| /* |
| * Copyright (c) 2005 Voltaire Inc. All rights reserved. |
| * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. |
| * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. |
| * Copyright (c) 2005 Intel Corporation. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/mutex.h> |
| #include <linux/inetdevice.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/module.h> |
| #include <net/arp.h> |
| #include <net/neighbour.h> |
| #include <net/route.h> |
| #include <net/netevent.h> |
| #include <net/ipv6_stubs.h> |
| #include <net/ip6_route.h> |
| #include <rdma/ib_addr.h> |
| #include <rdma/ib_cache.h> |
| #include <rdma/ib_sa.h> |
| #include <rdma/ib.h> |
| #include <rdma/rdma_netlink.h> |
| #include <net/netlink.h> |
| |
| #include "core_priv.h" |
| |
| struct addr_req { |
| struct list_head list; |
| struct sockaddr_storage src_addr; |
| struct sockaddr_storage dst_addr; |
| struct rdma_dev_addr *addr; |
| void *context; |
| void (*callback)(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *addr, void *context); |
| unsigned long timeout; |
| struct delayed_work work; |
| bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ |
| int status; |
| u32 seq; |
| }; |
| |
| static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); |
| |
| static DEFINE_SPINLOCK(lock); |
| static LIST_HEAD(req_list); |
| static struct workqueue_struct *addr_wq; |
| |
| static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { |
| [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, |
| .len = sizeof(struct rdma_nla_ls_gid)}, |
| }; |
| |
| static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) |
| { |
| struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; |
| int ret; |
| |
| if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) |
| return false; |
| |
| ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), |
| nlmsg_len(nlh), ib_nl_addr_policy, NULL); |
| if (ret) |
| return false; |
| |
| return true; |
| } |
| |
| static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) |
| { |
| const struct nlattr *head, *curr; |
| union ib_gid gid; |
| struct addr_req *req; |
| int len, rem; |
| int found = 0; |
| |
| head = (const struct nlattr *)nlmsg_data(nlh); |
| len = nlmsg_len(nlh); |
| |
| nla_for_each_attr(curr, head, len, rem) { |
| if (curr->nla_type == LS_NLA_TYPE_DGID) |
| memcpy(&gid, nla_data(curr), nla_len(curr)); |
| } |
| |
| spin_lock_bh(&lock); |
| list_for_each_entry(req, &req_list, list) { |
| if (nlh->nlmsg_seq != req->seq) |
| continue; |
| /* We set the DGID part, the rest was set earlier */ |
| rdma_addr_set_dgid(req->addr, &gid); |
| req->status = 0; |
| found = 1; |
| break; |
| } |
| spin_unlock_bh(&lock); |
| |
| if (!found) |
| pr_info("Couldn't find request waiting for DGID: %pI6\n", |
| &gid); |
| } |
| |
| int ib_nl_handle_ip_res_resp(struct sk_buff *skb, |
| struct nlmsghdr *nlh, |
| struct netlink_ext_ack *extack) |
| { |
| if ((nlh->nlmsg_flags & NLM_F_REQUEST) || |
| !(NETLINK_CB(skb).sk)) |
| return -EPERM; |
| |
| if (ib_nl_is_good_ip_resp(nlh)) |
| ib_nl_process_good_ip_rsep(nlh); |
| |
| return 0; |
| } |
| |
| static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, |
| const void *daddr, |
| u32 seq, u16 family) |
| { |
| struct sk_buff *skb = NULL; |
| struct nlmsghdr *nlh; |
| struct rdma_ls_ip_resolve_header *header; |
| void *data; |
| size_t size; |
| int attrtype; |
| int len; |
| |
| if (family == AF_INET) { |
| size = sizeof(struct in_addr); |
| attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; |
| } else { |
| size = sizeof(struct in6_addr); |
| attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; |
| } |
| |
| len = nla_total_size(sizeof(size)); |
| len += NLMSG_ALIGN(sizeof(*header)); |
| |
| skb = nlmsg_new(len, GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, |
| RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); |
| if (!data) { |
| nlmsg_free(skb); |
| return -ENODATA; |
| } |
| |
| /* Construct the family header first */ |
| header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); |
| header->ifindex = dev_addr->bound_dev_if; |
| nla_put(skb, attrtype, size, daddr); |
| |
| /* Repair the nlmsg header length */ |
| nlmsg_end(skb, nlh); |
| rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL); |
| |
| /* Make the request retry, so when we get the response from userspace |
| * we will have something. |
| */ |
| return -ENODATA; |
| } |
| |
| int rdma_addr_size(const struct sockaddr *addr) |
| { |
| switch (addr->sa_family) { |
| case AF_INET: |
| return sizeof(struct sockaddr_in); |
| case AF_INET6: |
| return sizeof(struct sockaddr_in6); |
| case AF_IB: |
| return sizeof(struct sockaddr_ib); |
| default: |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL(rdma_addr_size); |
| |
| int rdma_addr_size_in6(struct sockaddr_in6 *addr) |
| { |
| int ret = rdma_addr_size((struct sockaddr *) addr); |
| |
| return ret <= sizeof(*addr) ? ret : 0; |
| } |
| EXPORT_SYMBOL(rdma_addr_size_in6); |
| |
| int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) |
| { |
| int ret = rdma_addr_size((struct sockaddr *) addr); |
| |
| return ret <= sizeof(*addr) ? ret : 0; |
| } |
| EXPORT_SYMBOL(rdma_addr_size_kss); |
| |
| /** |
| * rdma_copy_src_l2_addr - Copy netdevice source addresses |
| * @dev_addr: Destination address pointer where to copy the addresses |
| * @dev: Netdevice whose source addresses to copy |
| * |
| * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. |
| * This includes unicast address, broadcast address, device type and |
| * interface index. |
| */ |
| void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, |
| const struct net_device *dev) |
| { |
| dev_addr->dev_type = dev->type; |
| memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); |
| memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); |
| dev_addr->bound_dev_if = dev->ifindex; |
| } |
| EXPORT_SYMBOL(rdma_copy_src_l2_addr); |
| |
| static struct net_device * |
| rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) |
| { |
| struct net_device *dev = NULL; |
| int ret = -EADDRNOTAVAIL; |
| |
| switch (src_in->sa_family) { |
| case AF_INET: |
| dev = __ip_dev_find(net, |
| ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, |
| false); |
| if (dev) |
| ret = 0; |
| break; |
| #if IS_ENABLED(CONFIG_IPV6) |
| case AF_INET6: |
| for_each_netdev_rcu(net, dev) { |
| if (ipv6_chk_addr(net, |
| &((const struct sockaddr_in6 *)src_in)->sin6_addr, |
| dev, 1)) { |
| ret = 0; |
| break; |
| } |
| } |
| break; |
| #endif |
| } |
| return ret ? ERR_PTR(ret) : dev; |
| } |
| |
| int rdma_translate_ip(const struct sockaddr *addr, |
| struct rdma_dev_addr *dev_addr) |
| { |
| struct net_device *dev; |
| |
| if (dev_addr->bound_dev_if) { |
| dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); |
| if (!dev) |
| return -ENODEV; |
| rdma_copy_src_l2_addr(dev_addr, dev); |
| dev_put(dev); |
| return 0; |
| } |
| |
| rcu_read_lock(); |
| dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); |
| if (!IS_ERR(dev)) |
| rdma_copy_src_l2_addr(dev_addr, dev); |
| rcu_read_unlock(); |
| return PTR_ERR_OR_ZERO(dev); |
| } |
| EXPORT_SYMBOL(rdma_translate_ip); |
| |
| static void set_timeout(struct addr_req *req, unsigned long time) |
| { |
| unsigned long delay; |
| |
| delay = time - jiffies; |
| if ((long)delay < 0) |
| delay = 0; |
| |
| mod_delayed_work(addr_wq, &req->work, delay); |
| } |
| |
| static void queue_req(struct addr_req *req) |
| { |
| spin_lock_bh(&lock); |
| list_add_tail(&req->list, &req_list); |
| set_timeout(req, req->timeout); |
| spin_unlock_bh(&lock); |
| } |
| |
| static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, |
