAP defined, we need to check if the | 
|  | * memory we found if not in hotpluggable ranges. | 
|  | * | 
|  | * RETURNS: | 
|  | * Found address on success, %0 on failure. | 
|  | */ | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, | 
|  | phys_addr_t end, phys_addr_t size, | 
|  | phys_addr_t align, int nid) | 
|  | { | 
|  | phys_addr_t this_start, this_end, cand; | 
|  | u64 i; | 
|  | int curr = movablemem_map.nr_map - 1; | 
|  |  | 
|  | /* pump up @end */ | 
|  | if (end == MEMBLOCK_ALLOC_ACCESSIBLE) | 
|  | end = memblock.current_limit; | 
|  |  | 
|  | /* avoid allocating the first page */ | 
|  | start = max_t(phys_addr_t, start, PAGE_SIZE); | 
|  | end = max(start, end); | 
|  |  | 
|  | for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { | 
|  | this_start = clamp(this_start, start, end); | 
|  | this_end = clamp(this_end, start, end); | 
|  |  | 
|  | restart: | 
|  | if (this_end <= this_start || this_end < size) | 
|  | continue; | 
|  |  | 
|  | for (; curr >= 0; curr--) { | 
|  | if ((movablemem_map.map[curr].start_pfn << PAGE_SHIFT) | 
|  | < this_end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | cand = round_down(this_end - size, align); | 
|  | if (curr >= 0 && | 
|  | cand < movablemem_map.map[curr].end_pfn << PAGE_SHIFT) { | 
|  | this_end = movablemem_map.map[curr].start_pfn | 
|  | << PAGE_SHIFT; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | if (cand >= this_start) | 
|  | return cand; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  | phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, | 
|  | phys_addr_t end, phys_addr_t size, | 
|  | phys_addr_t align, int nid) | 
|  | { | 
|  | phys_addr_t this_start, this_end, cand; | 
|  | u64 i; | 
|  |  | 
|  | /* pump up @end */ | 
|  | if (end == MEMBLOCK_ALLOC_ACCESSIBLE) | 
|  | end = memblock.current_limit; | 
|  |  | 
|  | /* avoid allocating the first page */ | 
|  | start = max_t(phys_addr_t, start, PAGE_SIZE); | 
|  | end = max(start, end); | 
|  |  | 
|  | for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { | 
|  | this_start = clamp(this_start, start, end); | 
|  | this_end = clamp(this_end, start, end); | 
|  |  | 
|  | if (this_end < size) | 
|  | continue; | 
|  |  | 
|  | cand = round_down(this_end - size, align); | 
|  | if (cand >= this_start) | 
|  | return cand; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  |  | 
|  | /** | 
|  | * memblock_find_in_range - find free area in given range | 
|  | * @start: start of candidate range | 
|  | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} | 
|  | * @size: size of free area to find | 
|  | * @align: alignment of free area to find | 
|  | * | 
|  | * Find @size free area aligned to @align in the specified range. | 
|  | * | 
|  | * RETURNS: | 
|  | * Found address on success, %0 on failure. | 
|  | */ | 
|  | phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, | 
|  | phys_addr_t end, phys_addr_t size, | 
|  | phys_addr_t align) | 
|  | { | 
|  | return memblock_find_in_range_node(start, end, size, align, | 
|  | MAX_NUMNODES); | 
|  | } | 
|  |  | 
|  | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) | 
|  | { | 
|  | type->total_size -= type->regions[r].size; | 
|  | memmove(&type->regions[r], &type->regions[r + 1], | 
|  | (type->cnt - (r + 1)) * sizeof(type->regions[r])); | 
|  | type->cnt--; | 
|  |  | 
|  | /* Special case for empty arrays */ | 
|  | if (type->cnt == 0) { | 
|  | WARN_ON(type->total_size != 0); | 
|  | type->cnt = 1; | 
|  | type->regions[0].base = 0; | 
|  | type->regions[0].size = 0; | 
|  | memblock_set_region_node(&type->regions[0], MAX_NUMNODES); | 
|  | } | 
|  | } | 
|  |  | 
|  | phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( | 
|  | phys_addr_t *addr) | 
|  | { | 
|  | if (memblock.reserved.regions == memblock_reserved_init_regions) | 
|  | return 0; | 
|  |  | 
|  | *addr = __pa(memblock.reserved.regions); | 
|  |  | 
|  | return PAGE_ALIGN(sizeof(struct memblock_region) * | 
|  | memblock.reserved.max); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_double_array - double the size of the memblock regions array | 
