| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2016-20 Intel Corporation. */ |
| |
| #include <linux/file.h> |
| #include <linux/freezer.h> |
| #include <linux/highmem.h> |
| #include <linux/kthread.h> |
| #include <linux/miscdevice.h> |
| #include <linux/node.h> |
| #include <linux/pagemap.h> |
| #include <linux/ratelimit.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/slab.h> |
| #include <linux/sysfs.h> |
| #include <asm/sgx.h> |
| #include "driver.h" |
| #include "encl.h" |
| #include "encls.h" |
| |
| struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; |
| static int sgx_nr_epc_sections; |
| static struct task_struct *ksgxd_tsk; |
| static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); |
| static DEFINE_XARRAY(sgx_epc_address_space); |
| |
| /* |
| * These variables are part of the state of the reclaimer, and must be accessed |
| * with sgx_reclaimer_lock acquired. |
| */ |
| static LIST_HEAD(sgx_active_page_list); |
| static DEFINE_SPINLOCK(sgx_reclaimer_lock); |
| |
| static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); |
| |
| /* Nodes with one or more EPC sections. */ |
| static nodemask_t sgx_numa_mask; |
| |
| /* |
| * Array with one list_head for each possible NUMA node. Each |
| * list contains all the sgx_epc_section's which are on that |
| * node. |
| */ |
| static struct sgx_numa_node *sgx_numa_nodes; |
| |
| static LIST_HEAD(sgx_dirty_page_list); |
| |
| /* |
| * Reset post-kexec EPC pages to the uninitialized state. The pages are removed |
| * from the input list, and made available for the page allocator. SECS pages |
| * prepending their children in the input list are left intact. |
| */ |
| static void __sgx_sanitize_pages(struct list_head *dirty_page_list) |
| { |
| struct sgx_epc_page *page; |
| LIST_HEAD(dirty); |
| int ret; |
| |
| /* dirty_page_list is thread-local, no need for a lock: */ |
| while (!list_empty(dirty_page_list)) { |
| if (kthread_should_stop()) |
| return; |
| |
| page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); |
| |
| /* |
| * Checking page->poison without holding the node->lock |
| * is racy, but losing the race (i.e. poison is set just |
| * after the check) just means __eremove() will be uselessly |
| * called for a page that sgx_free_epc_page() will put onto |
| * the node->sgx_poison_page_list later. |
| */ |
| if (page->poison) { |
| struct sgx_epc_section *section = &sgx_epc_sections[page->section]; |
| struct sgx_numa_node *node = section->node; |
| |
| spin_lock(&node->lock); |
| list_move(&page->list, &node->sgx_poison_page_list); |
| spin_unlock(&node->lock); |
| |
| continue; |
| } |
| |
| ret = __eremove(sgx_get_epc_virt_addr(page)); |
| if (!ret) { |
| /* |
| * page is now sanitized. Make it available via the SGX |
| * page allocator: |
| */ |
| list_del(&page->list); |
| sgx_free_epc_page(page); |
| } else { |
| /* The page is not yet clean - move to the dirty list. */ |
| list_move_tail(&page->list, &dirty); |
| } |
| |
| cond_resched(); |
| } |
| |
| list_splice(&dirty, dirty_page_list); |
| } |
| |
| static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) |
| { |
| struct sgx_encl_page *page = epc_page->owner; |
| struct sgx_encl *encl = page->encl; |
| struct sgx_encl_mm *encl_mm; |
| bool ret = true; |
| int idx; |
| |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { |
| if (!mmget_not_zero(encl_mm->mm)) |
| continue; |
| |
| mmap_read_lock(encl_mm->mm); |
| ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); |
| mmap_read_unlock(encl_mm->mm); |
| |
| mmput_async(encl_mm->mm); |
| |
| if (!ret) |
| break; |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| |
| if (!ret) |
| return false; |
| |
| return true; |
| } |
| |
| static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) |
| { |
| struct sgx_encl_page *page = epc_page->owner; |
| unsigned long addr = page->desc & PAGE_MASK; |
| struct sgx_encl *encl = page->encl; |
