blob: c63d5545fc2ab42204393068eefa4a3782bfb674 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
// Copyright (c) 2017-20 Linaro Limited.
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/i2c.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#define CCI_HW_VERSION 0x0
#define CCI_RESET_CMD 0x004
#define CCI_RESET_CMD_MASK 0x0f73f3f7
#define CCI_RESET_CMD_M0_MASK 0x000003f1
#define CCI_RESET_CMD_M1_MASK 0x0003f001
#define CCI_QUEUE_START 0x008
#define CCI_HALT_REQ 0x034
#define CCI_HALT_REQ_I2C_M0_Q0Q1 BIT(0)
#define CCI_HALT_REQ_I2C_M1_Q0Q1 BIT(1)
#define CCI_I2C_Mm_SCL_CTL(m) (0x100 + 0x100 * (m))
#define CCI_I2C_Mm_SDA_CTL_0(m) (0x104 + 0x100 * (m))
#define CCI_I2C_Mm_SDA_CTL_1(m) (0x108 + 0x100 * (m))
#define CCI_I2C_Mm_SDA_CTL_2(m) (0x10c + 0x100 * (m))
#define CCI_I2C_Mm_MISC_CTL(m) (0x110 + 0x100 * (m))
#define CCI_I2C_Mm_READ_DATA(m) (0x118 + 0x100 * (m))
#define CCI_I2C_Mm_READ_BUF_LEVEL(m) (0x11c + 0x100 * (m))
#define CCI_I2C_Mm_Qn_EXEC_WORD_CNT(m, n) (0x300 + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_CUR_WORD_CNT(m, n) (0x304 + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_CUR_CMD(m, n) (0x308 + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_REPORT_STATUS(m, n) (0x30c + 0x200 * (m) + 0x100 * (n))
#define CCI_I2C_Mm_Qn_LOAD_DATA(m, n) (0x310 + 0x200 * (m) + 0x100 * (n))
#define CCI_IRQ_GLOBAL_CLEAR_CMD 0xc00
#define CCI_IRQ_MASK_0 0xc04
#define CCI_IRQ_MASK_0_I2C_M0_RD_DONE BIT(0)
#define CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT BIT(4)
#define CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT BIT(8)
#define CCI_IRQ_MASK_0_I2C_M1_RD_DONE BIT(12)
#define CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT BIT(16)
#define CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT BIT(20)
#define CCI_IRQ_MASK_0_RST_DONE_ACK BIT(24)
#define CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK BIT(25)
#define CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK BIT(26)
#define CCI_IRQ_MASK_0_I2C_M0_ERROR 0x18000ee6
#define CCI_IRQ_MASK_0_I2C_M1_ERROR 0x60ee6000
#define CCI_IRQ_CLEAR_0 0xc08
#define CCI_IRQ_STATUS_0 0xc0c
#define CCI_IRQ_STATUS_0_I2C_M0_RD_DONE BIT(0)
#define CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT BIT(4)
#define CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT BIT(8)
#define CCI_IRQ_STATUS_0_I2C_M1_RD_DONE BIT(12)
#define CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT BIT(16)
#define CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT BIT(20)
#define CCI_IRQ_STATUS_0_RST_DONE_ACK BIT(24)
#define CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK BIT(25)
#define CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK BIT(26)
#define CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR BIT(27)
#define CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR BIT(28)
#define CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR BIT(29)
#define CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR BIT(30)
#define CCI_IRQ_STATUS_0_I2C_M0_ERROR 0x18000ee6
#define CCI_IRQ_STATUS_0_I2C_M1_ERROR 0x60ee6000
#define CCI_TIMEOUT (msecs_to_jiffies(100))
#define NUM_MASTERS 2
#define NUM_QUEUES 2
/* Max number of resources + 1 for a NULL terminator */
#define CCI_RES_MAX 6
#define CCI_I2C_SET_PARAM 1
#define CCI_I2C_REPORT 8
#define CCI_I2C_WRITE 9
#define CCI_I2C_READ 10
#define CCI_I2C_REPORT_IRQ_EN BIT(8)
enum {
I2C_MODE_STANDARD,
I2C_MODE_FAST,
I2C_MODE_FAST_PLUS,
};
enum cci_i2c_queue_t {
QUEUE_0,
QUEUE_1
};
struct hw_params {