|  | * @type: memblock type of the regions array being doubled | 
|  | * @new_area_start: starting address of memory range to avoid overlap with | 
|  | * @new_area_size: size of memory range to avoid overlap with | 
|  | * | 
|  | * Double the size of the @type regions array. If memblock is being used to | 
|  | * allocate memory for a new reserved regions array and there is a previously | 
|  | * allocated memory range [@new_area_start,@new_area_start+@new_area_size] | 
|  | * waiting to be reserved, ensure the memory used by the new array does | 
|  | * not overlap. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -1 on failure. | 
|  | */ | 
|  | static int __init_memblock memblock_double_array(struct memblock_type *type, | 
|  | phys_addr_t new_area_start, | 
|  | phys_addr_t new_area_size) | 
|  | { | 
|  | struct memblock_region *new_array, *old_array; | 
|  | phys_addr_t old_alloc_size, new_alloc_size; | 
|  | phys_addr_t old_size, new_size, addr; | 
|  | int use_slab = slab_is_available(); | 
|  | int *in_slab; | 
|  |  | 
|  | /* We don't allow resizing until we know about the reserved regions | 
|  | * of memory that aren't suitable for allocation | 
|  | */ | 
|  | if (!memblock_can_resize) | 
|  | return -1; | 
|  |  | 
|  | /* Calculate new doubled size */ | 
|  | old_size = type->max * sizeof(struct memblock_region); | 
|  | new_size = old_size << 1; | 
|  | /* | 
|  | * We need to allocated new one align to PAGE_SIZE, | 
|  | *   so we can free them completely later. | 
|  | */ | 
|  | old_alloc_size = PAGE_ALIGN(old_size); | 
|  | new_alloc_size = PAGE_ALIGN(new_size); | 
|  |  | 
|  | /* Retrieve the slab flag */ | 
|  | if (type == &memblock.memory) | 
|  | in_slab = &memblock_memory_in_slab; | 
|  | else | 
|  | in_slab = &memblock_reserved_in_slab; | 
|  |  | 
|  | /* Try to find some space for it. | 
|  | * | 
|  | * WARNING: We assume that either slab_is_available() and we use it or | 
|  | * we use MEMBLOCK for allocations. That means that this is unsafe to | 
|  | * use when bootmem is currently active (unless bootmem itself is | 
|  | * implemented on top of MEMBLOCK which isn't the case yet) | 
|  | * | 
|  | * This should however not be an issue for now, as we currently only | 
|  | * call into MEMBLOCK while it's still active, or much later when slab | 
|  | * is active for memory hotplug operations | 
|  | */ | 
|  | if (use_slab) { | 
|  | new_array = kmalloc(new_size, GFP_KERNEL); | 
|  | addr = new_array ? __pa(new_array) : 0; | 
|  | } else { | 
|  | /* only exclude range when trying to double reserved.regions */ | 
|  | if (type != &memblock.reserved) | 
|  | new_area_start = new_area_size = 0; | 
|  |  | 
|  | addr = memblock_find_in_range(new_area_start + new_area_size, | 
|  | memblock.current_limit, | 
|  | new_alloc_size, PAGE_SIZE); | 
|  | if (!addr && new_area_size) | 
|  | addr = memblock_find_in_range(0, | 
|  | min(new_area_start, memblock.current_limit), | 
|  | new_alloc_size, PAGE_SIZE); | 
|  |  | 
|  | new_array = addr ? __va(addr) : NULL; | 
|  | } | 
|  | if (!addr) { | 
|  | pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", | 
|  | memblock_type_name(type), type->max, type->max * 2); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", | 
|  | memblock_type_name(type), type->max * 2, (u64)addr, | 
|  | (u64)addr + new_size - 1); | 
|  |  | 
|  | /* | 
|  | * Found space, we now need to move the array over before we add the | 
|  | * reserved region since it may be our reserved array itself that is | 
|  | * full. | 
|  | */ | 
|  | memcpy(new_array, type->regions, old_size); | 
|  | memset(new_array + type->max, 0, old_size); | 
|  | old_array = type->regions; | 
|  | type->regions = new_array; | 
|  | type->max <<= 1; | 
|  |  | 
|  | /* Free old array. We needn't free it if the array is the static one */ | 
|  | if (*in_slab) | 
|  | kfree(old_array); | 
|  | else if (old_array != memblock_memory_init_regions && | 
|  | old_array != memblock_reserved_init_regions) | 
|  | memblock_free(__pa(old_array), old_alloc_size); | 
|  |  | 