| unsigned long mm_list_version; |
| struct sgx_encl_mm *encl_mm; |
| struct vm_area_struct *vma; |
| int idx, ret; |
| |
| do { |
| mm_list_version = encl->mm_list_version; |
| |
| /* Pairs with smp_rmb() in sgx_encl_mm_add(). */ |
| smp_rmb(); |
| |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { |
| if (!mmget_not_zero(encl_mm->mm)) |
| continue; |
| |
| mmap_read_lock(encl_mm->mm); |
| |
| ret = sgx_encl_find(encl_mm->mm, addr, &vma); |
| if (!ret && encl == vma->vm_private_data) |
| zap_vma_ptes(vma, addr, PAGE_SIZE); |
| |
| mmap_read_unlock(encl_mm->mm); |
| |
| mmput_async(encl_mm->mm); |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| } while (unlikely(encl->mm_list_version != mm_list_version)); |
| |
| mutex_lock(&encl->lock); |
| |
| ret = __eblock(sgx_get_epc_virt_addr(epc_page)); |
| if (encls_failed(ret)) |
| ENCLS_WARN(ret, "EBLOCK"); |
| |
| mutex_unlock(&encl->lock); |
| } |
| |
| static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, |
| struct sgx_backing *backing) |
| { |
| struct sgx_pageinfo pginfo; |
| int ret; |
| |
| pginfo.addr = 0; |
| pginfo.secs = 0; |
| |
| pginfo.contents = (unsigned long)kmap_atomic(backing->contents); |
| pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) + |
| backing->pcmd_offset; |
| |
| ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); |
| |
| kunmap_atomic((void *)(unsigned long)(pginfo.metadata - |
| backing->pcmd_offset)); |
| kunmap_atomic((void *)(unsigned long)pginfo.contents); |
| |
| return ret; |
| } |
| |
| static void sgx_ipi_cb(void *info) |
| { |
| } |
| |
| static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl) |
| { |
| cpumask_t *cpumask = &encl->cpumask; |
| struct sgx_encl_mm *encl_mm; |
| int idx; |
| |
| /* |
| * Can race with sgx_encl_mm_add(), but ETRACK has already been |
| * executed, which means that the CPUs running in the new mm will enter |
| * into the enclave with a fresh epoch. |
| */ |
| cpumask_clear(cpumask); |
| |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { |
| if (!mmget_not_zero(encl_mm->mm)) |
| continue; |
| |
| cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); |
| |
| mmput_async(encl_mm->mm); |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| |
| return cpumask; |
| } |
| |
| /* |
| * Swap page to the regular memory transformed to the blocked state by using |
| * EBLOCK, which means that it can no longer be referenced (no new TLB entries). |
| * |
| * The first trial just tries to write the page assuming that some other thread |
| * has reset the count for threads inside the enclave by using ETRACK, and |
| * previous thread count has been zeroed out. The second trial calls ETRACK |
| * before EWB. If that fails we kick all the HW threads out, and then do EWB, |
| * which should be guaranteed the succeed. |
| */ |
| static void sgx_encl_ewb(struct sgx_epc_page *epc_page, |
| struct sgx_backing *backing) |
| { |
| struct sgx_encl_page *encl_page = epc_page->owner; |
| struct sgx_encl *encl = encl_page->encl; |
| struct sgx_va_page *va_page; |
| unsigned int va_offset; |
| void *va_slot; |
| int ret; |
| |
| encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; |
| |
| va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, |
| list); |
| va_offset = sgx_alloc_va_slot(va_page); |
| va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; |
| if (sgx_va_page_full(va_page)) |
| list_move_tail(&va_page->list, &encl->va_pages); |
| |
| ret = __sgx_encl_ewb(epc_page, va_slot, backing); |
| if (ret == SGX_NOT_TRACKED) { |
| ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); |
| if (ret) { |
| if (encls_failed(ret)) |
| ENCLS_WARN(ret, "ETRACK"); |
| } |
| |
| ret = __sgx_encl_ewb(epc_page, va_slot, backing); |
| if (ret == SGX_NOT_TRACKED) { |
| /* |
| * Slow path, send IPIs to kick cpus out of the |
| * enclave. Note, it's imperative that the cpu |
| * mask is generated *after* ETRACK, else we'll |