u16 thigh; /* HIGH period of the SCL clock in clock ticks */
u16 tlow; /* LOW period of the SCL clock */
u16 tsu_sto; /* set-up time for STOP condition */
u16 tsu_sta; /* set-up time for a repeated START condition */
u16 thd_dat; /* data hold time */
u16 thd_sta; /* hold time (repeated) START condition */
u16 tbuf; /* bus free time between a STOP and START condition */
u8 scl_stretch_en;
u16 trdhld;
u16 tsp; /* pulse width of spikes suppressed by the input filter */
};
struct cci;
struct cci_master {
struct i2c_adapter adap;
u16 master;
u8 mode;
int status;
struct completion irq_complete;
struct cci *cci;
};
struct cci_data {
unsigned int num_masters;
struct i2c_adapter_quirks quirks;
u16 queue_size[NUM_QUEUES];
unsigned long cci_clk_rate;
struct hw_params params[3];
};
struct cci {
struct device *dev;
void __iomem *base;
unsigned int irq;
const struct cci_data *data;
struct clk_bulk_data *clocks;
int nclocks;
struct cci_master master[NUM_MASTERS];
};
static irqreturn_t cci_isr(int irq, void *dev)
{
struct cci *cci = dev;
u32 val, reset = 0;
int ret = IRQ_NONE;
val = readl(cci->base + CCI_IRQ_STATUS_0);
writel(val, cci->base + CCI_IRQ_CLEAR_0);
writel(0x1, cci->base + CCI_IRQ_GLOBAL_CLEAR_CMD);
if (val & CCI_IRQ_STATUS_0_RST_DONE_ACK) {
complete(&cci->master[0].irq_complete);
if (cci->master[1].master)
complete(&cci->master[1].irq_complete);
ret = IRQ_HANDLED;
}
if (val & CCI_IRQ_STATUS_0_I2C_M0_RD_DONE ||
val & CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT ||
val & CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT) {
cci->master[0].status = 0;
complete(&cci->master[0].irq_complete);
ret = IRQ_HANDLED;
}
if (val & CCI_IRQ_STATUS_0_I2C_M1_RD_DONE ||
val & CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT ||
val & CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT) {
cci->master[1].status = 0;
complete(&cci->master[1].irq_complete);
ret = IRQ_HANDLED;
}
if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK)) {
reset = CCI_RESET_CMD_M0_MASK;
ret = IRQ_HANDLED;
}
if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK)) {
reset = CCI_RESET_CMD_M1_MASK;
ret = IRQ_HANDLED;
}
if (unlikely(reset))
writel(reset, cci->base + CCI_RESET_CMD);
if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_ERROR)) {
if (val & CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR ||
val & CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR)
cci->master[0].status = -ENXIO;
else
cci->master[0].status = -EIO;
writel(CCI_HALT_REQ_I2C_M0_Q0Q1, cci->base + CCI_HALT_REQ);
ret = IRQ_HANDLED;
}
if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_ERROR)) {
if (val & CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR ||
val & CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR)
cci->master[1].status = -ENXIO;
else
cci->master[1].status = -EIO;
writel(CCI_HALT_REQ_I2C_M1_Q0Q1, cci->base + CCI_HALT_REQ);
ret = IRQ_HANDLED;
}
return ret;
}
static int cci_halt(struct cci *cci, u8 master_num)
{
struct cci_master *master;
u32 val;
if (master_num >= cci->data->num_masters) {
dev_err(cci->dev, "Unsupported master idx (%u)\n", master_num);
return -EINVAL;
}
val = BIT(master_num);
master = &cci->master[master_num];
reinit_completion(&master->irq_complete);
writel(val, cci->base + CCI_HALT_REQ);
if (!wait_for_completion_timeout(&master->irq_complete, CCI_TIMEOUT)) {
dev_err(cci->dev, "CCI halt timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int cci_reset(struct cci *cci)
{
/*
* we reset the whole controller, here and for implicity use
* master[0].xxx for waiting on it.
