| // SPDX-License-Identifier: GPL-2.0+ |
| // |
| // Linux performance counter support for ARC CPUs. |
| // This code is inspired by the perf support of various other architectures. |
| // |
| // Copyright (C) 2013-2018 Synopsys, Inc. (www.synopsys.com) |
| |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <asm/arcregs.h> |
| #include <asm/stacktrace.h> |
| |
| /* HW holds 8 symbols + one for null terminator */ |
| #define ARCPMU_EVENT_NAME_LEN 9 |
| |
| /* |
| * Some ARC pct quirks: |
| * |
| * PERF_COUNT_HW_STALLED_CYCLES_BACKEND |
| * PERF_COUNT_HW_STALLED_CYCLES_FRONTEND |
| * The ARC 700 can either measure stalls per pipeline stage, or all stalls |
| * combined; for now we assign all stalls to STALLED_CYCLES_BACKEND |
| * and all pipeline flushes (e.g. caused by mispredicts, etc.) to |
| * STALLED_CYCLES_FRONTEND. |
| * |
| * We could start multiple performance counters and combine everything |
| * afterwards, but that makes it complicated. |
| * |
| * Note that I$ cache misses aren't counted by either of the two! |
| */ |
| |
| /* |
| * ARC PCT has hardware conditions with fixed "names" but variable "indexes" |
| * (based on a specific RTL build) |
| * Below is the static map between perf generic/arc specific event_id and |
| * h/w condition names. |
| * At the time of probe, we loop thru each index and find it's name to |
| * complete the mapping of perf event_id to h/w index as latter is needed |
| * to program the counter really |
| */ |
| static const char * const arc_pmu_ev_hw_map[] = { |
| /* count cycles */ |
| [PERF_COUNT_HW_CPU_CYCLES] = "crun", |
| [PERF_COUNT_HW_REF_CPU_CYCLES] = "crun", |
| [PERF_COUNT_HW_BUS_CYCLES] = "crun", |
| |
| [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush", |
| [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall", |
| |
| /* counts condition */ |
| [PERF_COUNT_HW_INSTRUCTIONS] = "iall", |
| /* All jump instructions that are taken */ |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmptak", |
| #ifdef CONFIG_ISA_ARCV2 |
| [PERF_COUNT_HW_BRANCH_MISSES] = "bpmp", |
| #else |
| [PERF_COUNT_ARC_BPOK] = "bpok", /* NP-NT, PT-T, PNT-NT */ |
| [PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", /* NP-T, PT-NT, PNT-T */ |
| #endif |
| [PERF_COUNT_ARC_LDC] = "imemrdc", /* Instr: mem read cached */ |
| [PERF_COUNT_ARC_STC] = "imemwrc", /* Instr: mem write cached */ |
| |
| [PERF_COUNT_ARC_DCLM] = "dclm", /* D-cache Load Miss */ |
| [PERF_COUNT_ARC_DCSM] = "dcsm", /* D-cache Store Miss */ |
| [PERF_COUNT_ARC_ICM] = "icm", /* I-cache Miss */ |
| [PERF_COUNT_ARC_EDTLB] = "edtlb", /* D-TLB Miss */ |
| [PERF_COUNT_ARC_EITLB] = "eitlb", /* I-TLB Miss */ |
| |
| [PERF_COUNT_HW_CACHE_REFERENCES] = "imemrdc", /* Instr: mem read cached */ |
| [PERF_COUNT_HW_CACHE_MISSES] = "dclm", /* D-cache Load Miss */ |
| }; |
| |
| #define C(_x) PERF_COUNT_HW_CACHE_##_x |
| #define CACHE_OP_UNSUPPORTED 0xffff |
| |
| static const unsigned int arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC, |
| [C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = PERF_COUNT_ARC_STC, |
| [C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = PERF_COUNT_HW_INSTRUCTIONS, |
| [C(RESULT_MISS)] = PERF_COUNT_ARC_ICM, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC, |
| [C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB, |
| }, |
| /* DTLB LD/ST Miss not segregated by h/w*/ |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS, |
| [C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| [C(NODE)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| }, |
| }, |
| }; |
| |
| enum arc_pmu_attr_groups { |
| ARCPMU_ATTR_GR_EVENTS, |