|  | /* | 
|  | * Reserve the new array if that comes from the memblock.  Otherwise, we | 
|  | * needn't do it | 
|  | */ | 
|  | if (!use_slab) | 
|  | BUG_ON(memblock_reserve(addr, new_alloc_size)); | 
|  |  | 
|  | /* Update slab flag */ | 
|  | *in_slab = use_slab; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_merge_regions - merge neighboring compatible regions | 
|  | * @type: memblock type to scan | 
|  | * | 
|  | * Scan @type and merge neighboring compatible regions. | 
|  | */ | 
|  | static void __init_memblock memblock_merge_regions(struct memblock_type *type) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | /* cnt never goes below 1 */ | 
|  | while (i < type->cnt - 1) { | 
|  | struct memblock_region *this = &type->regions[i]; | 
|  | struct memblock_region *next = &type->regions[i + 1]; | 
|  |  | 
|  | if (this->base + this->size != next->base || | 
|  | memblock_get_region_node(this) != | 
|  | memblock_get_region_node(next)) { | 
|  | BUG_ON(this->base + this->size > next->base); | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | this->size += next->size; | 
|  | /* move forward from next + 1, index of which is i + 2 */ | 
|  | memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); | 
|  | type->cnt--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_insert_region - insert new memblock region | 
|  | * @type: memblock type to insert into | 
|  | * @idx: index for the insertion point | 
|  | * @base: base address of the new region | 
|  | * @size: size of the new region | 
|  | * | 
|  | * Insert new memblock region [@base,@base+@size) into @type at @idx. | 
|  | * @type must already have extra room to accomodate the new region. | 
|  | */ | 
|  | static void __init_memblock memblock_insert_region(struct memblock_type *type, | 
|  | int idx, phys_addr_t base, | 
|  | phys_addr_t size, int nid) | 
|  | { | 
|  | struct memblock_region *rgn = &type->regions[idx]; | 
|  |  | 
|  | BUG_ON(type->cnt >= type->max); | 
|  | memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); | 
|  | rgn->base = base; | 
|  | rgn->size = size; | 
|  | memblock_set_region_node(rgn, nid); | 
|  | type->cnt++; | 
|  | type->total_size += size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_add_region - add new memblock region | 
|  | * @type: memblock type to add new region into | 
|  | * @base: base address of the new region | 
|  | * @size: size of the new region | 
|  | * @nid: nid of the new region | 
|  | * | 
|  | * Add new memblock region [@base,@base+@size) into @type.  The new region | 
|  | * is allowed to overlap with existing ones - overlaps don't affect already | 
|  | * existing regions.  @type is guaranteed to be minimal (all neighbouring | 
|  | * compatible regions are merged) after the addition. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | static int __init_memblock memblock_add_region(struct memblock_type *type, | 
|  | phys_addr_t base, phys_addr_t size, int nid) | 
|  | { | 
|  | bool insert = false; | 
|  | phys_addr_t obase = base; | 
|  | phys_addr_t end = base + memblock_cap_size(base, &size); | 
|  | int i, nr_new; | 
|  |  | 
|  | if (!size) | 
|  | return 0; | 
|  |  | 
|  | /* special case for empty array */ | 
|  | if (type->regions[0].size == 0) { | 
|  | WARN_ON(type->cnt != 1 || type->total_size); | 
|  | type->regions[0].base = base; | 
|  | type->regions[0].size = size; | 
|  | memblock_set_region_node(&type->regions[0], nid); | 
|  | type->total_size = size; | 
|  | return 0; | 
|  | } | 
|  | repeat: | 
|  | /* | 
|  | * The following is executed twice.  Once with %false @insert and | 
|  | * then with %true.  The first counts the number of regions needed | 
|  | * to accomodate the new area.  The second actually inserts them. | 
|  | */ | 
|  | base = obase; | 
|  | nr_new = 0; | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | struct memblock_region *rgn = &type->regions[i]; | 
|  | phys_addr_t rbase = rgn->base; | 
|  | phys_addr_t rend = rbase + rgn->size; | 
|  |  | 
|  | if (rbase >= end) | 
|  | break; | 
|  | if (rend <= base) | 