*/
reinit_completion(&cci->master[0].irq_complete);
writel(CCI_RESET_CMD_MASK, cci->base + CCI_RESET_CMD);
if (!wait_for_completion_timeout(&cci->master[0].irq_complete,
CCI_TIMEOUT)) {
dev_err(cci->dev, "CCI reset timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int cci_init(struct cci *cci)
{
u32 val = CCI_IRQ_MASK_0_I2C_M0_RD_DONE |
CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT |
CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT |
CCI_IRQ_MASK_0_I2C_M1_RD_DONE |
CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT |
CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT |
CCI_IRQ_MASK_0_RST_DONE_ACK |
CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK |
CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK |
CCI_IRQ_MASK_0_I2C_M0_ERROR |
CCI_IRQ_MASK_0_I2C_M1_ERROR;
int i;
writel(val, cci->base + CCI_IRQ_MASK_0);
for (i = 0; i < cci->data->num_masters; i++) {
int mode = cci->master[i].mode;
const struct hw_params *hw;
if (!cci->master[i].cci)
continue;
hw = &cci->data->params[mode];
val = hw->thigh << 16 | hw->tlow;
writel(val, cci->base + CCI_I2C_Mm_SCL_CTL(i));
val = hw->tsu_sto << 16 | hw->tsu_sta;
writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_0(i));
val = hw->thd_dat << 16 | hw->thd_sta;
writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_1(i));
val = hw->tbuf;
writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_2(i));
val = hw->scl_stretch_en << 8 | hw->trdhld << 4 | hw->tsp;
writel(val, cci->base + CCI_I2C_Mm_MISC_CTL(i));
}
return 0;
}
static int cci_run_queue(struct cci *cci, u8 master, u8 queue)
{
u32 val;
val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue));
writel(val, cci->base + CCI_I2C_Mm_Qn_EXEC_WORD_CNT(master, queue));
reinit_completion(&cci->master[master].irq_complete);
val = BIT(master * 2 + queue);
writel(val, cci->base + CCI_QUEUE_START);
if (!wait_for_completion_timeout(&cci->master[master].irq_complete,
CCI_TIMEOUT)) {
dev_err(cci->dev, "master %d queue %d timeout\n",
master, queue);
cci_reset(cci);
cci_init(cci);
return -ETIMEDOUT;
}
return cci->master[master].status;
}
static int cci_validate_queue(struct cci *cci, u8 master, u8 queue)
{
u32 val;
val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue));
if (val == cci->data->queue_size[queue])
return -EINVAL;
if (!val)
return 0;
val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN;
writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
return cci_run_queue(cci, master, queue);
}
static int cci_i2c_read(struct cci *cci, u16 master,
u16 addr, u8 *buf, u16 len)
{
u32 val, words_read, words_exp;
u8 queue = QUEUE_1;
int i, index = 0, ret;
bool first = true;
/*
* Call validate queue to make sure queue is empty before starting.
* This is to avoid overflow / underflow of queue.
*/
ret = cci_validate_queue(cci, master, queue);
if (ret < 0)
return ret;
val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4;
writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
val = CCI_I2C_READ | len << 4;
writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
ret = cci_run_queue(cci, master, queue);
if (ret < 0)
return ret;
words_read = readl(cci->base + CCI_I2C_Mm_READ_BUF_LEVEL(master));
words_exp = len / 4 + 1;
if (words_read != words_exp) {
dev_err(cci->dev, "words read = %d, words expected = %d\n",
words_read, words_exp);
return -EIO;
}
do {
val = readl(cci->base + CCI_I2C_Mm_READ_DATA(master));
for (i = 0; i < 4 && index < len; i++) {
if (first) {
/* The LS byte of this register represents the
* first byte read from the slave during a read
* access.
*/
first = false;
continue;
}
buf[index++] = (val >> (i * 8)) & 0xff;
}
} while (--words_read);
return 0;
}
static int cci_i2c_write(struct cci *cci, u16 master,
u16 addr, u8 *buf, u16 len)
{
u8 queue = QUEUE_0;
u8 load[12] = { 0 };
int i = 0, j, ret;
u32 val;
/*
* Call validate queue to make sure queue is empty before starting.
* This is to avoid overflow / underflow of queue.
