blob: a92774352d2d0d36bd4e5759305842410bbf8bec [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2011 Realtek Corporation. */
#define _HCI_HAL_INIT_C_
#include "../include/osdep_service.h"
#include "../include/drv_types.h"
#include "../include/rtw_efuse.h"
#include "../include/rtw_fw.h"
#include "../include/rtl8188e_hal.h"
#include "../include/rtw_iol.h"
#include "../include/usb_ops.h"
#include "../include/usb_osintf.h"
#include "../include/Hal8188EPwrSeq.h"
static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe)
{
struct hal_data_8188e *haldata = &adapt->haldata;
switch (NumOutPipe) {
case 3:
haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ;
haldata->OutEpNumber = 3;
break;
case 2:
haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ;
haldata->OutEpNumber = 2;
break;
case 1:
haldata->OutEpQueueSel = TX_SELE_HQ;
haldata->OutEpNumber = 1;
break;
default:
break;
}
}
static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumOutPipe)
{
_ConfigNormalChipOutEP_8188E(adapt, NumOutPipe);
return Hal_MappingOutPipe(adapt, NumOutPipe);
}
void rtl8188eu_interface_configure(struct adapter *adapt)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(adapt);
HalUsbSetQueuePipeMapping8188EUsb(adapt, pdvobjpriv->RtNumOutPipes);
}
u32 rtl8188eu_InitPowerOn(struct adapter *adapt)
{
u16 value16;
/* HW Power on sequence */
struct hal_data_8188e *haldata = &adapt->haldata;
if (haldata->bMacPwrCtrlOn)
return _SUCCESS;
if (!HalPwrSeqCmdParsing(adapt, Rtl8188E_NIC_PWR_ON_FLOW))
return _FAIL;
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
/* Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
rtw_write16(adapt, REG_CR, 0x00); /* suggseted by zhouzhou, by page, 20111230 */
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
value16 = rtw_read16(adapt, REG_CR);
value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
/* for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
rtw_write16(adapt, REG_CR, value16);
haldata->bMacPwrCtrlOn = true;
return _SUCCESS;
}
/* Shall USB interface init this? */
static void _InitInterrupt(struct adapter *Adapter)
{
u32 imr, imr_ex;
u8 usb_opt;
/* HISR write one to clear */
rtw_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
/* HIMR - */
imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E;
rtw_write32(Adapter, REG_HIMR_88E, imr);
imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E;
rtw_write32(Adapter, REG_HIMRE_88E, imr_ex);
/* REG_USB_SPECIAL_OPTION - BIT(4) */
/* 0; Use interrupt endpoint to upload interrupt pkt */
/* 1; Use bulk endpoint to upload interrupt pkt, */
usb_opt = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
if (adapter_to_dvobj(Adapter)->pusbdev->speed == USB_SPEED_HIGH)
usb_opt = usb_opt | (INT_BULK_SEL);
else
usb_opt = usb_opt & (~INT_BULK_SEL);
rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt);
}
static void _InitQueueReservedPage(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numPubQ;
u32 value32;
u8 value8;
bool bWiFiConfig = pregistrypriv->wifi_spec;
if (bWiFiConfig) {
if (haldata->OutEpQueueSel & TX_SELE_HQ)
numHQ = 0x29;
if (haldata->OutEpQueueSel & TX_SELE_LQ)
numLQ = 0x1C;
/* NOTE: This step shall be proceed before writting REG_RQPN. */
if (haldata->OutEpQueueSel & TX_SELE_NQ)
numNQ = 0x1C;
value8 = (u8)_NPQ(numNQ);
rtw_write8(Adapter, REG_RQPN_NPQ, value8);
numPubQ = 0xA8 - numHQ - numLQ - numNQ;
/* TX DMA */
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtw_write32(Adapter, REG_RQPN, value32);
} else {
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0d);
rtw_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
}
}
static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy)
{
rtw_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(Adapter, REG_TDECTRL + 1, txpktbuf_bndy);
}
static void _InitPageBoundary(struct adapter *Adapter)
{
/* RX Page Boundary */
/* */
u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E - 1;
rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
}
static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ,
u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ,
u16 hiQ)
{
u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
}
static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
u16 value = 0;
switch (haldata->OutEpQueueSel) {
case TX_SELE_HQ:
value = QUEUE_HIGH;
break;
case TX_SELE_LQ:
value = QUEUE_LOW;
break;
case TX_SELE_NQ:
value = QUEUE_NORMAL;
break;
default:
break;
}
_InitNormalChipRegPriority(Adapter, value, value, value, value,
value, value);
}
static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
u16 valueHi = 0;
u16 valueLow = 0;
switch (haldata->OutEpQueueSel) {
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
break;
}
if (!pregistrypriv->wifi_spec) {
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
} else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
beQ = valueLow;
bkQ = valueHi;
viQ = valueHi;
voQ = valueLow;
mgtQ = valueHi;
hiQ = valueHi;
}
_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
if (!pregistrypriv->wifi_spec) {/* typical setting */
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
} else {/* for WMM */
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
static void _InitQueuePriority(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
switch (haldata->OutEpNumber) {
case 1:
_InitNormalChipOneOutEpPriority(Adapter);
break;
case 2:
_InitNormalChipTwoOutEpPriority(Adapter);
break;
case 3:
_InitNormalChipThreeOutEpPriority(Adapter);
break;
default:
break;
}
}
static void _InitNetworkType(struct adapter *Adapter)
{
u32 value32;
value32 = rtw_read32(Adapter, REG_CR);
/* TODO: use the other function to set network type */
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(Adapter, REG_CR, value32);
}
static void _InitTransferPageSize(struct adapter *Adapter)
{
/* Tx page size is always 128. */
u8 value8;
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
rtw_write8(Adapter, REG_PBP, value8);
}
static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize)
{
rtw_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
}
static void _InitWMACSetting(struct adapter *Adapter)
{
u32 receive_config = RCR_AAP | RCR_APM | RCR_AM | RCR_AB |
RCR_CBSSID_DATA | RCR_CBSSID_BCN |
RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
RCR_APP_MIC | RCR_APP_PHYSTS;
/* some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
rtw_write32(Adapter, REG_RCR, receive_config);
/* Accept all multicast address */
rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF);
rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
}
static void _InitAdaptiveCtrl(struct adapter *Adapter)
{
u16 value16;
u32 value32;
/* Response Rate Set */
value32 = rtw_read32(Adapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(Adapter, REG_RRSR, value32);
/* CF-END Threshold */
/* SIFS (used in NAV) */
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(Adapter, REG_SPEC_SIFS, value16);
/* Retry Limit */
value16 = _LRL(0x30) | _SRL(0x30);
rtw_write16(Adapter, REG_RL, value16);
}
static void _InitEDCA(struct adapter *Adapter)
{
/* Set Spec SIFS (used in NAV) */
rtw_write16(Adapter, REG_SPEC_SIFS, 0x100a);
rtw_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
/* Set SIFS for CCK */
rtw_write16(Adapter, REG_SIFS_CTX, 0x100a);
/* Set SIFS for OFDM */
rtw_write16(Adapter, REG_SIFS_TRX, 0x100a);
/* TXOP */
rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
static void _InitRetryFunction(struct adapter *Adapter)
{
u8 value8;
value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
/* Set ACK timeout */
rtw_write8(Adapter, REG_ACKTO, 0x40);
}
/*-----------------------------------------------------------------------------
* Function: usb_AggSettingTxUpdate()
*
* Overview: Separate TX/RX parameters update independent for TP detection and
* dynamic TX/RX aggreagtion parameters update.
*
* Input: struct adapter *
*
* Output/Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Separate to smaller function.
*
*---------------------------------------------------------------------------*/
static void usb_AggSettingTxUpdate(struct adapter *Adapter)
{
u32 value32;
if (Adapter->registrypriv.wifi_spec)
return;
value32 = rtw_read32(Adapter, REG_TDECTRL);
value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
value32 |= ((USB_TXAGG_DESC_NUM & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
rtw_write32(Adapter, REG_TDECTRL, value32);
}
/*-----------------------------------------------------------------------------
* Function: usb_AggSettingRxUpdate()
*
* Overview: Separate TX/RX parameters update independent for TP detection and
* dynamic TX/RX aggreagtion parameters update.
*
* Input: struct adapter *
*
* Output/Return: NONE
*
* Revised History:
* When Who Remark
* 12/10/2010 MHC Separate to smaller function.