|  | continue; | 
|  | /* | 
|  | * @rgn overlaps.  If it separates the lower part of new | 
|  | * area, insert that portion. | 
|  | */ | 
|  | if (rbase > base) { | 
|  | nr_new++; | 
|  | if (insert) | 
|  | memblock_insert_region(type, i++, base, | 
|  | rbase - base, nid); | 
|  | } | 
|  | /* area below @rend is dealt with, forget about it */ | 
|  | base = min(rend, end); | 
|  | } | 
|  |  | 
|  | /* insert the remaining portion */ | 
|  | if (base < end) { | 
|  | nr_new++; | 
|  | if (insert) | 
|  | memblock_insert_region(type, i, base, end - base, nid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this was the first round, resize array and repeat for actual | 
|  | * insertions; otherwise, merge and return. | 
|  | */ | 
|  | if (!insert) { | 
|  | while (type->cnt + nr_new > type->max) | 
|  | if (memblock_double_array(type, obase, size) < 0) | 
|  | return -ENOMEM; | 
|  | insert = true; | 
|  | goto repeat; | 
|  | } else { | 
|  | memblock_merge_regions(type); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, | 
|  | int nid) | 
|  | { | 
|  | return memblock_add_region(&memblock.memory, base, size, nid); | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_isolate_range - isolate given range into disjoint memblocks | 
|  | * @type: memblock type to isolate range for | 
|  | * @base: base of range to isolate | 
|  | * @size: size of range to isolate | 
|  | * @start_rgn: out parameter for the start of isolated region | 
|  | * @end_rgn: out parameter for the end of isolated region | 
|  | * | 
|  | * Walk @type and ensure that regions don't cross the boundaries defined by | 
|  | * [@base,@base+@size).  Crossing regions are split at the boundaries, | 
|  | * which may create at most two more regions.  The index of the first | 
|  | * region inside the range is returned in *@start_rgn and end in *@end_rgn. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | static int __init_memblock memblock_isolate_range(struct memblock_type *type, | 
|  | phys_addr_t base, phys_addr_t size, | 
|  | int *start_rgn, int *end_rgn) | 
|  | { | 
|  | phys_addr_t end = base + memblock_cap_size(base, &size); | 
|  | int i; | 
|  |  | 
|  | *start_rgn = *end_rgn = 0; | 
|  |  | 
|  | if (!size) | 
|  | return 0; | 
|  |  | 
|  | /* we'll create at most two more regions */ | 
|  | while (type->cnt + 2 > type->max) | 
|  | if (memblock_double_array(type, base, size) < 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | struct memblock_region *rgn = &type->regions[i]; | 
|  | phys_addr_t rbase = rgn->base; | 
|  | phys_addr_t rend = rbase + rgn->size; | 
|  |  | 
|  | if (rbase >= end) | 
|  | break; | 
|  | if (rend <= base) | 
|  | continue; | 
|  |  | 
|  | if (rbase < base) { | 
|  | /* | 
|  | * @rgn intersects from below.  Split and continue | 
|  | * to process the next region - the new top half. | 
|  | */ | 
|  | rgn->base = base; | 
|  | rgn->size -= base - rbase; | 
|  | type->total_size -= base - rbase; | 
|  | memblock_insert_region(type, i, rbase, base - rbase, | 
|  | memblock_get_region_node(rgn)); | 
|  | } else if (rend > end) { | 
|  | /* | 
|  | * @rgn intersects from above.  Split and redo the | 
|  | * current region - the new bottom half. | 
|  | */ | 
|  | rgn->base = end; | 
|  | rgn->size -= end - rbase; | 
|  | type->total_size -= end - rbase; | 
|  | memblock_insert_region(type, i--, rbase, end - rbase, | 
|  | memblock_get_region_node(rgn)); | 
|  | } else { | 
|  | /* @rgn is fully contained, record it */ | 
|  | if (!*end_rgn) | 
|  | *start_rgn = i; | 
|  | *end_rgn = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init_memblock __memblock_remove(struct memblock_type *type, | 
|  | phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | int start_rgn, end_rgn; | 
|  | int i, ret; | 
|  |  | 
|  | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = end_rgn - 1; i >= start_rgn; i--) | 
|  | memblock_remove_region(type, i); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | return __memblock_remove(&memblock.memory, base, size); | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n", | 