*/
ret = cci_validate_queue(cci, master, queue);
if (ret < 0)
return ret;
val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4;
writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
load[i++] = CCI_I2C_WRITE | len << 4;
for (j = 0; j < len; j++)
load[i++] = buf[j];
for (j = 0; j < i; j += 4) {
val = load[j];
val |= load[j + 1] << 8;
val |= load[j + 2] << 16;
val |= load[j + 3] << 24;
writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
}
val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN;
writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
return cci_run_queue(cci, master, queue);
}
static int cci_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct cci_master *cci_master = i2c_get_adapdata(adap);
struct cci *cci = cci_master->cci;
int i, ret;
ret = pm_runtime_get_sync(cci->dev);
if (ret < 0)
goto err;
for (i = 0; i < num; i++) {
if (msgs[i].flags & I2C_M_RD)
ret = cci_i2c_read(cci, cci_master->master,
msgs[i].addr, msgs[i].buf,
msgs[i].len);
else
ret = cci_i2c_write(cci, cci_master->master,
msgs[i].addr, msgs[i].buf,
msgs[i].len);
if (ret < 0)
break;
}
if (!ret)
ret = num;
err:
pm_runtime_mark_last_busy(cci->dev);
pm_runtime_put_autosuspend(cci->dev);
return ret;
}
static u32 cci_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm cci_algo = {
.master_xfer = cci_xfer,
.functionality = cci_func,
};
static int cci_enable_clocks(struct cci *cci)
{
return clk_bulk_prepare_enable(cci->nclocks, cci->clocks);
}
static void cci_disable_clocks(struct cci *cci)
{
clk_bulk_disable_unprepare(cci->nclocks, cci->clocks);
}
static int __maybe_unused cci_suspend_runtime(struct device *dev)
{
struct cci *cci = dev_get_drvdata(dev);
cci_disable_clocks(cci);
return 0;
}
static int __maybe_unused cci_resume_runtime(struct device *dev)
{
struct cci *cci = dev_get_drvdata(dev);
int ret;
ret = cci_enable_clocks(cci);
if (ret)
return ret;
cci_init(cci);
return 0;
}
static int __maybe_unused cci_suspend(struct device *dev)
{
if (!pm_runtime_suspended(dev))
return cci_suspend_runtime(dev);
return 0;
}
static int __maybe_unused cci_resume(struct device *dev)
{
cci_resume_runtime(dev);
pm_runtime_mark_last_busy(dev);
pm_request_autosuspend(dev);
return 0;
}
static const struct dev_pm_ops qcom_cci_pm = {
SET_SYSTEM_SLEEP_PM_OPS(cci_suspend, cci_resume)
SET_RUNTIME_PM_OPS(cci_suspend_runtime, cci_resume_runtime, NULL)
};
static int cci_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
unsigned long cci_clk_rate = 0;
struct device_node *child;
struct resource *r;
struct cci *cci;
int ret, i;
u32 val;
cci = devm_kzalloc(dev, sizeof(*cci), GFP_KERNEL);
if (!cci)
return -ENOMEM;
cci->dev = dev;
platform_set_drvdata(pdev, cci);
cci->data = device_get_match_data(dev);
if (!cci->data)
return -ENOENT;
for_each_available_child_of_node(dev->of_node, child) {
u32 idx;
ret = of_property_read_u32(child, "reg", &idx);
if (ret) {
dev_err(dev, "%pOF invalid 'reg' property", child);
continue;
}
if (idx >= cci->data->num_masters) {
dev_err(dev, "%pOF invalid 'reg' value: %u (max is %u)",
child, idx, cci->data->num_masters - 1);
continue;
}
cci->master[idx].adap.quirks = &cci->data->quirks;
cci->master[idx].adap.algo = &cci_algo;
cci->master[idx].adap.dev.parent = dev;
cci->master[idx].adap.dev.of_node = child;
cci->master[idx].master = idx;
cci->master[idx].cci = cci;
i2c_set_adapdata(&cci->master[idx].adap, &cci->master[idx]);
snprintf(cci->master[idx].adap.name,
sizeof(cci->master[idx].adap.name), "Qualcomm-CCI");
cci->master[idx].mode = I2C_MODE_STANDARD;
ret = of_property_read_u32(child, "clock-frequency", &val);
if (!ret) {
if (val == I2C_MAX_FAST_MODE_FREQ)
cci->master[idx].mode = I2C_MODE_FAST;
else if (val == I2C_MAX_FAST_MODE_PLUS_FREQ)
cci->master[idx].mode = I2C_MODE_FAST_PLUS;
}
init_completion(&cci->master[idx].irq_complete);
}
/* Memory */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cci->base = devm_ioremap_resource(dev, r);
if (IS_ERR(cci->base))
return PTR_ERR(cci->base);
/* Clocks */
ret = devm_clk_bulk_get_all(dev, &cci->clocks);
if (ret < 1) {
dev_err(dev, "failed to get clocks %d\n", ret);
return ret;
}
cci->nclocks = ret;
/* Retrieve CCI clock rate */
for (i = 0; i < cci->nclocks; i++) {
if (!strcmp(cci->clocks[i].id, "cci")) {
cci_clk_rate = clk_get_rate(cci->clocks[i].clk);
break;
}
}
if (cci_clk_rate != cci->data->cci_clk_rate) {
/* cci clock set by the bootloader or via assigned clock rate
* in DT.