| ARCPMU_ATTR_GR_FORMATS, |
| ARCPMU_NR_ATTR_GR |
| }; |
| |
| struct arc_pmu_raw_event_entry { |
| char name[ARCPMU_EVENT_NAME_LEN]; |
| }; |
| |
| struct arc_pmu { |
| struct pmu pmu; |
| unsigned int irq; |
| int n_counters; |
| int n_events; |
| u64 max_period; |
| int ev_hw_idx[PERF_COUNT_ARC_HW_MAX]; |
| |
| struct arc_pmu_raw_event_entry *raw_entry; |
| struct attribute **attrs; |
| struct perf_pmu_events_attr *attr; |
| const struct attribute_group *attr_groups[ARCPMU_NR_ATTR_GR + 1]; |
| }; |
| |
| struct arc_pmu_cpu { |
| /* |
| * A 1 bit for an index indicates that the counter is being used for |
| * an event. A 0 means that the counter can be used. |
| */ |
| unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)]; |
| |
| /* |
| * The events that are active on the PMU for the given index. |
| */ |
| struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS]; |
| }; |
| |
| struct arc_callchain_trace { |
| int depth; |
| void *perf_stuff; |
| }; |
| |
| static int callchain_trace(unsigned int addr, void *data) |
| { |
| struct arc_callchain_trace *ctrl = data; |
| struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff; |
| |
| perf_callchain_store(entry, addr); |
| |
| if (ctrl->depth++ < 3) |
| return 0; |
| |
| return -1; |
| } |
| |
| void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, |
| struct pt_regs *regs) |
| { |
| struct arc_callchain_trace ctrl = { |
| .depth = 0, |
| .perf_stuff = entry, |
| }; |
| |
| arc_unwind_core(NULL, regs, callchain_trace, &ctrl); |
| } |
| |
| void perf_callchain_user(struct perf_callchain_entry_ctx *entry, |
| struct pt_regs *regs) |
| { |
| /* |
| * User stack can't be unwound trivially with kernel dwarf unwinder |
| * So for now just record the user PC |
| */ |
| perf_callchain_store(entry, instruction_pointer(regs)); |
| } |
| |
| static struct arc_pmu *arc_pmu; |
| static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu); |
| |
| /* read counter #idx; note that counter# != event# on ARC! */ |
| static u64 arc_pmu_read_counter(int idx) |
| { |
| u32 tmp; |
| u64 result; |
| |
| /* |
| * ARC supports making 'snapshots' of the counters, so we don't |
| * need to care about counters wrapping to 0 underneath our feet |
| */ |
| write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| tmp = read_aux_reg(ARC_REG_PCT_CONTROL); |
| write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN); |
| result = (u64) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32; |
| result |= read_aux_reg(ARC_REG_PCT_SNAPL); |
| |
| return result; |
| } |
| |
| static void arc_perf_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| u64 prev_raw_count = local64_read(&hwc->prev_count); |
| u64 new_raw_count = arc_pmu_read_counter(idx); |
| s64 delta = new_raw_count - prev_raw_count; |
| |
| /* |
| * We aren't afraid of hwc->prev_count changing beneath our feet |
| * because there's no way for us to re-enter this function anytime. |
| */ |
| local64_set(&hwc->prev_count, new_raw_count); |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| } |
| |
| static void arc_pmu_read(struct perf_event *event) |
| { |
| arc_perf_event_update(event, &event->hw, event->hw.idx); |
| } |
| |
| static int arc_pmu_cache_event(u64 config) |
| { |
| unsigned int cache_type, cache_op, cache_result; |
| int ret; |
| |
| cache_type = (config >> 0) & 0xff; |
| cache_op = (config >> 8) & 0xff; |
| cache_result = (config >> 16) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ret = arc_pmu_cache_map[cache_type][cache_op][cache_result]; |
| |
| if (ret == CACHE_OP_UNSUPPORTED) |
| return -ENOENT; |
| |
| pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n", |
| cache_type, cache_op, cache_result, ret, |
| arc_pmu_ev_hw_map[ret]); |
| |
| return ret; |
| } |
| |
| /* initializes hw_perf_event structure if event is supported */ |
| static int arc_pmu_event_init(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int ret; |
| |
| if (!is_sampling_event(event)) { |
| hwc->sample_period = arc_pmu->max_period; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| hwc->config = 0; |
| |
| if (is_isa_arcv2()) { |
| /* "exclude user" means "count only kernel" */ |
| if (event->attr.exclude_user) |
| hwc->config |= ARC_REG_PCT_CONFIG_KERN; |
| |
| /* "exclude kernel" means "count only user" */ |
| if (event->attr.exclude_kernel) |
| hwc->config |= ARC_REG_PCT_CONFIG_USER; |
| } |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_HARDWARE: |
| if (event->attr.config >= PERF_COUNT_HW_MAX) |
| return -ENOENT; |
| if (arc_pmu->ev_hw_idx[event->attr.config] < 0) |
| return -ENOENT; |
| hwc->config |= arc_pmu->ev_hw_idx[event->attr.config]; |
| pr_debug("init event %d with h/w %08x \'%s\'\n", |
| (int)event->attr.config, (int)hwc->config, |
| arc_pmu_ev_hw_map[event->attr.config]); |
| return 0; |
| |
| case PERF_TYPE_HW_CACHE: |
| ret = arc_pmu_cache_event(event->attr.config); |
| if (ret < 0) |
| return ret; |
| hwc->config |= arc_pmu->ev_hw_idx[ret]; |
| pr_debug("init cache event with h/w %08x \'%s\'\n", |
| (int)hwc->config, arc_pmu_ev_hw_map[ret]); |
| return 0; |
| |
| case PERF_TYPE_RAW: |
| if (event->attr.config >= arc_pmu->n_events) |
| return -ENOENT; |
| |
| hwc->config |= event->attr.config; |
| pr_debug("init raw event with idx %lld \'%s\'\n", |
| event->attr.config, |
| arc_pmu->raw_entry[event->attr.config].name); |
| |
| return 0; |
| |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| /* starts all counters */ |
| static void arc_pmu_enable(struct pmu *pmu) |
| { |
| u32 tmp; |
| tmp = read_aux_reg(ARC_REG_PCT_CONTROL); |
| write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1); |
| } |
| |
| /* stops all counters */ |
| static void arc_pmu_disable(struct pmu *pmu) |
| { |
| u32 tmp; |
| tmp = read_aux_reg(ARC_REG_PCT_CONTROL); |
| write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0); |
| } |
| |
| static int arc_pmu_event_set_period(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int idx = hwc->idx; |
| int overflow = 0; |
| u64 value; |
| |
| if (unlikely(left <= -period)) { |
| /* left underflowed by more than period. */ |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| overflow = 1; |
| } else if (unlikely(left <= 0)) { |
| /* left underflowed by less than period. */ |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| overflow = 1; |
| } |
| |
| if (left > arc_pmu->max_period) |
| left = arc_pmu->max_period; |
| |
| value = arc_pmu->max_period - left; |
| local64_set(&hwc->prev_count, value); |
| |
| /* Select counter */ |
| write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| |
| /* Write value */ |
| write_aux_reg(ARC_REG_PCT_COUNTL, lower_32_bits(value)); |
| write_aux_reg(ARC_REG_PCT_COUNTH, upper_32_bits(value)); |
| |
| perf_event_update_userpage(event); |
| |
| return overflow; |
| } |
| |
| /* |
| * Assigns hardware counter to hardware condition. |
| * Note that there is no separate start/stop mechanism; |
| * stopping is achieved by assigning the 'never' condition |
| */ |
| static void arc_pmu_start(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| if (WARN_ON_ONCE(idx == -1)) |
| return; |
| |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| hwc->state = 0; |
| |
| arc_pmu_event_set_period(event); |
| |