| * miss cpus that entered the enclave between |
| * generating the mask and incrementing epoch. |
| */ |
| on_each_cpu_mask(sgx_encl_ewb_cpumask(encl), |
| sgx_ipi_cb, NULL, 1); |
| ret = __sgx_encl_ewb(epc_page, va_slot, backing); |
| } |
| } |
| |
| if (ret) { |
| if (encls_failed(ret)) |
| ENCLS_WARN(ret, "EWB"); |
| |
| sgx_free_va_slot(va_page, va_offset); |
| } else { |
| encl_page->desc |= va_offset; |
| encl_page->va_page = va_page; |
| } |
| } |
| |
| static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, |
| struct sgx_backing *backing) |
| { |
| struct sgx_encl_page *encl_page = epc_page->owner; |
| struct sgx_encl *encl = encl_page->encl; |
| struct sgx_backing secs_backing; |
| int ret; |
| |
| mutex_lock(&encl->lock); |
| |
| sgx_encl_ewb(epc_page, backing); |
| encl_page->epc_page = NULL; |
| encl->secs_child_cnt--; |
| |
| if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { |
| ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size), |
| &secs_backing); |
| if (ret) |
| goto out; |
| |
| sgx_encl_ewb(encl->secs.epc_page, &secs_backing); |
| |
| sgx_encl_free_epc_page(encl->secs.epc_page); |
| encl->secs.epc_page = NULL; |
| |
| sgx_encl_put_backing(&secs_backing, true); |
| } |
| |
| out: |
| mutex_unlock(&encl->lock); |
| } |
| |
| /* |
| * Take a fixed number of pages from the head of the active page pool and |
| * reclaim them to the enclave's private shmem files. Skip the pages, which have |
| * been accessed since the last scan. Move those pages to the tail of active |
| * page pool so that the pages get scanned in LRU like fashion. |
| * |
| * Batch process a chunk of pages (at the moment 16) in order to degrade amount |
| * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit |
| * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI |
| * + EWB) but not sufficiently. Reclaiming one page at a time would also be |
| * problematic as it would increase the lock contention too much, which would |
| * halt forward progress. |
| */ |
| static void sgx_reclaim_pages(void) |
| { |
| struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; |
| struct sgx_backing backing[SGX_NR_TO_SCAN]; |
| struct sgx_epc_section *section; |
| struct sgx_encl_page *encl_page; |
| struct sgx_epc_page *epc_page; |
| struct sgx_numa_node *node; |
| pgoff_t page_index; |
| int cnt = 0; |
| int ret; |
| int i; |
| |
| spin_lock(&sgx_reclaimer_lock); |
| for (i = 0; i < SGX_NR_TO_SCAN; i++) { |
| if (list_empty(&sgx_active_page_list)) |
| break; |
| |
| epc_page = list_first_entry(&sgx_active_page_list, |
| struct sgx_epc_page, list); |
| list_del_init(&epc_page->list); |
| encl_page = epc_page->owner; |
| |
| if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) |
| chunk[cnt++] = epc_page; |
| else |
| /* The owner is freeing the page. No need to add the |
| * page back to the list of reclaimable pages. |
| */ |
| epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; |
| } |
| spin_unlock(&sgx_reclaimer_lock); |
| |
| for (i = 0; i < cnt; i++) { |
| epc_page = chunk[i]; |
| encl_page = epc_page->owner; |
| |
| if (!sgx_reclaimer_age(epc_page)) |
| goto skip; |
| |
| page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); |
| ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]); |
| if (ret) |
| goto skip; |
| |
| mutex_lock(&encl_page->encl->lock); |
| encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; |
| mutex_unlock(&encl_page->encl->lock); |
| continue; |
| |
| skip: |
| spin_lock(&sgx_reclaimer_lock); |
| list_add_tail(&epc_page->list, &sgx_active_page_list); |
| spin_unlock(&sgx_reclaimer_lock); |
| |
| kref_put(&encl_page->encl->refcount, sgx_encl_release); |
| |
| chunk[i] = NULL; |
| } |
| |
| for (i = 0; i < cnt; i++) { |
| epc_page = chunk[i]; |
| if (epc_page) |
| sgx_reclaimer_block(epc_page); |
| } |
| |
| for (i = 0; i < cnt; i++) { |
| epc_page = chunk[i]; |
| if (!epc_page) |
| continue; |
| |
| encl_page = epc_page->owner; |