|  | (unsigned long long)base, | 
|  | (unsigned long long)base + size, | 
|  | (void *)_RET_IP_); | 
|  |  | 
|  | return __memblock_remove(&memblock.reserved, base, size); | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | struct memblock_type *_rgn = &memblock.reserved; | 
|  |  | 
|  | memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", | 
|  | (unsigned long long)base, | 
|  | (unsigned long long)base + size, | 
|  | (void *)_RET_IP_); | 
|  |  | 
|  | return memblock_add_region(_rgn, base, size, MAX_NUMNODES); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __next_free_mem_range - next function for for_each_free_mem_range() | 
|  | * @idx: pointer to u64 loop variable | 
|  | * @nid: nid: node selector, %MAX_NUMNODES for all nodes | 
|  | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL | 
|  | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL | 
|  | * @out_nid: ptr to int for nid of the range, can be %NULL | 
|  | * | 
|  | * Find the first free area from *@idx which matches @nid, fill the out | 
|  | * parameters, and update *@idx for the next iteration.  The lower 32bit of | 
|  | * *@idx contains index into memory region and the upper 32bit indexes the | 
|  | * areas before each reserved region.  For example, if reserved regions | 
|  | * look like the following, | 
|  | * | 
|  | *	0:[0-16), 1:[32-48), 2:[128-130) | 
|  | * | 
|  | * The upper 32bit indexes the following regions. | 
|  | * | 
|  | *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) | 
|  | * | 
|  | * As both region arrays are sorted, the function advances the two indices | 
|  | * in lockstep and returns each intersection. | 
|  | */ | 
|  | void __init_memblock __next_free_mem_range(u64 *idx, int nid, | 
|  | phys_addr_t *out_start, | 
|  | phys_addr_t *out_end, int *out_nid) | 
|  | { | 
|  | struct memblock_type *mem = &memblock.memory; | 
|  | struct memblock_type *rsv = &memblock.reserved; | 
|  | int mi = *idx & 0xffffffff; | 
|  | int ri = *idx >> 32; | 
|  |  | 
|  | for ( ; mi < mem->cnt; mi++) { | 
|  | struct memblock_region *m = &mem->regions[mi]; | 
|  | phys_addr_t m_start = m->base; | 
|  | phys_addr_t m_end = m->base + m->size; | 
|  |  | 
|  | /* only memory regions are associated with nodes, check it */ | 
|  | if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) | 
|  | continue; | 
|  |  | 
|  | /* scan areas before each reservation for intersection */ | 
|  | for ( ; ri < rsv->cnt + 1; ri++) { | 
|  | struct memblock_region *r = &rsv->regions[ri]; | 
|  | phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; | 
|  | phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; | 
|  |  | 
|  | /* if ri advanced past mi, break out to advance mi */ | 
|  | if (r_start >= m_end) | 
|  | break; | 
|  | /* if the two regions intersect, we're done */ | 
|  | if (m_start < r_end) { | 
|  | if (out_start) | 
|  | *out_start = max(m_start, r_start); | 
|  | if (out_end) | 
|  | *out_end = min(m_end, r_end); | 
|  | if (out_nid) | 
|  | *out_nid = memblock_get_region_node(m); | 
|  | /* | 
|  | * The region which ends first is advanced | 
|  | * for the next iteration. | 
|  | */ | 
|  | if (m_end <= r_end) | 
|  | mi++; | 
|  | else | 
|  | ri++; | 
|  | *idx = (u32)mi | (u64)ri << 32; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* signal end of iteration */ | 
|  | *idx = ULLONG_MAX; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() | 
|  | * @idx: pointer to u64 loop variable | 
|  | * @nid: nid: node selector, %MAX_NUMNODES for all nodes | 
|  | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL | 
|  | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL | 
|  | * @out_nid: ptr to int for nid of the range, can be %NULL | 
|  | * | 
|  | * Reverse of __next_free_mem_range(). | 
|  | */ | 
|  | void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, | 
|  | phys_addr_t *out_start, | 
|  | phys_addr_t *out_end, int *out_nid) | 
|  | { | 
|  | struct memblock_type *mem = &memblock.memory; | 
|  | struct memblock_type *rsv = &memblock.reserved; | 
|  | int mi = *idx & 0xffffffff; | 