| const void *daddr, u32 seq, u16 family) |
| { |
| if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) |
| return -EADDRNOTAVAIL; |
| |
| return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); |
| } |
| |
| static int dst_fetch_ha(const struct dst_entry *dst, |
| struct rdma_dev_addr *dev_addr, |
| const void *daddr) |
| { |
| struct neighbour *n; |
| int ret = 0; |
| |
| n = dst_neigh_lookup(dst, daddr); |
| if (!n) |
| return -ENODATA; |
| |
| if (!(n->nud_state & NUD_VALID)) { |
| neigh_event_send(n, NULL); |
| ret = -ENODATA; |
| } else { |
| neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev); |
| } |
| |
| neigh_release(n); |
| |
| return ret; |
| } |
| |
| static bool has_gateway(const struct dst_entry *dst, sa_family_t family) |
| { |
| struct rtable *rt; |
| struct rt6_info *rt6; |
| |
| if (family == AF_INET) { |
| rt = container_of(dst, struct rtable, dst); |
| return rt->rt_uses_gateway; |
| } |
| |
| rt6 = container_of(dst, struct rt6_info, dst); |
| return rt6->rt6i_flags & RTF_GATEWAY; |
| } |
| |
| static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, |
| const struct sockaddr *dst_in, u32 seq) |
| { |
| const struct sockaddr_in *dst_in4 = |
| (const struct sockaddr_in *)dst_in; |
| const struct sockaddr_in6 *dst_in6 = |
| (const struct sockaddr_in6 *)dst_in; |
| const void *daddr = (dst_in->sa_family == AF_INET) ? |
| (const void *)&dst_in4->sin_addr.s_addr : |
| (const void *)&dst_in6->sin6_addr; |
| sa_family_t family = dst_in->sa_family; |
| |
| might_sleep(); |
| |
| /* If we have a gateway in IB mode then it must be an IB network */ |
| if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) |
| return ib_nl_fetch_ha(dev_addr, daddr, seq, family); |
| else |
| return dst_fetch_ha(dst, dev_addr, daddr); |
| } |
| |
| static int addr4_resolve(struct sockaddr *src_sock, |
| const struct sockaddr *dst_sock, |
| struct rdma_dev_addr *addr, |
| struct rtable **prt) |
| { |
| struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; |
| const struct sockaddr_in *dst_in = |
| (const struct sockaddr_in *)dst_sock; |
| |
| __be32 src_ip = src_in->sin_addr.s_addr; |
| __be32 dst_ip = dst_in->sin_addr.s_addr; |
| struct rtable *rt; |
| struct flowi4 fl4; |
| int ret; |
| |
| memset(&fl4, 0, sizeof(fl4)); |
| fl4.daddr = dst_ip; |
| fl4.saddr = src_ip; |
| fl4.flowi4_oif = addr->bound_dev_if; |
| rt = ip_route_output_key(addr->net, &fl4); |
| ret = PTR_ERR_OR_ZERO(rt); |
| if (ret) |
| return ret; |
| |
| src_in->sin_addr.s_addr = fl4.saddr; |
| |
| addr->hoplimit = ip4_dst_hoplimit(&rt->dst); |
| |
| *prt = rt; |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static int addr6_resolve(struct sockaddr *src_sock, |
| const struct sockaddr *dst_sock, |
| struct rdma_dev_addr *addr, |
| struct dst_entry **pdst) |
| { |
| struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; |
| const struct sockaddr_in6 *dst_in = |
| (const struct sockaddr_in6 *)dst_sock; |
| struct flowi6 fl6; |
| struct dst_entry *dst; |
| |
| memset(&fl6, 0, sizeof fl6); |
| fl6.daddr = dst_in->sin6_addr; |
| fl6.saddr = src_in->sin6_addr; |
| fl6.flowi6_oif = addr->bound_dev_if; |
| |
| dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL); |
| if (IS_ERR(dst)) |
| return PTR_ERR(dst); |
| |
| if (ipv6_addr_any(&src_in->sin6_addr)) |
| src_in->sin6_addr = fl6.saddr; |
| |
| addr->hoplimit = ip6_dst_hoplimit(dst); |
| |
| *pdst = dst; |
| return 0; |
| } |
| #else |
| static int addr6_resolve(struct sockaddr *src_sock, |
| const struct sockaddr *dst_sock, |
| struct rdma_dev_addr *addr, |
| struct dst_entry **pdst) |
| { |
| return -EADDRNOTAVAIL; |
| } |
| #endif |
| |
| static int addr_resolve_neigh(const struct dst_entry *dst, |
| const struct sockaddr *dst_in, |
| struct rdma_dev_addr *addr, |