| sgx_reclaimer_write(epc_page, &backing[i]); |
| sgx_encl_put_backing(&backing[i], true); |
| |
| kref_put(&encl_page->encl->refcount, sgx_encl_release); |
| epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; |
| |
| section = &sgx_epc_sections[epc_page->section]; |
| node = section->node; |
| |
| spin_lock(&node->lock); |
| list_add_tail(&epc_page->list, &node->free_page_list); |
| spin_unlock(&node->lock); |
| atomic_long_inc(&sgx_nr_free_pages); |
| } |
| } |
| |
| static bool sgx_should_reclaim(unsigned long watermark) |
| { |
| return atomic_long_read(&sgx_nr_free_pages) < watermark && |
| !list_empty(&sgx_active_page_list); |
| } |
| |
| static int ksgxd(void *p) |
| { |
| set_freezable(); |
| |
| /* |
| * Sanitize pages in order to recover from kexec(). The 2nd pass is |
| * required for SECS pages, whose child pages blocked EREMOVE. |
| */ |
| __sgx_sanitize_pages(&sgx_dirty_page_list); |
| __sgx_sanitize_pages(&sgx_dirty_page_list); |
| |
| /* sanity check: */ |
| WARN_ON(!list_empty(&sgx_dirty_page_list)); |
| |
| while (!kthread_should_stop()) { |
| if (try_to_freeze()) |
| continue; |
| |
| wait_event_freezable(ksgxd_waitq, |
| kthread_should_stop() || |
| sgx_should_reclaim(SGX_NR_HIGH_PAGES)); |
| |
| if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) |
| sgx_reclaim_pages(); |
| |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| static bool __init sgx_page_reclaimer_init(void) |
| { |
| struct task_struct *tsk; |
| |
| tsk = kthread_run(ksgxd, NULL, "ksgxd"); |
| if (IS_ERR(tsk)) |
| return false; |
| |
| ksgxd_tsk = tsk; |
| |
| return true; |
| } |
| |
| static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) |
| { |
| struct sgx_numa_node *node = &sgx_numa_nodes[nid]; |
| struct sgx_epc_page *page = NULL; |
| |
| spin_lock(&node->lock); |
| |
| if (list_empty(&node->free_page_list)) { |
| spin_unlock(&node->lock); |
| return NULL; |
| } |
| |
| page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); |
| list_del_init(&page->list); |
| page->flags = 0; |
| |
| spin_unlock(&node->lock); |
| atomic_long_dec(&sgx_nr_free_pages); |
| |
| return page; |
| } |
| |
| /** |
| * __sgx_alloc_epc_page() - Allocate an EPC page |
| * |
| * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start |
| * from the NUMA node, where the caller is executing. |
| * |
| * Return: |
| * - an EPC page: A borrowed EPC pages were available. |
| * - NULL: Out of EPC pages. |
| */ |
| struct sgx_epc_page *__sgx_alloc_epc_page(void) |
| { |
| struct sgx_epc_page *page; |
| int nid_of_current = numa_node_id(); |
| int nid = nid_of_current; |
| |
| if (node_isset(nid_of_current, sgx_numa_mask)) { |
| page = __sgx_alloc_epc_page_from_node(nid_of_current); |
| if (page) |
| return page; |
| } |
| |
| /* Fall back to the non-local NUMA nodes: */ |
| while (true) { |
| nid = next_node_in(nid, sgx_numa_mask); |
| if (nid == nid_of_current) |
| break; |
| |
| page = __sgx_alloc_epc_page_from_node(nid); |
| if (page) |
| return page; |
| } |
| |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /** |
| * sgx_mark_page_reclaimable() - Mark a page as reclaimable |
| * @page: EPC page |
| * |
| * Mark a page as reclaimable and add it to the active page list. Pages |
| * are automatically removed from the active list when freed. |
| */ |
| void sgx_mark_page_reclaimable(struct sgx_epc_page *page) |
| { |
| spin_lock(&sgx_reclaimer_lock); |
| page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; |
| list_add_tail(&page->list, &sgx_active_page_list); |
| spin_unlock(&sgx_reclaimer_lock); |
| } |
| |
| /** |
| * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list |
| * @page: EPC page |
| * |
| * Clear the reclaimable flag and remove the page from the active page list. |
| * |
| * Return: |
| * 0 on success, |
| * -EBUSY if the page is in the process of being reclaimed |
| */ |
| int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) |