|  | int ri = *idx >> 32; | 
|  |  | 
|  | if (*idx == (u64)ULLONG_MAX) { | 
|  | mi = mem->cnt - 1; | 
|  | ri = rsv->cnt; | 
|  | } | 
|  |  | 
|  | for ( ; mi >= 0; mi--) { | 
|  | struct memblock_region *m = &mem->regions[mi]; | 
|  | phys_addr_t m_start = m->base; | 
|  | phys_addr_t m_end = m->base + m->size; | 
|  |  | 
|  | /* only memory regions are associated with nodes, check it */ | 
|  | if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) | 
|  | continue; | 
|  |  | 
|  | /* scan areas before each reservation for intersection */ | 
|  | for ( ; ri >= 0; ri--) { | 
|  | struct memblock_region *r = &rsv->regions[ri]; | 
|  | phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; | 
|  | phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; | 
|  |  | 
|  | /* if ri advanced past mi, break out to advance mi */ | 
|  | if (r_end <= m_start) | 
|  | break; | 
|  | /* if the two regions intersect, we're done */ | 
|  | if (m_end > r_start) { | 
|  | if (out_start) | 
|  | *out_start = max(m_start, r_start); | 
|  | if (out_end) | 
|  | *out_end = min(m_end, r_end); | 
|  | if (out_nid) | 
|  | *out_nid = memblock_get_region_node(m); | 
|  |  | 
|  | if (m_start >= r_start) | 
|  | mi--; | 
|  | else | 
|  | ri--; | 
|  | *idx = (u32)mi | (u64)ri << 32; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *idx = ULLONG_MAX; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | /* | 
|  | * Common iterator interface used to define for_each_mem_range(). | 
|  | */ | 
|  | void __init_memblock __next_mem_pfn_range(int *idx, int nid, | 
|  | unsigned long *out_start_pfn, | 
|  | unsigned long *out_end_pfn, int *out_nid) | 
|  | { | 
|  | struct memblock_type *type = &memblock.memory; | 
|  | struct memblock_region *r; | 
|  |  | 
|  | while (++*idx < type->cnt) { | 
|  | r = &type->regions[*idx]; | 
|  |  | 
|  | if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) | 
|  | continue; | 
|  | if (nid == MAX_NUMNODES || nid == r->nid) | 
|  | break; | 
|  | } | 
|  | if (*idx >= type->cnt) { | 
|  | *idx = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (out_start_pfn) | 
|  | *out_start_pfn = PFN_UP(r->base); | 
|  | if (out_end_pfn) | 
|  | *out_end_pfn = PFN_DOWN(r->base + r->size); | 
|  | if (out_nid) | 
|  | *out_nid = r->nid; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_set_node - set node ID on memblock regions | 
|  | * @base: base of area to set node ID for | 
|  | * @size: size of area to set node ID for | 
|  | * @nid: node ID to set | 
|  | * | 
|  | * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. | 
|  | * Regions which cross the area boundaries are split as necessary. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, | 
|  | int nid) | 
|  | { | 
|  | struct memblock_type *type = &memblock.memory; | 
|  | int start_rgn, end_rgn; | 
|  | int i, ret; | 
|  |  | 
|  | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = start_rgn; i < end_rgn; i++) | 
|  | memblock_set_region_node(&type->regions[i], nid); | 
|  |  | 
|  | memblock_merge_regions(type); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
|  |  | 
|  | static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, | 
|  | phys_addr_t align, phys_addr_t max_addr, | 
|  | int nid) | 
|  | { | 
|  | phys_addr_t found; | 
|  |  | 
|  | /* align @size to avoid excessive fragmentation on reserved array */ | 
|  | size = round_up(size, align); | 
|  |  | 
|  | found = memblock_find_in_range_node(0, max_addr, size, align, nid); | 
|  | if (found && !memblock_reserve(found, size)) | 
|  | return found; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) | 
|  | { | 
|  | return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
|  | } | 
|  |  | 
|  | phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) | 
|  | { | 
|  | return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) | 
|  | { | 
|  | phys_addr_t alloc; | 
|  |  | 
|  | alloc = __memblock_alloc_base(size, align, max_addr); | 
|  |  | 
|  | if (alloc == 0) | 
|  | panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", | 