| unsigned int ndev_flags, |
| u32 seq) |
| { |
| int ret = 0; |
| |
| if (ndev_flags & IFF_LOOPBACK) { |
| memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); |
| } else { |
| if (!(ndev_flags & IFF_NOARP)) { |
| /* If the device doesn't do ARP internally */ |
| ret = fetch_ha(dst, addr, dst_in, seq); |
| } |
| } |
| return ret; |
| } |
| |
| static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr, |
| const struct sockaddr *dst_in, |
| const struct dst_entry *dst, |
| const struct net_device *ndev) |
| { |
| int ret = 0; |
| |
| if (dst->dev->flags & IFF_LOOPBACK) |
| ret = rdma_translate_ip(dst_in, dev_addr); |
| else |
| rdma_copy_src_l2_addr(dev_addr, dst->dev); |
| |
| /* |
| * If there's a gateway and type of device not ARPHRD_INFINIBAND, |
| * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the |
| * network type accordingly. |
| */ |
| if (has_gateway(dst, dst_in->sa_family) && |
| ndev->type != ARPHRD_INFINIBAND) |
| dev_addr->network = dst_in->sa_family == AF_INET ? |
| RDMA_NETWORK_IPV4 : |
| RDMA_NETWORK_IPV6; |
| else |
| dev_addr->network = RDMA_NETWORK_IB; |
| |
| return ret; |
| } |
| |
| static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, |
| unsigned int *ndev_flags, |
| const struct sockaddr *dst_in, |
| const struct dst_entry *dst) |
| { |
| struct net_device *ndev = READ_ONCE(dst->dev); |
| |
| *ndev_flags = ndev->flags; |
| /* A physical device must be the RDMA device to use */ |
| if (ndev->flags & IFF_LOOPBACK) { |
| /* |
| * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or |
| * loopback IP address. So if route is resolved to loopback |
| * interface, translate that to a real ndev based on non |
| * loopback IP address. |
| */ |
| ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); |
| if (IS_ERR(ndev)) |
| return -ENODEV; |
| } |
| |
| return copy_src_l2_addr(dev_addr, dst_in, dst, ndev); |
| } |
| |
| static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) |
| { |
| struct net_device *ndev; |
| |
| ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); |
| if (IS_ERR(ndev)) |
| return PTR_ERR(ndev); |
| |
| /* |
| * Since we are holding the rcu, reading net and ifindex |
| * are safe without any additional reference; because |
| * change_net_namespace() in net/core/dev.c does rcu sync |
| * after it changes the state to IFF_DOWN and before |
| * updating netdev fields {net, ifindex}. |
| */ |
| addr->net = dev_net(ndev); |
| addr->bound_dev_if = ndev->ifindex; |
| return 0; |
| } |
| |
| static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) |
| { |
| addr->net = &init_net; |
| addr->bound_dev_if = 0; |
| } |
| |
| static int addr_resolve(struct sockaddr *src_in, |
| const struct sockaddr *dst_in, |
| struct rdma_dev_addr *addr, |
| bool resolve_neigh, |
| bool resolve_by_gid_attr, |
| u32 seq) |
| { |
| struct dst_entry *dst = NULL; |
| unsigned int ndev_flags = 0; |
| struct rtable *rt = NULL; |
| int ret; |
| |
| if (!addr->net) { |
| pr_warn_ratelimited("%s: missing namespace\n", __func__); |
| return -EINVAL; |
| } |
| |
| rcu_read_lock(); |
| if (resolve_by_gid_attr) { |
| if (!addr->sgid_attr) { |
| rcu_read_unlock(); |
| pr_warn_ratelimited("%s: missing gid_attr\n", __func__); |
| return -EINVAL; |
| } |
| /* |
| * If the request is for a specific gid attribute of the |
| * rdma_dev_addr, derive net from the netdevice of the |
| * GID attribute. |
| */ |
| ret = set_addr_netns_by_gid_rcu(addr); |
| if (ret) { |
| rcu_read_unlock(); |
| return ret; |
| } |
| } |
| if (src_in->sa_family == AF_INET) { |
| ret = addr4_resolve(src_in, dst_in, addr, &rt); |
| dst = &rt->dst; |
| } else { |
| ret = addr6_resolve(src_in, dst_in, addr, &dst); |
| } |
| if (ret) { |
| rcu_read_unlock(); |
| goto done; |
| } |
| ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst); |
| rcu_read_unlock(); |