| { |
| spin_lock(&sgx_reclaimer_lock); |
| if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { |
| /* The page is being reclaimed. */ |
| if (list_empty(&page->list)) { |
| spin_unlock(&sgx_reclaimer_lock); |
| return -EBUSY; |
| } |
| |
| list_del(&page->list); |
| page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; |
| } |
| spin_unlock(&sgx_reclaimer_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * sgx_alloc_epc_page() - Allocate an EPC page |
| * @owner: the owner of the EPC page |
| * @reclaim: reclaim pages if necessary |
| * |
| * Iterate through EPC sections and borrow a free EPC page to the caller. When a |
| * page is no longer needed it must be released with sgx_free_epc_page(). If |
| * @reclaim is set to true, directly reclaim pages when we are out of pages. No |
| * mm's can be locked when @reclaim is set to true. |
| * |
| * Finally, wake up ksgxd when the number of pages goes below the watermark |
| * before returning back to the caller. |
| * |
| * Return: |
| * an EPC page, |
| * -errno on error |
| */ |
| struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) |
| { |
| struct sgx_epc_page *page; |
| |
| for ( ; ; ) { |
| page = __sgx_alloc_epc_page(); |
| if (!IS_ERR(page)) { |
| page->owner = owner; |
| break; |
| } |
| |
| if (list_empty(&sgx_active_page_list)) |
| return ERR_PTR(-ENOMEM); |
| |
| if (!reclaim) { |
| page = ERR_PTR(-EBUSY); |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| page = ERR_PTR(-ERESTARTSYS); |
| break; |
| } |
| |
| sgx_reclaim_pages(); |
| cond_resched(); |
| } |
| |
| if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) |
| wake_up(&ksgxd_waitq); |
| |
| return page; |
| } |
| |
| /** |
| * sgx_free_epc_page() - Free an EPC page |
| * @page: an EPC page |
| * |
| * Put the EPC page back to the list of free pages. It's the caller's |
| * responsibility to make sure that the page is in uninitialized state. In other |
| * words, do EREMOVE, EWB or whatever operation is necessary before calling |
| * this function. |
| */ |
| void sgx_free_epc_page(struct sgx_epc_page *page) |
| { |
| struct sgx_epc_section *section = &sgx_epc_sections[page->section]; |
| struct sgx_numa_node *node = section->node; |
| |
| spin_lock(&node->lock); |
| |
| page->owner = NULL; |
| if (page->poison) |
| list_add(&page->list, &node->sgx_poison_page_list); |
| else |
| list_add_tail(&page->list, &node->free_page_list); |
| page->flags = SGX_EPC_PAGE_IS_FREE; |
| |
| spin_unlock(&node->lock); |
| atomic_long_inc(&sgx_nr_free_pages); |
| } |
| |
| static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, |
| unsigned long index, |
| struct sgx_epc_section *section) |
| { |
| unsigned long nr_pages = size >> PAGE_SHIFT; |
| unsigned long i; |
| |
| section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); |
| if (!section->virt_addr) |
| return false; |
| |
| section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page)); |
| if (!section->pages) { |
| memunmap(section->virt_addr); |
| return false; |
| } |
| |
| section->phys_addr = phys_addr; |
| xa_store_range(&sgx_epc_address_space, section->phys_addr, |
| phys_addr + size - 1, section, GFP_KERNEL); |
| |
| for (i = 0; i < nr_pages; i++) { |
| section->pages[i].section = index; |
| section->pages[i].flags = 0; |
| section->pages[i].owner = NULL; |
| section->pages[i].poison = 0; |
| list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); |
| } |
| |
| return true; |
| } |
| |
| bool arch_is_platform_page(u64 paddr) |
| { |
| return !!xa_load(&sgx_epc_address_space, paddr); |
| } |
| EXPORT_SYMBOL_GPL(arch_is_platform_page); |
| |
| static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr) |
| { |
| struct sgx_epc_section *section; |
| |
| section = xa_load(&sgx_epc_address_space, paddr); |
| if (!section) |
| return NULL; |
| |
| return §ion->pages[PFN_DOWN(paddr - section->phys_addr)]; |
| } |
| |
| /* |