|  | (unsigned long long) size, (unsigned long long) max_addr); | 
|  |  | 
|  | return alloc; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) | 
|  | { | 
|  | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) | 
|  | { | 
|  | phys_addr_t res = memblock_alloc_nid(size, align, nid); | 
|  |  | 
|  | if (res) | 
|  | return res; | 
|  | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remaining API functions | 
|  | */ | 
|  |  | 
|  | phys_addr_t __init memblock_phys_mem_size(void) | 
|  | { | 
|  | return memblock.memory.total_size; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) | 
|  | { | 
|  | unsigned long pages = 0; | 
|  | struct memblock_region *r; | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | for_each_memblock(memory, r) { | 
|  | start_pfn = memblock_region_memory_base_pfn(r); | 
|  | end_pfn = memblock_region_memory_end_pfn(r); | 
|  | start_pfn = min_t(unsigned long, start_pfn, limit_pfn); | 
|  | end_pfn = min_t(unsigned long, end_pfn, limit_pfn); | 
|  | pages += end_pfn - start_pfn; | 
|  | } | 
|  |  | 
|  | return (phys_addr_t)pages << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* lowest address */ | 
|  | phys_addr_t __init_memblock memblock_start_of_DRAM(void) | 
|  | { | 
|  | return memblock.memory.regions[0].base; | 
|  | } | 
|  |  | 
|  | phys_addr_t __init_memblock memblock_end_of_DRAM(void) | 
|  | { | 
|  | int idx = memblock.memory.cnt - 1; | 
|  |  | 
|  | return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); | 
|  | } | 
|  |  | 
|  | void __init memblock_enforce_memory_limit(phys_addr_t limit) | 
|  | { | 
|  | unsigned long i; | 
|  | phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; | 
|  |  | 
|  | if (!limit) | 
|  | return; | 
|  |  | 
|  | /* find out max address */ | 
|  | for (i = 0; i < memblock.memory.cnt; i++) { | 
|  | struct memblock_region *r = &memblock.memory.regions[i]; | 
|  |  | 
|  | if (limit <= r->size) { | 
|  | max_addr = r->base + limit; | 
|  | break; | 
|  | } | 
|  | limit -= r->size; | 
|  | } | 
|  |  | 
|  | /* truncate both memory and reserved regions */ | 
|  | __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); | 
|  | __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); | 
|  | } | 
|  |  | 
|  | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) | 
|  | { | 
|  | unsigned int left = 0, right = type->cnt; | 
|  |  | 
|  | do { | 
|  | unsigned int mid = (right + left) / 2; | 
|  |  | 
|  | if (addr < type->regions[mid].base) | 
|  | right = mid; | 
|  | else if (addr >= (type->regions[mid].base + | 
|  | type->regions[mid].size)) | 
|  | left = mid + 1; | 
|  | else | 
|  | return mid; | 
|  | } while (left < right); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int __init memblock_is_reserved(phys_addr_t addr) | 
|  | { | 
|  | return memblock_search(&memblock.reserved, addr) != -1; | 
|  | } | 
|  |  | 
|  | int __init_memblock memblock_is_memory(phys_addr_t addr) | 
|  | { | 
|  | return memblock_search(&memblock.memory, addr) != -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_is_region_memory - check if a region is a subset of memory | 
|  | * @base: base of region to check | 
|  | * @size: size of region to check | 
|  | * | 
|  | * Check if the region [@base, @base+@size) is a subset of a memory block. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 if false, non-zero if true | 
|  | */ | 
|  | int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | int idx = memblock_search(&memblock.memory, base); | 
|  | phys_addr_t end = base + memblock_cap_size(base, &size); | 
|  |  | 
|  | if (idx == -1) | 
|  | return 0; | 
|  | return memblock.memory.regions[idx].base <= base && | 
|  | (memblock.memory.regions[idx].base + | 
|  | memblock.memory.regions[idx].size) >= end; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memblock_is_region_reserved - check if a region intersects reserved memory | 
|  | * @base: base of region to check | 
|  | * @size: size of region to check | 
|  | * | 
|  | * Check if the region [@base, @base+@size) intersects a reserved memory block. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 if false, non-zero if true | 
