| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Restartable sequences system call |
| * |
| * Copyright (C) 2015, Google, Inc., |
| * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com> |
| * Copyright (C) 2015-2018, EfficiOS Inc., |
| * Mathieu Desnoyers <mathieu.desnoyers@efficios.com> |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/uaccess.h> |
| #include <linux/syscalls.h> |
| #include <linux/rseq.h> |
| #include <linux/types.h> |
| #include <asm/ptrace.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/rseq.h> |
| |
| #define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \ |
| RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT) |
| |
| /* |
| * |
| * Restartable sequences are a lightweight interface that allows |
| * user-level code to be executed atomically relative to scheduler |
| * preemption and signal delivery. Typically used for implementing |
| * per-cpu operations. |
| * |
| * It allows user-space to perform update operations on per-cpu data |
| * without requiring heavy-weight atomic operations. |
| * |
| * Detailed algorithm of rseq user-space assembly sequences: |
| * |
| * init(rseq_cs) |
| * cpu = TLS->rseq::cpu_id_start |
| * [1] TLS->rseq::rseq_cs = rseq_cs |
| * [start_ip] ---------------------------- |
| * [2] if (cpu != TLS->rseq::cpu_id) |
| * goto abort_ip; |
| * [3] <last_instruction_in_cs> |
| * [post_commit_ip] ---------------------------- |
| * |
| * The address of jump target abort_ip must be outside the critical |
| * region, i.e.: |
| * |
| * [abort_ip] < [start_ip] || [abort_ip] >= [post_commit_ip] |
| * |
| * Steps [2]-[3] (inclusive) need to be a sequence of instructions in |
| * userspace that can handle being interrupted between any of those |
| * instructions, and then resumed to the abort_ip. |
| * |
| * 1. Userspace stores the address of the struct rseq_cs assembly |
| * block descriptor into the rseq_cs field of the registered |
| * struct rseq TLS area. This update is performed through a single |
| * store within the inline assembly instruction sequence. |
| * [start_ip] |
| * |
| * 2. Userspace tests to check whether the current cpu_id field match |
| * the cpu number loaded before start_ip, branching to abort_ip |
| * in case of a mismatch. |
| * |
| * If the sequence is preempted or interrupted by a signal |
| * at or after start_ip and before post_commit_ip, then the kernel |
| * clears TLS->__rseq_abi::rseq_cs, and sets the user-space return |
| * ip to abort_ip before returning to user-space, so the preempted |
| * execution resumes at abort_ip. |
| * |
| * 3. Userspace critical section final instruction before |
| * post_commit_ip is the commit. The critical section is |
| * self-terminating. |
| * [post_commit_ip] |
| * |
| * 4. <success> |
| * |
| * On failure at [2], or if interrupted by preempt or signal delivery |
| * between [1] and [3]: |
| * |
| * [abort_ip] |
| * F1. <failure> |
| */ |
| |
| static int rseq_update_cpu_id(struct task_struct *t) |
| { |
| u32 cpu_id = raw_smp_processor_id(); |
| struct rseq __user *rseq = t->rseq; |
| |
| if (!user_write_access_begin(rseq, sizeof(*rseq))) |
| goto efault; |
| unsafe_put_user(cpu_id, &rseq->cpu_id_start, efault_end); |
| unsafe_put_user(cpu_id, &rseq->cpu_id, efault_end); |
| user_write_access_end(); |
| trace_rseq_update(t); |
| return 0; |
| |
| efault_end: |
| user_write_access_end(); |
| efault: |
| return -EFAULT; |
| } |
| |
| static int rseq_reset_rseq_cpu_id(struct task_struct *t) |
| { |
| u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED; |
| |
| /* |
| * Reset cpu_id_start to its initial state (0). |
| */ |
| if (put_user(cpu_id_start, &t->rseq->cpu_id_start)) |
| return -EFAULT; |
| /* |
| * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming |
| * in after unregistration can figure out that rseq needs to be |
| * registered again. |
| */ |
| if (put_user(cpu_id, &t->rseq->cpu_id)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs) |
| { |
| struct rseq_cs __user *urseq_cs; |
| u64 ptr; |
| u32 __user *usig; |
| u32 sig; |
| int ret; |
| |
| #ifdef CONFIG_64BIT |
| if (get_user(ptr, &t->rseq->rseq_cs)) |
| return -EFAULT; |
| #else |
| if (copy_from_user(&ptr, &t->rseq->rseq_cs, sizeof(ptr))) |
| return -EFAULT; |
| #endif |
| if (!ptr) { |
| memset(rseq_cs, 0, sizeof(*rseq_cs)); |
| return 0; |
| } |
| if (ptr >= TASK_SIZE) |
| return -EINVAL; |
| urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr; |
| if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs))) |
| return -EFAULT; |
| |
| if (rseq_cs->start_ip >= TASK_SIZE || |
| rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE || |
| rseq_cs->abort_ip >= TASK_SIZE || |
| rseq_cs->version > 0) |
| return -EINVAL; |
| /* Check for overflow. */ |
| if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip) |
| return -EINVAL; |
| /* Ensure that abort_ip is not in the critical section. */ |
| if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset) |
| return -EINVAL; |
| |
| usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32)); |
| ret = get_user(sig, usig); |
| if (ret) |
| return ret; |
| |
| if (current->rseq_sig != sig) { |
| printk_ratelimited(KERN_WARNING |
| "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n", |
| sig, current->rseq_sig, current->pid, usig); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int rseq_need_restart(struct task_struct *t, u32 cs_flags) |
| { |
| u32 flags, event_mask; |
| int ret; |
| |
| /* Get thread flags. */ |
| ret = get_user(flags, &t->rseq->flags); |
| if (ret) |
| return ret; |
| |
| /* Take critical section flags into account. */ |
| flags |= cs_flags; |
| |
| /* |
| * Restart on signal can only be inhibited when restart on |
| * preempt and restart on migrate are inhibited too. Otherwise, |
| * a preempted signal handler could fail to restart the prior |
| * execution context on sigreturn. |
| */ |
| if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) && |
| (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) != |
| RSEQ_CS_PREEMPT_MIGRATE_FLAGS)) |
| return -EINVAL; |
| |
| /* |
| * Load and clear event mask atomically with respect to |
| * scheduler preemption. |
| */ |
| preempt_disable(); |
| event_mask = t->rseq_event_mask; |
| t->rseq_event_mask = 0; |
| preempt_enable(); |
| |
| return !!(event_mask & ~flags); |
| } |
| |
| static int clear_rseq_cs(struct task_struct *t) |
| { |
| /* |
| * The rseq_cs field is set to NULL on preemption or signal |
| * delivery on top of rseq assembly block, as well as on top |
| * of code outside of the rseq assembly block. This performs |
| * a lazy clear of the rseq_cs field. |
| * |
| * Set rseq_cs to NULL. |
| */ |
| #ifdef CONFIG_64BIT |
| return put_user(0UL, &t->rseq->rseq_cs); |
| #else |
| if (clear_user(&t->rseq->rseq_cs, sizeof(t->rseq->rseq_cs))) |
| return -EFAULT; |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Unsigned comparison will be true when ip >= start_ip, and when |
| * ip < start_ip + post_commit_offset. |
| */ |
| static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs) |
| { |
| return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset; |
| } |
| |
| static int rseq_ip_fixup(struct pt_regs *regs) |
| { |
| unsigned long ip = instruction_pointer(regs); |
| struct task_struct *t = current; |
| struct rseq_cs rseq_cs; |
| int ret; |
| |
| ret = rseq_get_rseq_cs(t, &rseq_cs); |
| if (ret) |
| return ret; |