| /* Enable interrupt for this counter */ |
| if (is_sampling_event(event)) |
| write_aux_reg(ARC_REG_PCT_INT_CTRL, |
| read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx)); |
| |
| /* enable ARC pmu here */ |
| write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */ |
| write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */ |
| } |
| |
| static void arc_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| /* Disable interrupt for this counter */ |
| if (is_sampling_event(event)) { |
| /* |
| * Reset interrupt flag by writing of 1. This is required |
| * to make sure pending interrupt was not left. |
| */ |
| write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx)); |
| write_aux_reg(ARC_REG_PCT_INT_CTRL, |
| read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~BIT(idx)); |
| } |
| |
| if (!(event->hw.state & PERF_HES_STOPPED)) { |
| /* stop hw counter here */ |
| write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| |
| /* condition code #0 is always "never" */ |
| write_aux_reg(ARC_REG_PCT_CONFIG, 0); |
| |
| event->hw.state |= PERF_HES_STOPPED; |
| } |
| |
| if ((flags & PERF_EF_UPDATE) && |
| !(event->hw.state & PERF_HES_UPTODATE)) { |
| arc_perf_event_update(event, &event->hw, idx); |
| event->hw.state |= PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void arc_pmu_del(struct perf_event *event, int flags) |
| { |
| struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); |
| |
| arc_pmu_stop(event, PERF_EF_UPDATE); |
| __clear_bit(event->hw.idx, pmu_cpu->used_mask); |
| |
| pmu_cpu->act_counter[event->hw.idx] = 0; |
| |
| perf_event_update_userpage(event); |
| } |
| |
| /* allocate hardware counter and optionally start counting */ |
| static int arc_pmu_add(struct perf_event *event, int flags) |
| { |
| struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| |
| idx = ffz(pmu_cpu->used_mask[0]); |
| if (idx == arc_pmu->n_counters) |
| return -EAGAIN; |
| |
| __set_bit(idx, pmu_cpu->used_mask); |
| hwc->idx = idx; |
| |
| write_aux_reg(ARC_REG_PCT_INDEX, idx); |
| |
| pmu_cpu->act_counter[idx] = event; |
| |
| if (is_sampling_event(event)) { |
| /* Mimic full counter overflow as other arches do */ |
| write_aux_reg(ARC_REG_PCT_INT_CNTL, |
| lower_32_bits(arc_pmu->max_period)); |
| write_aux_reg(ARC_REG_PCT_INT_CNTH, |
| upper_32_bits(arc_pmu->max_period)); |
| } |
| |
| write_aux_reg(ARC_REG_PCT_CONFIG, 0); |
| write_aux_reg(ARC_REG_PCT_COUNTL, 0); |
| write_aux_reg(ARC_REG_PCT_COUNTH, 0); |
| local64_set(&hwc->prev_count, 0); |
| |
| hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| if (flags & PERF_EF_START) |
| arc_pmu_start(event, PERF_EF_RELOAD); |
| |
| perf_event_update_userpage(event); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_ISA_ARCV2 |
| static irqreturn_t arc_pmu_intr(int irq, void *dev) |
| { |
| struct perf_sample_data data; |
| struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); |
| struct pt_regs *regs; |
| unsigned int active_ints; |
| int idx; |
| |
| arc_pmu_disable(&arc_pmu->pmu); |
| |
| active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT); |
| if (!active_ints) |
| goto done; |
| |
| regs = get_irq_regs(); |
| |
| do { |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| |
| idx = __ffs(active_ints); |
| |
| /* Reset interrupt flag by writing of 1 */ |
| write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx)); |
| |
| /* |
| * On reset of "interrupt active" bit corresponding |
| * "interrupt enable" bit gets automatically reset as well. |
| * Now we need to re-enable interrupt for the counter. |
| */ |
| write_aux_reg(ARC_REG_PCT_INT_CTRL, |
