blob: 86e55d028cbf1232db69383871017fbddfef7ef8 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "link_encoder.h"
#include "dce_link_encoder.h"
#include "stream_encoder.h"
#include "i2caux_interface.h"
#include "dc_bios_types.h"
#include "gpio_service_interface.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dce/dce_11_0_enum.h"
#ifndef ATOM_S2_CURRENT_BL_LEVEL_MASK
#define ATOM_S2_CURRENT_BL_LEVEL_MASK 0x0000FF00L
#define ATOM_S2_VRI_BRIGHT_ENABLE 0x20000000L
#endif
#ifndef ATOM_S2_CURRENT_BL_LEVEL_SHIFT
#define ATOM_S2_CURRENT_BL_LEVEL_SHIFT 8
#endif
#ifndef HPD0_DC_HPD_CONTROL__DC_HPD_EN_MASK
#define HPD0_DC_HPD_CONTROL__DC_HPD_EN_MASK 0x10000000L
#endif
#ifndef HPD0_DC_HPD_CONTROL__DC_HPD_EN__SHIFT
#define HPD0_DC_HPD_CONTROL__DC_HPD_EN__SHIFT 0x1c
#endif
#define CTX \
enc110->base.ctx
#define REG(reg)\
(enc110->link_regs->reg)
#define AUX_REG(reg)\
(enc110->aux_regs->reg)
#define HPD_REG(reg)\
(enc110->hpd_regs->reg)
/* For current ASICs pixel clock - 600MHz */
#define MAX_ENCODER_CLK 600000
#define DCE11_UNIPHY_MAX_PIXEL_CLK_IN_KHZ 594000
#define DEFAULT_AUX_MAX_DATA_SIZE 16
#define AUX_MAX_DEFER_WRITE_RETRY 20
/*
* @brief
* Trigger Source Select
* ASIC-dependent, actual values for register programming
*/
#define DCE110_DIG_FE_SOURCE_SELECT_INVALID 0x0
#define DCE110_DIG_FE_SOURCE_SELECT_DIGA 0x1
#define DCE110_DIG_FE_SOURCE_SELECT_DIGB 0x2
#define DCE110_DIG_FE_SOURCE_SELECT_DIGC 0x4
#define DCE110_DIG_FE_SOURCE_SELECT_DIGD 0x08
#define DCE110_DIG_FE_SOURCE_SELECT_DIGE 0x10
#define DCE110_DIG_FE_SOURCE_SELECT_DIGF 0x20
/* all values are in milliseconds */
/* For eDP, after power-up/power/down,
* 300/500 msec max. delay from LCDVCC to black video generation */
#define PANEL_POWER_UP_TIMEOUT 300
#define PANEL_POWER_DOWN_TIMEOUT 500
#define HPD_CHECK_INTERVAL 10
/* Minimum pixel clock, in KHz. For TMDS signal is 25.00 MHz */
#define TMDS_MIN_PIXEL_CLOCK 25000
/* Maximum pixel clock, in KHz. For TMDS signal is 165.00 MHz */
#define TMDS_MAX_PIXEL_CLOCK 165000
/* For current ASICs pixel clock - 600MHz */
#define MAX_ENCODER_CLOCK 600000
/* Set the ABM Pipe */
#define MCP_ABM_PIPE_SET 0x66
/* Set the ABM level */
#define MCP_ABM_LEVEL_SET 0x65
/* Set backlight level */
#define MCP_BL_SET 0x67
/* PSR related commands */
#define PSR_ENABLE 0x20
#define PSR_EXIT 0x21
#define PSR_SET 0x23
/*TODO: Used for psr wakeup for set backlight level*/
static unsigned int psr_crtc_offset;
/* registers setting needs to be save and restored used at InitBacklight */
static struct dce110_abm_backlight_registers stored_backlight_registers;
enum {
DP_MST_UPDATE_MAX_RETRY = 50
};
#define DIG_REG(reg)\
(reg + enc110->offsets.dig)
#define DP_REG(reg)\
(reg + enc110->offsets.dp)
static const struct link_encoder_funcs dce110_lnk_enc_funcs = {
.validate_output_with_stream =
dce110_link_encoder_validate_output_with_stream,
.hw_init = dce110_link_encoder_hw_init,
.setup = dce110_link_encoder_setup,
.enable_tmds_output = dce110_link_encoder_enable_tmds_output,
.enable_dp_output = dce110_link_encoder_enable_dp_output,
.enable_dp_mst_output = dce110_link_encoder_enable_dp_mst_output,
.disable_output = dce110_link_encoder_disable_output,
.dp_set_lane_settings = dce110_link_encoder_dp_set_lane_settings,
.dp_set_phy_pattern = dce110_link_encoder_dp_set_phy_pattern,