| |
| /* |
| * Handle potentially not being within a critical section. |
| * If not nested over a rseq critical section, restart is useless. |
| * Clear the rseq_cs pointer and return. |
| */ |
| if (!in_rseq_cs(ip, &rseq_cs)) |
| return clear_rseq_cs(t); |
| ret = rseq_need_restart(t, rseq_cs.flags); |
| if (ret <= 0) |
| return ret; |
| ret = clear_rseq_cs(t); |
| if (ret) |
| return ret; |
| trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset, |
| rseq_cs.abort_ip); |
| instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip); |
| return 0; |
| } |
| |
| /* |
| * This resume handler must always be executed between any of: |
| * - preemption, |
| * - signal delivery, |
| * and return to user-space. |
| * |
| * This is how we can ensure that the entire rseq critical section |
| * will issue the commit instruction only if executed atomically with |
| * respect to other threads scheduled on the same CPU, and with respect |
| * to signal handlers. |
| */ |
| void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) |
| { |
| struct task_struct *t = current; |
| int ret, sig; |
| |
| if (unlikely(t->flags & PF_EXITING)) |
| return; |
| |
| /* |
| * regs is NULL if and only if the caller is in a syscall path. Skip |
| * fixup and leave rseq_cs as is so that rseq_sycall() will detect and |
| * kill a misbehaving userspace on debug kernels. |
| */ |
| if (regs) { |
| ret = rseq_ip_fixup(regs); |
| if (unlikely(ret < 0)) |
| goto error; |
| } |
| if (unlikely(rseq_update_cpu_id(t))) |
| goto error; |
| return; |
| |
| error: |
| sig = ksig ? ksig->sig : 0; |
| force_sigsegv(sig); |
| } |
| |
| #ifdef CONFIG_DEBUG_RSEQ |
| |
| /* |
| * Terminate the process if a syscall is issued within a restartable |
| * sequence. |
| */ |
| void rseq_syscall(struct pt_regs *regs) |
| { |
| unsigned long ip = instruction_pointer(regs); |
| struct task_struct *t = current; |
| struct rseq_cs rseq_cs; |
| |
| if (!t->rseq) |
| return; |
| if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs)) |
| force_sig(SIGSEGV); |
| } |
| |
| #endif |
| |
| /* |
| * sys_rseq - setup restartable sequences for caller thread. |
| */ |
| SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, |
| int, flags, u32, sig) |
| { |
| int ret; |
| |
| if (flags & RSEQ_FLAG_UNREGISTER) { |
| if (flags & ~RSEQ_FLAG_UNREGISTER) |
| return -EINVAL; |
| /* Unregister rseq for current thread. */ |
| if (current->rseq != rseq || !current->rseq) |
| return -EINVAL; |
| if (rseq_len != sizeof(*rseq)) |
| return -EINVAL; |
| if (current->rseq_sig != sig) |
| return -EPERM; |
| ret = rseq_reset_rseq_cpu_id(current); |
| if (ret) |
| return ret; |
| current->rseq = NULL; |
| current->rseq_sig = 0; |
| return 0; |
| } |
| |
| if (unlikely(flags)) |
| return -EINVAL; |
| |
| if (current->rseq) { |
| /* |
| * If rseq is already registered, check whether |
| * the provided address differs from the prior |
| * one. |
| */ |
| if (current->rseq != rseq || rseq_len != sizeof(*rseq)) |
| return -EINVAL; |
| if (current->rseq_sig != sig) |
| return -EPERM; |
| /* Already registered. */ |
| return -EBUSY; |
| } |
| |
| /* |
| * If there was no rseq previously registered, |
| * ensure the provided rseq is properly aligned and valid. |
| */ |
| if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) || |
| rseq_len != sizeof(*rseq)) |
| return -EINVAL; |
| if (!access_ok(rseq, rseq_len)) |
| return -EFAULT; |
| current->rseq = rseq; |
| current->rseq_sig = sig; |
| /* |
| * If rseq was previously inactive, and has just been |
| * registered, ensure the cpu_id_start and cpu_id fields |
| * are updated before returning to user-space. |
| */ |
| rseq_set_notify_resume(current); |
| |
| return 0; |
| } |