*
*---------------------------------------------------------------------------*/
static void
usb_AggSettingRxUpdate(
struct adapter *Adapter
)
{
u8 valueDMA;
u8 valueUSB;
valueDMA = rtw_read8(Adapter, REG_TRXDMA_CTRL);
valueUSB = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
valueDMA |= RXDMA_AGG_EN;
valueUSB &= ~USB_AGG_EN;
rtw_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, USB_RXAGG_PAGE_COUNT);
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH + 1, USB_RXAGG_PAGE_TIMEOUT);
}
static void InitUsbAggregationSetting(struct adapter *Adapter)
{
/* Tx aggregation setting */
usb_AggSettingTxUpdate(Adapter);
/* Rx aggregation setting */
usb_AggSettingRxUpdate(Adapter);
}
static void _InitBeaconParameters(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
/* TODO: Remove these magic number */
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/* ms */
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/* 5ms */
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
haldata->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL + 2);
haldata->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2);
haldata->RegCR_1 = rtw_read8(Adapter, REG_CR + 1);
}
static void _BeaconFunctionEnable(struct adapter *Adapter,
bool Enable, bool Linked)
{
rtw_write8(Adapter, REG_BCN_CTRL, (BIT(4) | BIT(3) | BIT(1)));
rtw_write8(Adapter, REG_RD_CTRL + 1, 0x6F);
}
/* Set CCK and OFDM Block "ON" */
static void _BBTurnOnBlock(struct adapter *Adapter)
{
rtl8188e_PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
rtl8188e_PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
static void _InitAntenna_Selection(struct adapter *Adapter)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
if (haldata->AntDivCfg == 0)
return;
rtw_write32(Adapter, REG_LEDCFG0, rtw_read32(Adapter, REG_LEDCFG0) | BIT(23));
rtl8188e_PHY_SetBBReg(Adapter, rFPGA0_XAB_RFParameter, BIT(13), 0x01);
if (rtl8188e_PHY_QueryBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
haldata->CurAntenna = Antenna_A;
else
haldata->CurAntenna = Antenna_B;
}
static void hw_var_set_macaddr(struct adapter *Adapter, u8 *val)
{
u8 idx = 0;
u32 reg_macid;
reg_macid = REG_MACID;
for (idx = 0; idx < 6; idx++)
rtw_write8(Adapter, (reg_macid + idx), val[idx]);
}
u32 rtl8188eu_hal_init(struct adapter *Adapter)
{
u8 value8 = 0;
u16 value16;
u8 txpktbuf_bndy;
u32 status = _SUCCESS;
struct hal_data_8188e *haldata = &Adapter->haldata;
struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
if (Adapter->pwrctrlpriv.bkeepfwalive) {
if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
PHY_IQCalibrate_8188E(Adapter, true);
} else {
PHY_IQCalibrate_8188E(Adapter, false);
haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
}
ODM_TXPowerTrackingCheck(&haldata->odmpriv);
PHY_LCCalibrate_8188E(Adapter);
goto exit;
}
status = rtl8188eu_InitPowerOn(Adapter);
if (status == _FAIL)
goto exit;
/* Save target channel */
haldata->CurrentChannel = 6;/* default set to 6 */
if (pwrctrlpriv->reg_rfoff) {
pwrctrlpriv->rf_pwrstate = rf_off;
}
/* 2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
/* HW GPIO pin. Before PHY_RFConfig8192C. */
/* 2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
if (!pregistrypriv->wifi_spec) {
txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
} else {
/* for WMM */
txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
}
_InitQueueReservedPage(Adapter);
_InitQueuePriority(Adapter);
_InitPageBoundary(Adapter);
_InitTransferPageSize(Adapter);
_InitTxBufferBoundary(Adapter, 0);
status = rtl8188e_firmware_download(Adapter);
if (status != _SUCCESS) {
Adapter->bFWReady = false;
haldata->fw_ractrl = false;
return status;
} else {
Adapter->bFWReady = true;
haldata->fw_ractrl = false;
}
/* Initialize firmware vars */
Adapter->pwrctrlpriv.bFwCurrentInPSMode = false;
haldata->LastHMEBoxNum = 0;
status = PHY_MACConfig8188E(Adapter);
if (status == _FAIL)
goto exit;
/* */
/* d. Initialize BB related configurations. */
/* */
status = PHY_BBConfig8188E(Adapter);
if (status == _FAIL)
goto exit;
status = PHY_RFConfig8188E(Adapter);
if (status == _FAIL)
goto exit;
status = rtl8188e_iol_efuse_patch(Adapter);
if (status == _FAIL)
goto exit;
_InitTxBufferBoundary(Adapter, txpktbuf_bndy);
status = InitLLTTable(Adapter, txpktbuf_bndy);
if (status == _FAIL)
goto exit;
/* Get Rx PHY status in order to report RSSI and others. */
_InitDriverInfoSize(Adapter, DRVINFO_SZ);
_InitInterrupt(Adapter);
hw_var_set_macaddr(Adapter, Adapter->eeprompriv.mac_addr);
_InitNetworkType(Adapter);/* set msr */
_InitWMACSetting(Adapter);
_InitAdaptiveCtrl(Adapter);
_InitEDCA(Adapter);
_InitRetryFunction(Adapter);
InitUsbAggregationSetting(Adapter);
_InitBeaconParameters(Adapter);
/* */
/* Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
/* Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */
/* */
/* Enable MACTXEN/MACRXEN block */
value16 = rtw_read16(Adapter, REG_CR);
value16 |= (MACTXEN | MACRXEN);
rtw_write8(Adapter, REG_CR, value16);
/* Enable TX Report */
/* Enable Tx Report Timer */
value8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
rtw_write8(Adapter, REG_TX_RPT_CTRL, (value8 | BIT(1) | BIT(0)));
/* Set MAX RPT MACID */
rtw_write8(Adapter, REG_TX_RPT_CTRL + 1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
/* Tx RPT Timer. Unit: 32us */
rtw_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
/* Keep RfRegChnlVal for later use. */
haldata->RfRegChnlVal = rtl8188e_PHY_QueryRFReg(Adapter, RF_CHNLBW, bRFRegOffsetMask);
_BBTurnOnBlock(Adapter);
invalidate_cam_all(Adapter);
/* 2010/12/17 MH We need to set TX power according to EFUSE content at first. */
PHY_SetTxPowerLevel8188E(Adapter, haldata->CurrentChannel);
/* Move by Neo for USB SS to below setp */
/* _RfPowerSave(Adapter); */
_InitAntenna_Selection(Adapter);
/* */
/* Disable BAR, suggested by Scott */
/* 2010.04.09 add by hpfan */
/* */
rtw_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
/* HW SEQ CTRL */
/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
rtw_write8(Adapter, REG_HWSEQ_CTRL, 0xFF);
if (pregistrypriv->wifi_spec)
rtw_write16(Adapter, REG_FAST_EDCA_CTRL, 0);
/* Nav limit , suggest by scott */
rtw_write8(Adapter, 0x652, 0x0);
rtl8188e_InitHalDm(Adapter);
/* 2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
/* and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
/* call initstruct adapter. May cause some problem?? */
/* Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
/* in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */
/* is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
/* Added by tynli. 2010.03.30. */
pwrctrlpriv->rf_pwrstate = rf_on;
/* enable Tx report. */
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL + 1, 0x0F);
/* Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
rtw_write8(Adapter, REG_EARLY_MODE_CONTROL + 3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
/* tynli_test_tx_report. */
rtw_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
/* enable tx DMA to drop the redundate data of packet */
rtw_write16(Adapter, REG_TXDMA_OFFSET_CHK, (rtw_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
/* 2010/08/26 MH Merge from 8192CE. */
if (pwrctrlpriv->rf_pwrstate == rf_on) {
if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
PHY_IQCalibrate_8188E(Adapter, true);
} else {
PHY_IQCalibrate_8188E(Adapter, false);
haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
}
ODM_TXPowerTrackingCheck(&haldata->odmpriv);
PHY_LCCalibrate_8188E(Adapter);
}
/* _InitPABias(Adapter); */
rtw_write8(Adapter, REG_USB_HRPWM, 0);
/* ack for xmit mgmt frames. */
rtw_write32(Adapter, REG_FWHW_TXQ_CTRL, rtw_read32(Adapter, REG_FWHW_TXQ_CTRL) | BIT(12));
exit:
return status;
}
static void CardDisableRTL8188EU(struct adapter *Adapter)
{
u8 val8;
struct hal_data_8188e *haldata = &Adapter->haldata;
/* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
val8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
rtw_write8(Adapter, REG_TX_RPT_CTRL, val8 & (~BIT(1)));
/* stop rx */
rtw_write8(Adapter, REG_CR, 0x0);
/* Run LPS WL RFOFF flow */
HalPwrSeqCmdParsing(Adapter, Rtl8188E_NIC_LPS_ENTER_FLOW);
/* 2. 0x1F[7:0] = 0 turn off RF */
val8 = rtw_read8(Adapter, REG_MCUFWDL);
if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */
/* Reset MCU 0x2[10]=0. */
val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN + 1);
val8 &= ~BIT(2); /* 0x2[10], FEN_CPUEN */
rtw_write8(Adapter, REG_SYS_FUNC_EN + 1, val8);
}
/* reset MCU ready status */
rtw_write8(Adapter, REG_MCUFWDL, 0);
/* YJ,add,111212 */
/* Disable 32k */
val8 = rtw_read8(Adapter, REG_32K_CTRL);
rtw_write8(Adapter, REG_32K_CTRL, val8 & (~BIT(0)));
/* Card disable power action flow */
HalPwrSeqCmdParsing(Adapter, Rtl8188E_NIC_DISABLE_FLOW);
/* Reset MCU IO Wrapper */
val8 = rtw_read8(Adapter, REG_RSV_CTRL + 1);
rtw_write8(Adapter, REG_RSV_CTRL + 1, (val8 & (~BIT(3))));
val8 = rtw_read8(Adapter, REG_RSV_CTRL + 1);
rtw_write8(Adapter, REG_RSV_CTRL + 1, val8 | BIT(3));
/* YJ,test add, 111207. For Power Consumption. */
val8 = rtw_read8(Adapter, GPIO_IN);
rtw_write8(Adapter, GPIO_OUT, val8);
rtw_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL);
rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8 << 4));
val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL + 1);
rtw_write8(Adapter, REG_GPIO_IO_SEL + 1, val8 | 0x0F);/* Reg0x43 */
rtw_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
haldata->bMacPwrCtrlOn = false;
Adapter->bFWReady = false;
}
u32 rtl8188eu_hal_deinit(struct adapter *Adapter)