.update_mst_stream_allocation_table =
dce110_link_encoder_update_mst_stream_allocation_table,
.set_lcd_backlight_level = dce110_link_encoder_set_lcd_backlight_level,
.set_dmcu_backlight_level =
dce110_link_encoder_set_dmcu_backlight_level,
.init_dmcu_backlight_settings =
dce110_link_encoder_init_dmcu_backlight_settings,
.set_dmcu_abm_level = dce110_link_encoder_set_dmcu_abm_level,
.set_dmcu_psr_enable = dce110_link_encoder_set_dmcu_psr_enable,
.setup_dmcu_psr = dce110_link_encoder_setup_dmcu_psr,
.backlight_control = dce110_link_encoder_edp_backlight_control,
.power_control = dce110_link_encoder_edp_power_control,
.connect_dig_be_to_fe = dce110_link_encoder_connect_dig_be_to_fe,
.enable_hpd = dce110_link_encoder_enable_hpd,
.disable_hpd = dce110_link_encoder_disable_hpd,
.destroy = dce110_link_encoder_destroy
};
static enum bp_result link_transmitter_control(
struct dce110_link_encoder *enc110,
struct bp_transmitter_control *cntl)
{
enum bp_result result;
struct dc_bios *bp = enc110->base.ctx->dc_bios;
result = bp->funcs->transmitter_control(bp, cntl);
return result;
}
static void enable_phy_bypass_mode(
struct dce110_link_encoder *enc110,
bool enable)
{
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_UPDATE(DP_DPHY_CNTL, DPHY_BYPASS, enable);
}
static void disable_prbs_symbols(
struct dce110_link_encoder *enc110,
bool disable)
{
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_UPDATE_4(DP_DPHY_CNTL,
DPHY_ATEST_SEL_LANE0, disable,
DPHY_ATEST_SEL_LANE1, disable,
DPHY_ATEST_SEL_LANE2, disable,
DPHY_ATEST_SEL_LANE3, disable);
}
static void disable_prbs_mode(
struct dce110_link_encoder *enc110)
{
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_UPDATE(DP_DPHY_PRBS_CNTL, DPHY_PRBS_EN, 0);
}
static void program_pattern_symbols(
struct dce110_link_encoder *enc110,
uint16_t pattern_symbols[8])
{
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_SET_3(DP_DPHY_SYM0, 0,
DPHY_SYM1, pattern_symbols[0],
DPHY_SYM2, pattern_symbols[1],
DPHY_SYM3, pattern_symbols[2]);
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_SET_3(DP_DPHY_SYM1, 0,
DPHY_SYM4, pattern_symbols[3],
DPHY_SYM5, pattern_symbols[4],
DPHY_SYM6, pattern_symbols[5]);
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_SET_2(DP_DPHY_SYM2, 0,
DPHY_SYM7, pattern_symbols[6],
DPHY_SYM8, pattern_symbols[7]);
}
static void set_dp_phy_pattern_d102(
struct dce110_link_encoder *enc110)
{
/* Disable PHY Bypass mode to setup the test pattern */
enable_phy_bypass_mode(enc110, false);
/* For 10-bit PRBS or debug symbols
* please use the following sequence: */
/* Enable debug symbols on the lanes */
disable_prbs_symbols(enc110, true);
/* Disable PRBS mode,
* make sure DPHY_PRBS_CNTL.DPHY_PRBS_EN=0 */
disable_prbs_mode(enc110);
/* Program debug symbols to be output */
{
uint16_t pattern_symbols[8] = {
0x2AA, 0x2AA, 0x2AA, 0x2AA,
0x2AA, 0x2AA, 0x2AA, 0x2AA
};
program_pattern_symbols(enc110, pattern_symbols);
}
/* Enable phy bypass mode to enable the test pattern */
enable_phy_bypass_mode(enc110, true);
}
static void set_link_training_complete(
struct dce110_link_encoder *enc110,
bool complete)
{
/* This register resides in DP back end block;
* transmitter is used for the offset */
REG_UPDATE(DP_LINK_CNTL, DP_LINK_TRAINING_COMPLETE, complete);
}
void dce110_link_encoder_set_dp_phy_pattern_training_pattern(