| * Called in process context to handle a hardware reported |
| * error in an SGX EPC page. |
| * If the MF_ACTION_REQUIRED bit is set in flags, then the |
| * context is the task that consumed the poison data. Otherwise |
| * this is called from a kernel thread unrelated to the page. |
| */ |
| int arch_memory_failure(unsigned long pfn, int flags) |
| { |
| struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT); |
| struct sgx_epc_section *section; |
| struct sgx_numa_node *node; |
| |
| /* |
| * mm/memory-failure.c calls this routine for all errors |
| * where there isn't a "struct page" for the address. But that |
| * includes other address ranges besides SGX. |
| */ |
| if (!page) |
| return -ENXIO; |
| |
| /* |
| * If poison was consumed synchronously. Send a SIGBUS to |
| * the task. Hardware has already exited the SGX enclave and |
| * will not allow re-entry to an enclave that has a memory |
| * error. The signal may help the task understand why the |
| * enclave is broken. |
| */ |
| if (flags & MF_ACTION_REQUIRED) |
| force_sig(SIGBUS); |
| |
| section = &sgx_epc_sections[page->section]; |
| node = section->node; |
| |
| spin_lock(&node->lock); |
| |
| /* Already poisoned? Nothing more to do */ |
| if (page->poison) |
| goto out; |
| |
| page->poison = 1; |
| |
| /* |
| * If the page is on a free list, move it to the per-node |
| * poison page list. |
| */ |
| if (page->flags & SGX_EPC_PAGE_IS_FREE) { |
| list_move(&page->list, &node->sgx_poison_page_list); |
| goto out; |
| } |
| |
| /* |
| * TBD: Add additional plumbing to enable pre-emptive |
| * action for asynchronous poison notification. Until |
| * then just hope that the poison: |
| * a) is not accessed - sgx_free_epc_page() will deal with it |
| * when the user gives it back |
| * b) results in a recoverable machine check rather than |
| * a fatal one |
| */ |
| out: |
| spin_unlock(&node->lock); |
| return 0; |
| } |
| |
| /** |
| * A section metric is concatenated in a way that @low bits 12-31 define the |
| * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the |
| * metric. |
| */ |
| static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) |
| { |
| return (low & GENMASK_ULL(31, 12)) + |
| ((high & GENMASK_ULL(19, 0)) << 32); |
| } |
| |
| #ifdef CONFIG_NUMA |
| static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size); |
| } |
| static DEVICE_ATTR_RO(sgx_total_bytes); |
| |
| static umode_t arch_node_attr_is_visible(struct kobject *kobj, |
| struct attribute *attr, int idx) |
| { |
| /* Make all x86/ attributes invisible when SGX is not initialized: */ |
| if (nodes_empty(sgx_numa_mask)) |
| return 0; |
| |
| return attr->mode; |
| } |
| |
| static struct attribute *arch_node_dev_attrs[] = { |
| &dev_attr_sgx_total_bytes.attr, |
| NULL, |
| }; |
| |
| const struct attribute_group arch_node_dev_group = { |
| .name = "x86", |
| .attrs = arch_node_dev_attrs, |
| .is_visible = arch_node_attr_is_visible, |
| }; |
| |
| static void __init arch_update_sysfs_visibility(int nid) |
| { |
| struct node *node = node_devices[nid]; |
| int ret; |
| |
| ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group); |
| |
| if (ret) |
| pr_err("sysfs update failed (%d), files may be invisible", ret); |
| } |
| #else /* !CONFIG_NUMA */ |
| static void __init arch_update_sysfs_visibility(int nid) {} |
| #endif |
| |
| static bool __init sgx_page_cache_init(void) |
| { |
| u32 eax, ebx, ecx, edx, type; |
| u64 pa, size; |
| int nid; |
| int i; |
| |
| sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); |
| if (!sgx_numa_nodes) |
| return false; |
| |
| for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { |
| cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); |
| |
| type = eax & SGX_CPUID_EPC_MASK; |
| if (type == SGX_CPUID_EPC_INVALID) |
| break; |
| |
| if (type != SGX_CPUID_EPC_SECTION) { |
| pr_err_once("Unknown EPC section type: %u\n", type); |
| break; |
| } |
| |