{
rtw_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
rtw_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
if (!Adapter->pwrctrlpriv.bkeepfwalive) {
if (Adapter->hw_init_completed) {
CardDisableRTL8188EU(Adapter);
}
}
return _SUCCESS;
}
unsigned int rtl8188eu_inirp_init(struct adapter *Adapter)
{
u8 i;
struct recv_buf *precvbuf;
uint status;
struct recv_priv *precvpriv = &Adapter->recvpriv;
status = _SUCCESS;
/* issue Rx irp to receive data */
precvbuf = (struct recv_buf *)precvpriv->precv_buf;
for (i = 0; i < NR_RECVBUFF; i++) {
if (!rtw_read_port(Adapter, (unsigned char *)precvbuf)) {
status = _FAIL;
goto exit;
}
precvbuf++;
precvpriv->free_recv_buf_queue_cnt--;
}
exit:
return status;
}
/* */
/* */
/* EEPROM/EFUSE Content Parsing */
/* */
/* */
static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
{
u16 i;
u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
struct eeprom_priv *eeprom = &adapt->eeprompriv;
if (AutoLoadFail) {
for (i = 0; i < 6; i++)
eeprom->mac_addr[i] = sMacAddr[i];
} else {
/* Read Permanent MAC address */
memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
}
}
void ReadAdapterInfo8188EU(struct adapter *Adapter)
{
struct eeprom_priv *eeprom = &Adapter->eeprompriv;
struct led_priv *ledpriv = &Adapter->ledpriv;
u8 eeValue;
/* check system boot selection */
eeValue = rtw_read8(Adapter, REG_9346CR);
eeprom->EepromOrEfuse = (eeValue & BOOT_FROM_EEPROM);
eeprom->bautoload_fail_flag = !(eeValue & EEPROM_EN);
if (!is_boot_from_eeprom(Adapter))
EFUSE_ShadowMapUpdate(Adapter);
/* parse the eeprom/efuse content */
Hal_EfuseParseIDCode88E(Adapter, eeprom->efuse_eeprom_data);
Hal_EfuseParseMACAddr_8188EU(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadPowerSavingMode88E(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadTxPowerInfo88E(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
rtl8188e_EfuseParseChnlPlan(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_EfuseParseXtal_8188E(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadAntennaDiversity88E(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
Hal_ReadThermalMeter_88E(Adapter, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
ledpriv->bRegUseLed = true;
}
static void ResumeTxBeacon(struct adapter *adapt)
{
struct hal_data_8188e *haldata = &adapt->haldata;
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
rtw_write8(adapt, REG_FWHW_TXQ_CTRL + 2, (haldata->RegFwHwTxQCtrl) | BIT(6));
haldata->RegFwHwTxQCtrl |= BIT(6);
rtw_write8(adapt, REG_TBTT_PROHIBIT + 1, 0xff);
haldata->RegReg542 |= BIT(0);
rtw_write8(adapt, REG_TBTT_PROHIBIT + 2, haldata->RegReg542);
}
static void StopTxBeacon(struct adapter *adapt)
{
struct hal_data_8188e *haldata = &adapt->haldata;
/* 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
/* which should be read from register to a global variable. */
rtw_write8(adapt, REG_FWHW_TXQ_CTRL + 2, (haldata->RegFwHwTxQCtrl) & (~BIT(6)));
haldata->RegFwHwTxQCtrl &= (~BIT(6));
rtw_write8(adapt, REG_TBTT_PROHIBIT + 1, 0x64);
haldata->RegReg542 &= ~(BIT(0));
rtw_write8(adapt, REG_TBTT_PROHIBIT + 2, haldata->RegReg542);
/* todo: CheckFwRsvdPageContent(Adapter); 2010.06.23. Added by tynli. */
}
static void hw_var_set_opmode(struct adapter *Adapter, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
/* disable Port0 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
/* set net_type */
val8 = rtw_read8(Adapter, MSR) & 0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
StopTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x1a);
} else if (mode == _HW_STATE_AP_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
/* Set RCR */
rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
rtw_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/* BIT(3) - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | BIT(1)));
/* dis BCN1 ATIM WND if if2 is station */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
}
}
static void hw_var_set_bssid(struct adapter *Adapter, u8 *val)
{
u8 idx = 0;
u32 reg_bssid;
reg_bssid = REG_BSSID;
for (idx = 0; idx < 6; idx++)
rtw_write8(Adapter, (reg_bssid + idx), val[idx]);
}
void SetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
struct dm_priv *pdmpriv = &haldata->dmpriv;
struct odm_dm_struct *podmpriv = &haldata->odmpriv;
switch (variable) {
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(Adapter, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(Adapter, val);
break;
case HW_VAR_BASIC_RATE:
{
u16 BrateCfg = 0;
u8 RateIndex = 0;
/* 2007.01.16, by Emily */
/* Select RRSR (in Legacy-OFDM and CCK) */
/* For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
/* We do not use other rates. */
HalSetBrateCfg(Adapter, val, &BrateCfg);
/* 2011.03.30 add by Luke Lee */
/* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
/* because CCK 2M has poor TXEVM */
/* CCK 5.5M & 11M ACK should be enabled for better performance */
BrateCfg = (BrateCfg | 0xd) & 0x15d;
BrateCfg |= 0x01; /* default enable 1M ACK rate */
/* Set RRSR rate table. */
rtw_write8(Adapter, REG_RRSR, BrateCfg & 0xff);
rtw_write8(Adapter, REG_RRSR + 1, (BrateCfg >> 8) & 0xff);
rtw_write8(Adapter, REG_RRSR + 2, rtw_read8(Adapter, REG_RRSR + 2) & 0xf0);
/* Set RTS initial rate */
while (BrateCfg > 0x1) {
BrateCfg = (BrateCfg >> 1);
RateIndex++;
}
/* Ziv - Check */
rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
}
break;
case HW_VAR_CORRECT_TSF:
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
tsf = pmlmeext->TSFValue - do_div(pmlmeext->TSFValue,
pmlmeinfo->bcn_interval * 1024) - 1024; /* us */
if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
StopTxBeacon(Adapter);
/* disable related TSF function */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR + 4, tsf >> 32);
/* enable related TSF function */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(3));
if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
ResumeTxBeacon(Adapter);
}
break;
case HW_VAR_MLME_DISCONNECT:
/* Set RCR to not to receive data frame when NO LINK state */
/* reject all data frames */
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
/* disable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
break;
case HW_VAR_MLME_SITESURVEY:
if (*((u8 *)val)) { /* under sitesurvey */
/* config RCR to receive different BSSID & not to receive data frame */
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, v);
/* reject all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
/* disable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
} else { /* sitesurvey done */
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
if ((is_client_associated_to_ap(Adapter)) ||
((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE)) {
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
} else if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
}
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_BCN);
}
break;
case HW_VAR_MLME_JOIN:
{
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if (type == 0) { /* prepare to join */
/* enable to rx data frame.Accept all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
RetryLimit = 48;
else /* Ad-hoc Mode */
RetryLimit = 0x7;
} else if (type == 1) {
/* joinbss_event call back when join res < 0 */
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
} else if (type == 2) {
/* sta add event call back */
/* enable update TSF */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
RetryLimit = 0x7;
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
break;
case HW_VAR_SLOT_TIME:
{
u8 u1bAIFS, aSifsTime;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
rtw_write8(Adapter, REG_SLOT, val[0]);
if (pmlmeinfo->WMM_enable == 0) {
if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
aSifsTime = 10;
else
aSifsTime = 16;
u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
/* <Roger_EXP> Temporary removed, 2008.06.20. */
rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
}
}
break;
case HW_VAR_RESP_SIFS:
/* RESP_SIFS for CCK */
rtw_write8(Adapter, REG_R2T_SIFS, val[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(Adapter, REG_R2T_SIFS + 1, val[1]); /* SIFS_R2T_CCK(0x08) */
/* RESP_SIFS for OFDM */
rtw_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
rtw_write8(Adapter, REG_T2T_SIFS + 1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *((bool *)val);
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
regTmp = (haldata->nCur40MhzPrimeSC) << 5;
if (bShortPreamble)
regTmp |= 0x80;
rtw_write8(Adapter, REG_RRSR + 2, regTmp);
}
break;
case HW_VAR_DM_FLAG:
podmpriv->SupportAbility = *((u8 *)val);
break;
case HW_VAR_DM_FUNC_OP:
if (val[0])
podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
else
podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
break;
case HW_VAR_DM_FUNC_SET:
if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
podmpriv->SupportAbility = pdmpriv->InitODMFlag;
} else {
podmpriv->SupportAbility |= *((u32 *)val);
}
break;
case HW_VAR_DM_FUNC_CLR:
podmpriv->SupportAbility &= *((u32 *)val);
break;
case HW_VAR_AC_PARAM_BE:
haldata->AcParam_BE = ((u32 *)(val))[0];
rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_ACM_CTRL:
{
u8 acm_ctrl = *((u8 *)val);
u8 AcmCtrl = rtw_read8(Adapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
}
break;
case HW_VAR_AMPDU_MIN_SPACE:
{
u8 MinSpacingToSet;
u8 SecMinSpace;
MinSpacingToSet = *((u8 *)val);
if (MinSpacingToSet <= 7) {
switch (Adapter->securitypriv.dot11PrivacyAlgrthm) {
case _NO_PRIVACY_:
case _AES_:
SecMinSpace = 0;