*/
dev_warn(dev, "Found %lu cci clk rate while %lu was expected\n",
cci_clk_rate, cci->data->cci_clk_rate);
}
ret = cci_enable_clocks(cci);
if (ret < 0)
return ret;
/* Interrupt */
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto disable_clocks;
cci->irq = ret;
ret = devm_request_irq(dev, cci->irq, cci_isr, 0, dev_name(dev), cci);
if (ret < 0) {
dev_err(dev, "request_irq failed, ret: %d\n", ret);
goto disable_clocks;
}
val = readl(cci->base + CCI_HW_VERSION);
dev_dbg(dev, "CCI HW version = 0x%08x", val);
ret = cci_reset(cci);
if (ret < 0)
goto error;
ret = cci_init(cci);
if (ret < 0)
goto error;
for (i = 0; i < cci->data->num_masters; i++) {
if (!cci->master[i].cci)
continue;
ret = i2c_add_adapter(&cci->master[i].adap);
if (ret < 0)
goto error_i2c;
}
pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
error_i2c:
for (; i >= 0; i--) {
if (cci->master[i].cci)
i2c_del_adapter(&cci->master[i].adap);
}
error:
disable_irq(cci->irq);
disable_clocks:
cci_disable_clocks(cci);
return ret;
}
static int cci_remove(struct platform_device *pdev)
{
struct cci *cci = platform_get_drvdata(pdev);
int i;
for (i = 0; i < cci->data->num_masters; i++) {
if (cci->master[i].cci)
i2c_del_adapter(&cci->master[i].adap);
cci_halt(cci, i);
}
disable_irq(cci->irq);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
return 0;
}
static const struct cci_data cci_v1_data = {
.num_masters = 1,
.queue_size = { 64, 16 },
.quirks = {
.max_write_len = 10,
.max_read_len = 12,
},
.cci_clk_rate = 19200000,
.params[I2C_MODE_STANDARD] = {
.thigh = 78,
.tlow = 114,
.tsu_sto = 28,
.tsu_sta = 28,
.thd_dat = 10,
.thd_sta = 77,
.tbuf = 118,
.scl_stretch_en = 0,
.trdhld = 6,
.tsp = 1
},
.params[I2C_MODE_FAST] = {
.thigh = 20,
.tlow = 28,
.tsu_sto = 21,
.tsu_sta = 21,
.thd_dat = 13,
.thd_sta = 18,
.tbuf = 32,
.scl_stretch_en = 0,
.trdhld = 6,
.tsp = 3
},
};
static const struct cci_data cci_v2_data = {
.num_masters = 2,
.queue_size = { 64, 16 },
.quirks = {
.max_write_len = 11,
.max_read_len = 12,
},
.cci_clk_rate = 37500000,
.params[I2C_MODE_STANDARD] = {
.thigh = 201,
.tlow = 174,
.tsu_sto = 204,
.tsu_sta = 231,
.thd_dat = 22,
.thd_sta = 162,
.tbuf = 227,
.scl_stretch_en = 0,
.trdhld = 6,
.tsp = 3
},
.params[I2C_MODE_FAST] = {
.thigh = 38,
.tlow = 56,
.tsu_sto = 40,
.tsu_sta = 40,
.thd_dat = 22,
.thd_sta = 35,
.tbuf = 62,
.scl_stretch_en = 0,
.trdhld = 6,
.tsp = 3
},
.params[I2C_MODE_FAST_PLUS] = {
.thigh = 16,
.tlow = 22,
.tsu_sto = 17,
.tsu_sta = 18,
.thd_dat = 16,
.thd_sta = 15,
.tbuf = 24,
.scl_stretch_en = 0,
.trdhld = 3,
.tsp = 3
},
};
static const struct of_device_id cci_dt_match[] = {
{ .compatible = "qcom,msm8916-cci", .data = &cci_v1_data},
{ .compatible = "qcom,msm8996-cci", .data = &cci_v2_data},
{ .compatible = "qcom,sdm845-cci", .data = &cci_v2_data},
{}
};
MODULE_DEVICE_TABLE(of, cci_dt_match);
static struct platform_driver qcom_cci_driver = {
.probe = cci_probe,
.remove = cci_remove,
.driver = {
.name = "i2c-qcom-cci",
.of_match_table = cci_dt_match,
.pm = &qcom_cci_pm,
},
};
module_platform_driver(qcom_cci_driver);
MODULE_DESCRIPTION("Qualcomm Camera Control Interface driver");
MODULE_AUTHOR("Todor Tomov <todor.tomov@linaro.org>");
MODULE_AUTHOR("Loic Poulain <loic.poulain@linaro.org>");
MODULE_LICENSE("GPL v2");