| read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx)); |
| |
| event = pmu_cpu->act_counter[idx]; |
| hwc = &event->hw; |
| |
| WARN_ON_ONCE(hwc->idx != idx); |
| |
| arc_perf_event_update(event, &event->hw, event->hw.idx); |
| perf_sample_data_init(&data, 0, hwc->last_period); |
| if (arc_pmu_event_set_period(event)) { |
| if (perf_event_overflow(event, &data, regs)) |
| arc_pmu_stop(event, 0); |
| } |
| |
| active_ints &= ~BIT(idx); |
| } while (active_ints); |
| |
| done: |
| arc_pmu_enable(&arc_pmu->pmu); |
| |
| return IRQ_HANDLED; |
| } |
| #else |
| |
| static irqreturn_t arc_pmu_intr(int irq, void *dev) |
| { |
| return IRQ_NONE; |
| } |
| |
| #endif /* CONFIG_ISA_ARCV2 */ |
| |
| static void arc_cpu_pmu_irq_init(void *data) |
| { |
| int irq = *(int *)data; |
| |
| enable_percpu_irq(irq, IRQ_TYPE_NONE); |
| |
| /* Clear all pending interrupt flags */ |
| write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff); |
| } |
| |
| /* Event field occupies the bottom 15 bits of our config field */ |
| PMU_FORMAT_ATTR(event, "config:0-14"); |
| static struct attribute *arc_pmu_format_attrs[] = { |
| &format_attr_event.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group arc_pmu_format_attr_gr = { |
| .name = "format", |
| .attrs = arc_pmu_format_attrs, |
| }; |
| |
| static ssize_t arc_pmu_events_sysfs_show(struct device *dev, |
| struct device_attribute *attr, |
| char *page) |
| { |
| struct perf_pmu_events_attr *pmu_attr; |
| |
| pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); |
| return sprintf(page, "event=0x%04llx\n", pmu_attr->id); |
| } |
| |
| /* |
| * We don't add attrs here as we don't have pre-defined list of perf events. |
| * We will generate and add attrs dynamically in probe() after we read HW |
| * configuration. |
| */ |
| static struct attribute_group arc_pmu_events_attr_gr = { |
| .name = "events", |
| }; |
| |
| static void arc_pmu_add_raw_event_attr(int j, char *str) |
| { |
| memmove(arc_pmu->raw_entry[j].name, str, ARCPMU_EVENT_NAME_LEN - 1); |
| arc_pmu->attr[j].attr.attr.name = arc_pmu->raw_entry[j].name; |
| arc_pmu->attr[j].attr.attr.mode = VERIFY_OCTAL_PERMISSIONS(0444); |
| arc_pmu->attr[j].attr.show = arc_pmu_events_sysfs_show; |
| arc_pmu->attr[j].id = j; |
| arc_pmu->attrs[j] = &(arc_pmu->attr[j].attr.attr); |
| } |
| |
| static int arc_pmu_raw_alloc(struct device *dev) |
| { |
| arc_pmu->attr = devm_kmalloc_array(dev, arc_pmu->n_events + 1, |
| sizeof(*arc_pmu->attr), GFP_KERNEL | __GFP_ZERO); |
| if (!arc_pmu->attr) |
| return -ENOMEM; |
| |
| arc_pmu->attrs = devm_kmalloc_array(dev, arc_pmu->n_events + 1, |
| sizeof(*arc_pmu->attrs), GFP_KERNEL | __GFP_ZERO); |
| if (!arc_pmu->attrs) |
| return -ENOMEM; |
| |
| arc_pmu->raw_entry = devm_kmalloc_array(dev, arc_pmu->n_events, |
| sizeof(*arc_pmu->raw_entry), GFP_KERNEL | __GFP_ZERO); |
| if (!arc_pmu->raw_entry) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline bool event_in_hw_event_map(int i, char *name) |
| { |
| if (!arc_pmu_ev_hw_map[i]) |
| return false; |
| |
| if (!strlen(arc_pmu_ev_hw_map[i])) |
| return false; |
| |
| if (strcmp(arc_pmu_ev_hw_map[i], name)) |
| return false; |
| |
| return true; |
| } |
| |
| static void arc_pmu_map_hw_event(int j, char *str) |
| { |
| int i; |
| |
| /* See if HW condition has been mapped to a perf event_id */ |
| for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) { |
| if (event_in_hw_event_map(i, str)) { |
| pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n", |
| i, str, j); |
| arc_pmu->ev_hw_idx[i] = j; |
| } |
| } |
| } |
| |
| static int arc_pmu_device_probe(struct platform_device *pdev) |
| { |
| struct arc_reg_pct_build pct_bcr; |