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
SecMinSpace = 6;
break;
default:
SecMinSpace = 7;
break;
}
if (MinSpacingToSet < SecMinSpace)
MinSpacingToSet = SecMinSpace;
rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
}
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
u8 FactorToSet;
u8 *pRegToSet;
u8 index = 0;
pRegToSet = RegToSet_Normal; /* 0xb972a841; */
FactorToSet = *((u8 *)val);
if (FactorToSet <= 3) {
FactorToSet = (1 << (FactorToSet + 2));
if (FactorToSet > 0xf)
FactorToSet = 0xf;
for (index = 0; index < 4; index++) {
if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4))
pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet << 4);
if ((pRegToSet[index] & 0x0f) > FactorToSet)
pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
rtw_write8(Adapter, (REG_AGGLEN_LMT + index), pRegToSet[index]);
}
}
}
break;
case HW_VAR_RXDMA_AGG_PG_TH:
{
u8 threshold = *((u8 *)val);
if (threshold == 0)
threshold = USB_RXAGG_PAGE_COUNT;
rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
}
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = (*(u8 *)val);
/* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
/* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
if (psmode != PS_MODE_ACTIVE)
ODM_RF_Saving(podmpriv, true);
rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
{
u8 mstatus = (*(u8 *)val);
rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
}
break;
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
{
u8 p2p_ps_state = (*(u8 *)val);
rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
}
break;
case HW_VAR_INITIAL_GAIN:
{
struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
u32 rx_gain = ((u32 *)(val))[0];
if (rx_gain == 0xff) {/* restore rx gain */
ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
} else {
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(podmpriv, rx_gain);
}
}
break;
case HW_VAR_RPT_TIMER_SETTING:
{
u16 min_rpt_time = (*(u16 *)val);
ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time);
}
break;
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = (*(u8 *)val);
u8 Ant;
/* switch antenna to Optimum_antenna */
if (haldata->CurAntenna != Optimum_antenna) {
Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
ODM_UpdateRxIdleAnt_88E(&haldata->odmpriv, Ant);
haldata->CurAntenna = Optimum_antenna;
}
}
break;
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
u8 trycnt = 100;
/* pause tx */
rtw_write8(Adapter, REG_TXPAUSE, 0xff);
/* keep sn */
Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter, REG_NQOS_SEQ);
if (!pwrpriv->bkeepfwalive) {
/* RX DMA stop */
rtw_write32(Adapter, REG_RXPKT_NUM, (rtw_read32(Adapter, REG_RXPKT_NUM) | RW_RELEASE_EN));
do {
if (!(rtw_read32(Adapter, REG_RXPKT_NUM) & RXDMA_IDLE))
break;
} while (trycnt--);
/* RQPN Load 0 */
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0);
rtw_write32(Adapter, REG_RQPN, 0x80000000);
mdelay(10);
}
}
break;
case HW_VAR_TX_RPT_MAX_MACID:
{
u8 maxMacid = *val;
rtw_write8(Adapter, REG_TX_RPT_CTRL + 1, maxMacid + 1);
}
break;
case HW_VAR_H2C_MEDIA_STATUS_RPT:
rtl8188e_set_FwMediaStatus_cmd(Adapter, (*(__le16 *)val));
break;
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT(16) of REG_TDECTRL = BIT(0) of REG_TDECTRL+2, write 1 to clear, Clear by sw */
rtw_write8(Adapter, REG_TDECTRL + 2, rtw_read8(Adapter, REG_TDECTRL + 2) | BIT(0));
break;
default:
break;
}
}
void GetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
struct odm_dm_struct *podmpriv = &haldata->odmpriv;
switch (variable) {
case HW_VAR_BCN_VALID:
/* BCN_VALID, BIT(16) of REG_TDECTRL = BIT(0) of REG_TDECTRL+2 */
val[0] = (BIT(0) & rtw_read8(Adapter, REG_TDECTRL + 2)) ? true : false;
break;
case HW_VAR_DM_FLAG:
val[0] = podmpriv->SupportAbility;
break;
case HW_VAR_FWLPS_RF_ON:
{
/* When we halt NIC, we should check if FW LPS is leave. */
if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) {
/* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
/* because Fw is unload. */
val[0] = true;
} else {
u32 valRCR;
valRCR = rtw_read32(Adapter, REG_RCR);
valRCR &= 0x00070000;
if (valRCR)
val[0] = false;
else
val[0] = true;
}
}
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
*val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION) & 0x0000ff00) == 0) ? true : false;
break;
default:
break;
}
}
/* Query setting of specified variable. */
void GetHalDefVar8188EUsb(struct adapter *Adapter, enum hal_def_variable eVariable, void *pValue)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
switch (eVariable) {
case HAL_DEF_IS_SUPPORT_ANT_DIV:
*((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true;
break;
case HAL_DEF_CURRENT_ANTENNA:
*((u8 *)pValue) = haldata->CurAntenna;
break;
case HAL_DEF_DBG_DM_FUNC:
*((u32 *)pValue) = haldata->odmpriv.SupportAbility;