|  | */ | 
|  | int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | memblock_cap_size(base, &size); | 
|  | return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; | 
|  | } | 
|  |  | 
|  | void __init_memblock memblock_trim_memory(phys_addr_t align) | 
|  | { | 
|  | int i; | 
|  | phys_addr_t start, end, orig_start, orig_end; | 
|  | struct memblock_type *mem = &memblock.memory; | 
|  |  | 
|  | for (i = 0; i < mem->cnt; i++) { | 
|  | orig_start = mem->regions[i].base; | 
|  | orig_end = mem->regions[i].base + mem->regions[i].size; | 
|  | start = round_up(orig_start, align); | 
|  | end = round_down(orig_end, align); | 
|  |  | 
|  | if (start == orig_start && end == orig_end) | 
|  | continue; | 
|  |  | 
|  | if (start < end) { | 
|  | mem->regions[i].base = start; | 
|  | mem->regions[i].size = end - start; | 
|  | } else { | 
|  | memblock_remove_region(mem, i); | 
|  | i--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init_memblock memblock_set_current_limit(phys_addr_t limit) | 
|  | { | 
|  | memblock.current_limit = limit; | 
|  | } | 
|  |  | 
|  | static void __init_memblock memblock_dump(struct memblock_type *type, char *name) | 
|  | { | 
|  | unsigned long long base, size; | 
|  | int i; | 
|  |  | 
|  | pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt); | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | struct memblock_region *rgn = &type->regions[i]; | 
|  | char nid_buf[32] = ""; | 
|  |  | 
|  | base = rgn->base; | 
|  | size = rgn->size; | 
|  | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
|  | if (memblock_get_region_node(rgn) != MAX_NUMNODES) | 
|  | snprintf(nid_buf, sizeof(nid_buf), " on node %d", | 
|  | memblock_get_region_node(rgn)); | 
|  | #endif | 
|  | pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", | 
|  | name, i, base, base + size - 1, size, nid_buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init_memblock __memblock_dump_all(void) | 
|  | { | 
|  | pr_info("MEMBLOCK configuration:\n"); | 
|  | pr_info(" memory size = %#llx reserved size = %#llx\n", | 
|  | (unsigned long long)memblock.memory.total_size, | 
|  | (unsigned long long)memblock.reserved.total_size); | 
|  |  | 
|  | memblock_dump(&memblock.memory, "memory"); | 
|  | memblock_dump(&memblock.reserved, "reserved"); | 
|  | } | 
|  |  | 
|  | void __init memblock_allow_resize(void) | 
|  | { | 
|  | memblock_can_resize = 1; | 
|  | } | 
|  |  | 
|  | static int __init early_memblock(char *p) | 
|  | { | 
|  | if (p && strstr(p, "debug")) | 
|  | memblock_debug = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("memblock", early_memblock); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) | 
|  |  | 
|  | static int memblock_debug_show(struct seq_file *m, void *private) | 
|  | { | 
|  | struct memblock_type *type = m->private; | 
|  | struct memblock_region *reg; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < type->cnt; i++) { | 
|  | reg = &type->regions[i]; | 
|  | seq_printf(m, "%4d: ", i); | 
|  | if (sizeof(phys_addr_t) == 4) | 
|  | seq_printf(m, "0x%08lx..0x%08lx\n", | 
|  | (unsigned long)reg->base, | 
|  | (unsigned long)(reg->base + reg->size - 1)); | 
|  | else | 
|  | seq_printf(m, "0x%016llx..0x%016llx\n", | 
|  | (unsigned long long)reg->base, | 
|  | (unsigned long long)(reg->base + reg->size - 1)); | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memblock_debug_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, memblock_debug_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations memblock_debug_fops = { | 
|  | .open = memblock_debug_open, | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | static int __init memblock_init_debugfs(void) | 
|  | { | 
|  | struct dentry *root = debugfs_create_dir("memblock", NULL); | 
|  | if (!root) | 
|  | return -ENXIO; | 
|  | debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); | 
|  | debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __initcall(memblock_init_debugfs); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_FS */ |