| |
| /* |
| * Resolve neighbor destination address if requested and |
| * only if src addr translation didn't fail. |
| */ |
| if (!ret && resolve_neigh) |
| ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq); |
| |
| if (src_in->sa_family == AF_INET) |
| ip_rt_put(rt); |
| else |
| dst_release(dst); |
| done: |
| /* |
| * Clear the addr net to go back to its original state, only if it was |
| * derived from GID attribute in this context. |
| */ |
| if (resolve_by_gid_attr) |
| rdma_addr_set_net_defaults(addr); |
| return ret; |
| } |
| |
| static void process_one_req(struct work_struct *_work) |
| { |
| struct addr_req *req; |
| struct sockaddr *src_in, *dst_in; |
| |
| req = container_of(_work, struct addr_req, work.work); |
| |
| if (req->status == -ENODATA) { |
| src_in = (struct sockaddr *)&req->src_addr; |
| dst_in = (struct sockaddr *)&req->dst_addr; |
| req->status = addr_resolve(src_in, dst_in, req->addr, |
| true, req->resolve_by_gid_attr, |
| req->seq); |
| if (req->status && time_after_eq(jiffies, req->timeout)) { |
| req->status = -ETIMEDOUT; |
| } else if (req->status == -ENODATA) { |
| /* requeue the work for retrying again */ |
| spin_lock_bh(&lock); |
| if (!list_empty(&req->list)) |
| set_timeout(req, req->timeout); |
| spin_unlock_bh(&lock); |
| return; |
| } |
| } |
| |
| req->callback(req->status, (struct sockaddr *)&req->src_addr, |
| req->addr, req->context); |
| req->callback = NULL; |
| |
| spin_lock_bh(&lock); |
| if (!list_empty(&req->list)) { |
| /* |
| * Although the work will normally have been canceled by the |
| * workqueue, it can still be requeued as long as it is on the |
| * req_list. |
| */ |
| cancel_delayed_work(&req->work); |
| list_del_init(&req->list); |
| kfree(req); |
| } |
| spin_unlock_bh(&lock); |
| } |
| |
| int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, |
| struct rdma_dev_addr *addr, unsigned long timeout_ms, |
| void (*callback)(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *addr, void *context), |
| bool resolve_by_gid_attr, void *context) |
| { |
| struct sockaddr *src_in, *dst_in; |
| struct addr_req *req; |
| int ret = 0; |
| |
| req = kzalloc(sizeof *req, GFP_KERNEL); |
| if (!req) |
| return -ENOMEM; |
| |
| src_in = (struct sockaddr *) &req->src_addr; |
| dst_in = (struct sockaddr *) &req->dst_addr; |
| |
| if (src_addr) { |
| if (src_addr->sa_family != dst_addr->sa_family) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| memcpy(src_in, src_addr, rdma_addr_size(src_addr)); |
| } else { |
| src_in->sa_family = dst_addr->sa_family; |
| } |
| |
| memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); |
| req->addr = addr; |
| req->callback = callback; |
| req->context = context; |
| req->resolve_by_gid_attr = resolve_by_gid_attr; |
| INIT_DELAYED_WORK(&req->work, process_one_req); |
| req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); |
| |
| req->status = addr_resolve(src_in, dst_in, addr, true, |
| req->resolve_by_gid_attr, req->seq); |
| switch (req->status) { |
| case 0: |
| req->timeout = jiffies; |
| queue_req(req); |
| break; |
| case -ENODATA: |
| req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; |
| queue_req(req); |
| break; |
| default: |
| ret = req->status; |
| goto err; |
| } |
| return ret; |
| err: |
| kfree(req); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_resolve_ip); |
| |
| int roce_resolve_route_from_path(struct sa_path_rec *rec, |
| const struct ib_gid_attr *attr) |
| { |
| union { |
| struct sockaddr _sockaddr; |
| struct sockaddr_in _sockaddr_in; |
| struct sockaddr_in6 _sockaddr_in6; |
| } sgid, dgid; |
| struct rdma_dev_addr dev_addr = {}; |
| int ret; |
| |
| might_sleep(); |
| |
| if (rec->roce.route_resolved) |
| return 0; |
| |
| rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid); |
| rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid); |
| |
| if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) |
| return -EINVAL; |
| |
| if (!attr || !attr->ndev) |
| return -EINVAL; |
| |
| dev_addr.net = &init_net; |
| dev_addr.sgid_attr = attr; |
| |
| ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid, |
| &dev_addr, false, true, 0); |
| if (ret) |
| return ret; |
| |
| if ((dev_addr.network == RDMA_NETWORK_IPV4 || |
| dev_addr.network == RDMA_NETWORK_IPV6) && |
| rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) |
| return -EINVAL; |
| |
| rec->roce.route_resolved = true; |
| return 0; |
| } |
| |
| /** |
| * rdma_addr_cancel - Cancel resolve ip request |
| * @addr: Pointer to address structure given previously |
| * during rdma_resolve_ip(). |
| * rdma_addr_cancel() is synchronous function which cancels any pending |
| * request if there is any. |
| */ |
| void rdma_addr_cancel(struct rdma_dev_addr *addr) |
| { |
| struct addr_req *req, *temp_req; |
| struct addr_req *found = NULL; |
| |
| spin_lock_bh(&lock); |
| list_for_each_entry_safe(req, temp_req, &req_list, list) { |
| if (req->addr == addr) { |
| /* |
| * Removing from the list means we take ownership of |
| * the req |
| */ |
| list_del_init(&req->list); |
| found = req; |
| break; |
| } |
| } |
| spin_unlock_bh(&lock); |
| |
| if (!found) |
| return; |
| |
| /* |
| * sync canceling the work after removing it from the req_list |
| * guarentees no work is running and none will be started. |
| */ |
| cancel_delayed_work_sync(&found->work); |
| kfree(found); |
| } |
| EXPORT_SYMBOL(rdma_addr_cancel); |
| |
| struct resolve_cb_context { |
| struct completion comp; |
| int status; |
| }; |
| |
| static void resolve_cb(int status, struct sockaddr *src_addr, |
| struct rdma_dev_addr *addr, void *context) |
| { |
| ((struct resolve_cb_context *)context)->status = status; |
| complete(&((struct resolve_cb_context *)context)->comp); |
| } |
| |
| int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, |
| const union ib_gid *dgid, |
| u8 *dmac, const struct ib_gid_attr *sgid_attr, |
| int *hoplimit) |
| { |
| struct rdma_dev_addr dev_addr; |
| struct resolve_cb_context ctx; |
| union { |
| struct sockaddr_in _sockaddr_in; |
| struct sockaddr_in6 _sockaddr_in6; |
| } sgid_addr, dgid_addr; |
| int ret; |
| |
| rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid); |
| rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid); |
| |
| memset(&dev_addr, 0, sizeof(dev_addr)); |
| dev_addr.net = &init_net; |
| dev_addr.sgid_attr = sgid_attr; |
| |
| init_completion(&ctx.comp); |
| ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr, |
| (struct sockaddr *)&dgid_addr, &dev_addr, 1000, |
| resolve_cb, true, &ctx); |
| if (ret) |
| return ret; |
| |
| wait_for_completion(&ctx.comp); |
| |
| ret = ctx.status; |
| if (ret) |
| return ret; |
| |
| memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); |
| *hoplimit = dev_addr.hoplimit; |
| return 0; |
| } |
| |
| static int netevent_callback(struct notifier_block *self, unsigned long event, |
| void *ctx) |
| { |
| struct addr_req *req; |
| |
| if (event == NETEVENT_NEIGH_UPDATE) { |
| struct neighbour *neigh = ctx; |
| |
| if (neigh->nud_state & NUD_VALID) { |
| spin_lock_bh(&lock); |
| list_for_each_entry(req, &req_list, list) |
| set_timeout(req, jiffies); |
| spin_unlock_bh(&lock); |
| } |
| } |
| return 0; |
| } |
| |
| static struct notifier_block nb = { |
| .notifier_call = netevent_callback |
| }; |
| |
| int addr_init(void) |
| { |
| addr_wq = alloc_ordered_workqueue("ib_addr", 0); |
| if (!addr_wq) |
| return -ENOMEM; |
| |
| register_netevent_notifier(&nb); |
| |
| return 0; |
| } |
| |
| void addr_cleanup(void) |
| { |
| unregister_netevent_notifier(&nb); |
| destroy_workqueue(addr_wq); |
| WARN_ON(!list_empty(&req_list)); |
| } |