| struct arc_reg_cc_build cc_bcr; |
| int i, has_interrupts, irq = -1; |
| int counter_size; /* in bits */ |
| |
| union cc_name { |
| struct { |
| u32 word0, word1; |
| char sentinel; |
| } indiv; |
| char str[ARCPMU_EVENT_NAME_LEN]; |
| } cc_name; |
| |
| |
| READ_BCR(ARC_REG_PCT_BUILD, pct_bcr); |
| if (!pct_bcr.v) { |
| pr_err("This core does not have performance counters!\n"); |
| return -ENODEV; |
| } |
| BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32); |
| if (WARN_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS)) |
| return -EINVAL; |
| |
| READ_BCR(ARC_REG_CC_BUILD, cc_bcr); |
| if (WARN(!cc_bcr.v, "Counters exist but No countable conditions?")) |
| return -EINVAL; |
| |
| arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL); |
| if (!arc_pmu) |
| return -ENOMEM; |
| |
| arc_pmu->n_events = cc_bcr.c; |
| |
| if (arc_pmu_raw_alloc(&pdev->dev)) |
| return -ENOMEM; |
| |
| has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0; |
| |
| arc_pmu->n_counters = pct_bcr.c; |
| counter_size = 32 + (pct_bcr.s << 4); |
| |
| arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL; |
| |
| pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n", |
| arc_pmu->n_counters, counter_size, cc_bcr.c, |
| has_interrupts ? ", [overflow IRQ support]" : ""); |
| |
| cc_name.str[ARCPMU_EVENT_NAME_LEN - 1] = 0; |
| for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++) |
| arc_pmu->ev_hw_idx[i] = -1; |
| |
| /* loop thru all available h/w condition indexes */ |
| for (i = 0; i < cc_bcr.c; i++) { |
| write_aux_reg(ARC_REG_CC_INDEX, i); |
| cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0)); |
| cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1)); |
| |
| arc_pmu_map_hw_event(i, cc_name.str); |
| arc_pmu_add_raw_event_attr(i, cc_name.str); |
| } |
| |
| arc_pmu_events_attr_gr.attrs = arc_pmu->attrs; |
| arc_pmu->attr_groups[ARCPMU_ATTR_GR_EVENTS] = &arc_pmu_events_attr_gr; |
| arc_pmu->attr_groups[ARCPMU_ATTR_GR_FORMATS] = &arc_pmu_format_attr_gr; |
| |
| arc_pmu->pmu = (struct pmu) { |
| .pmu_enable = arc_pmu_enable, |
| .pmu_disable = arc_pmu_disable, |
| .event_init = arc_pmu_event_init, |
| .add = arc_pmu_add, |
| .del = arc_pmu_del, |
| .start = arc_pmu_start, |
| .stop = arc_pmu_stop, |
| .read = arc_pmu_read, |
| .attr_groups = arc_pmu->attr_groups, |
| }; |
| |
| if (has_interrupts) { |
| irq = platform_get_irq(pdev, 0); |
| if (irq >= 0) { |
| int ret; |
| |
| arc_pmu->irq = irq; |
| |
| /* intc map function ensures irq_set_percpu_devid() called */ |
| ret = request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters", |
| this_cpu_ptr(&arc_pmu_cpu)); |
| |
| if (!ret) |
| on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1); |
| else |
| irq = -1; |
| } |
| |
| } |
| |
| if (irq == -1) |
| arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| |
| /* |
| * perf parser doesn't really like '-' symbol in events name, so let's |
| * use '_' in arc pct name as it goes to kernel PMU event prefix. |
| */ |
| return perf_pmu_register(&arc_pmu->pmu, "arc_pct", PERF_TYPE_RAW); |
| } |
| |
| static const struct of_device_id arc_pmu_match[] = { |
| { .compatible = "snps,arc700-pct" }, |
| { .compatible = "snps,archs-pct" }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, arc_pmu_match); |
| |
| static struct platform_driver arc_pmu_driver = { |
| .driver = { |
| .name = "arc-pct", |
| .of_match_table = of_match_ptr(arc_pmu_match), |
| }, |
| .probe = arc_pmu_device_probe, |
| }; |
| |
| module_platform_driver(arc_pmu_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>"); |
| MODULE_DESCRIPTION("ARC PMU driver"); |