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*((u8 *)pValue) = haldata->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*((u8 *)pValue) = haldata->bDumpTxPkt;
break;
default:
break;
}
}
/* Change default setting of specified variable. */
void SetHalDefVar8188EUsb(struct adapter *Adapter, enum hal_def_variable eVariable, void *pValue)
{
struct hal_data_8188e *haldata = &Adapter->haldata;
switch (eVariable) {
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func = *((u8 *)pValue);
struct odm_dm_struct *podmpriv = &haldata->odmpriv;
if (dm_func == 0) { /* disable all dynamic func */
podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE;
} else if (dm_func == 1) {/* disable DIG */
podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG);
} else if (dm_func == 2) {/* disable High power */
podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
} else if (dm_func == 3) {/* disable tx power tracking */
podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
} else if (dm_func == 5) {/* disable antenna diversity */
podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
} else if (dm_func == 6) {/* turn on all dynamic func */
if (!(podmpriv->SupportAbility & DYNAMIC_BB_DIG)) {
struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
pDigTable->CurIGValue = rtw_read8(Adapter, 0xc50);
}
podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
haldata->bDumpRxPkt = *((u8 *)pValue);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
haldata->bDumpTxPkt = *((u8 *)pValue);
break;
default:
break;
}
}
void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level)
{
u8 init_rate = 0;
u8 networkType, raid;
u32 mask, rate_bitmap;
u8 shortGIrate = false;
int supportRateNum = 0;
struct sta_info *psta;
struct hal_data_8188e *haldata = &adapt->haldata;
struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
struct wlan_bssid_ex *cur_network = &pmlmeinfo->network;
if (mac_id >= NUM_STA) /* CAM_SIZE */
return;
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if (!psta)
return;
switch (mac_id) {
case 0:/* for infra mode */
supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
networkType = judge_network_type(adapt, cur_network->SupportedRates, supportRateNum) & 0xf;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&pmlmeinfo->HT_caps) : 0;
if (support_short_GI(adapt, &pmlmeinfo->HT_caps))
shortGIrate = true;
break;
case 1:/* for broadcast/multicast */
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
networkType = WIRELESS_11B;
else
networkType = WIRELESS_11G;
raid = networktype_to_raid(networkType);
mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
break;
default: /* for each sta in IBSS */
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
raid = networktype_to_raid(networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
/* todo: support HT in IBSS */
break;
}
rate_bitmap = 0x0fffffff;
rate_bitmap = ODM_Get_Rate_Bitmap(&haldata->odmpriv, mac_id, mask, rssi_level);
mask &= rate_bitmap;
init_rate = get_highest_rate_idx(mask) & 0x3f;
if (haldata->fw_ractrl) {
mask |= ((raid << 28) & 0xf0000000);
psta->ra_mask = mask;
mask |= ((raid << 28) & 0xf0000000);
/* to do ,for 8188E-SMIC */
rtl8188e_set_raid_cmd(adapt, mask);
} else {
ODM_RA_UpdateRateInfo_8188E(&haldata->odmpriv,
mac_id,
raid,
mask,
shortGIrate
);
}
/* set ra_id */
psta->raid = raid;
psta->init_rate = init_rate;
}
void SetBeaconRelatedRegisters8188EUsb(struct adapter *adapt)
{
u32 value32;
struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u32 bcn_ctrl_reg = REG_BCN_CTRL;
/* reset TSF, enable update TSF, correcting TSF On Beacon */
/* BCN interval */
rtw_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtw_write8(adapt, REG_ATIMWND, 0x02);/* 2ms */
_InitBeaconParameters(adapt);
rtw_write8(adapt, REG_SLOT, 0x09);
value32 = rtw_read32(adapt, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(adapt, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(adapt, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
rtw_write8(adapt, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(adapt, true, true);
ResumeTxBeacon(adapt);
rtw_write8(adapt, bcn_ctrl_reg, rtw_read8(adapt, bcn_ctrl_reg) | BIT(1));
}
void rtl8188eu_init_default_value(struct adapter *adapt)
{
struct hal_data_8188e *haldata = &adapt->haldata;
struct pwrctrl_priv *pwrctrlpriv;
u8 i;
pwrctrlpriv = &adapt->pwrctrlpriv;
/* init default value */
haldata->fw_ractrl = false;
if (!pwrctrlpriv->bkeepfwalive)
haldata->LastHMEBoxNum = 0;
/* init dm default value */
haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
haldata->pwrGroupCnt = 0;
haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for (i = 0; i < HP_THERMAL_NUM; i++)
haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
}