| pa = sgx_calc_section_metric(eax, ebx); |
| size = sgx_calc_section_metric(ecx, edx); |
| |
| pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); |
| |
| if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { |
| pr_err("No free memory for an EPC section\n"); |
| break; |
| } |
| |
| nid = numa_map_to_online_node(phys_to_target_node(pa)); |
| if (nid == NUMA_NO_NODE) { |
| /* The physical address is already printed above. */ |
| pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); |
| nid = 0; |
| } |
| |
| if (!node_isset(nid, sgx_numa_mask)) { |
| spin_lock_init(&sgx_numa_nodes[nid].lock); |
| INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); |
| INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list); |
| node_set(nid, sgx_numa_mask); |
| sgx_numa_nodes[nid].size = 0; |
| |
| /* Make SGX-specific node sysfs files visible: */ |
| arch_update_sysfs_visibility(nid); |
| } |
| |
| sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; |
| sgx_numa_nodes[nid].size += size; |
| |
| sgx_nr_epc_sections++; |
| } |
| |
| if (!sgx_nr_epc_sections) { |
| pr_err("There are zero EPC sections.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. |
| * Bare-metal driver requires to update them to hash of enclave's signer |
| * before EINIT. KVM needs to update them to guest's virtual MSR values |
| * before doing EINIT from guest. |
| */ |
| void sgx_update_lepubkeyhash(u64 *lepubkeyhash) |
| { |
| int i; |
| |
| WARN_ON_ONCE(preemptible()); |
| |
| for (i = 0; i < 4; i++) |
| wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); |
| } |
| |
| const struct file_operations sgx_provision_fops = { |
| .owner = THIS_MODULE, |
| }; |
| |
| static struct miscdevice sgx_dev_provision = { |
| .minor = MISC_DYNAMIC_MINOR, |
| .name = "sgx_provision", |
| .nodename = "sgx_provision", |
| .fops = &sgx_provision_fops, |
| }; |
| |
| /** |
| * sgx_set_attribute() - Update allowed attributes given file descriptor |
| * @allowed_attributes: Pointer to allowed enclave attributes |
| * @attribute_fd: File descriptor for specific attribute |
| * |
| * Append enclave attribute indicated by file descriptor to allowed |
| * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by |
| * /dev/sgx_provision is supported. |
| * |
| * Return: |
| * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes |
| * -EINVAL: Invalid, or not supported file descriptor |
| */ |
| int sgx_set_attribute(unsigned long *allowed_attributes, |
| unsigned int attribute_fd) |
| { |
| struct file *file; |
| |
| file = fget(attribute_fd); |
| if (!file) |
| return -EINVAL; |
| |
| if (file->f_op != &sgx_provision_fops) { |
| fput(file); |
| return -EINVAL; |
| } |
| |
| *allowed_attributes |= SGX_ATTR_PROVISIONKEY; |
| |
| fput(file); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sgx_set_attribute); |
| |
| static int __init sgx_init(void) |
| { |
| int ret; |
| int i; |
| |
| if (!cpu_feature_enabled(X86_FEATURE_SGX)) |
| return -ENODEV; |
| |
| if (!sgx_page_cache_init()) |
| return -ENOMEM; |
| |
| if (!sgx_page_reclaimer_init()) { |
| ret = -ENOMEM; |
| goto err_page_cache; |
| } |
| |
| ret = misc_register(&sgx_dev_provision); |
| if (ret) |
| goto err_kthread; |
| |
| /* |
| * Always try to initialize the native *and* KVM drivers. |
| * The KVM driver is less picky than the native one and |
| * can function if the native one is not supported on the |
| * current system or fails to initialize. |
| * |
| * Error out only if both fail to initialize. |
| */ |
| ret = sgx_drv_init(); |
| |
| if (sgx_vepc_init() && ret) |
| goto err_provision; |
| |
| return 0; |
| |
| err_provision: |
| misc_deregister(&sgx_dev_provision); |
| |
| err_kthread: |
| kthread_stop(ksgxd_tsk); |
| |
| err_page_cache: |
| for (i = 0; i < sgx_nr_epc_sections; i++) { |
| vfree(sgx_epc_sections[i].pages); |
| memunmap(sgx_epc_sections[i].virt_addr); |
| } |
| |
| return ret; |
| } |
| |
| device_initcall(sgx_init); |