struct link_encoder *enc,
uint32_t index)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
/* Write Training Pattern */
REG_WRITE(DP_DPHY_TRAINING_PATTERN_SEL, index);
/* Set HW Register Training Complete to false */
set_link_training_complete(enc110, false);
/* Disable PHY Bypass mode to output Training Pattern */
enable_phy_bypass_mode(enc110, false);
/* Disable PRBS mode,
* make sure DPHY_PRBS_CNTL.DPHY_PRBS_EN=0 */
disable_prbs_mode(enc110);
}
static void set_dp_phy_pattern_symbol_error(
struct dce110_link_encoder *enc110)
{
/* Disable PHY Bypass mode to setup the test pattern */
uint32_t value = 0x0;
enable_phy_bypass_mode(enc110, false);
/* program correct panel mode*/
{
ASSERT(REG(DP_DPHY_INTERNAL_CTRL));
/*DCE 120 does not have this reg*/
REG_WRITE(DP_DPHY_INTERNAL_CTRL, value);
}
/* A PRBS23 pattern is used for most DP electrical measurements. */
/* Enable PRBS symbols on the lanes */
disable_prbs_symbols(enc110, false);
/* For PRBS23 Set bit DPHY_PRBS_SEL=1 and Set bit DPHY_PRBS_EN=1 */
{
REG_UPDATE_2(DP_DPHY_PRBS_CNTL,
DPHY_PRBS_SEL, 1,
DPHY_PRBS_EN, 1);
}
/* Enable phy bypass mode to enable the test pattern */
enable_phy_bypass_mode(enc110, true);
}
static void set_dp_phy_pattern_prbs7(
struct dce110_link_encoder *enc110)
{
/* Disable PHY Bypass mode to setup the test pattern */
enable_phy_bypass_mode(enc110, false);
/* A PRBS7 pattern is used for most DP electrical measurements. */
/* Enable PRBS symbols on the lanes */
disable_prbs_symbols(enc110, false);
/* For PRBS7 Set bit DPHY_PRBS_SEL=0 and Set bit DPHY_PRBS_EN=1 */
{
REG_UPDATE_2(DP_DPHY_PRBS_CNTL,
DPHY_PRBS_SEL, 0,
DPHY_PRBS_EN, 1);
}
/* Enable phy bypass mode to enable the test pattern */
enable_phy_bypass_mode(enc110, true);
}
static void set_dp_phy_pattern_80bit_custom(
struct dce110_link_encoder *enc110,
const uint8_t *pattern)
{
/* Disable PHY Bypass mode to setup the test pattern */
enable_phy_bypass_mode(enc110, false);
/* Enable debug symbols on the lanes */
disable_prbs_symbols(enc110, true);
/* Enable PHY bypass mode to enable the test pattern */
/* TODO is it really needed ? */
enable_phy_bypass_mode(enc110, true);
/* Program 80 bit custom pattern */
{
uint16_t pattern_symbols[8];
pattern_symbols[0] =
((pattern[1] & 0x03) << 8) | pattern[0];
pattern_symbols[1] =
((pattern[2] & 0x0f) << 6) | ((pattern[1] >> 2) & 0x3f);
pattern_symbols[2] =
((pattern[3] & 0x3f) << 4) | ((pattern[2] >> 4) & 0x0f);
pattern_symbols[3] =
(pattern[4] << 2) | ((pattern[3] >> 6) & 0x03);
pattern_symbols[4] =
((pattern[6] & 0x03) << 8) | pattern[5];
pattern_symbols[5] =
((pattern[7] & 0x0f) << 6) | ((pattern[6] >> 2) & 0x3f);
pattern_symbols[6] =
((pattern[8] & 0x3f) << 4) | ((pattern[7] >> 4) & 0x0f);
pattern_symbols[7] =
(pattern[9] << 2) | ((pattern[8] >> 6) & 0x03);
program_pattern_symbols(enc110, pattern_symbols);
}
/* Enable phy bypass mode to enable the test pattern */
enable_phy_bypass_mode(enc110, true);
}
static void set_dp_phy_pattern_hbr2_compliance(
struct dce110_link_encoder *enc110)
{
/* previously there is a register DP_HBR2_EYE_PATTERN
* that is enabled to get the pattern.
* But it does not work with the latest spec change,
* so we are programming the following registers manually.
*
* The following settings have been confirmed
* by Nick Chorney and Sandra Liu */
/* Disable PHY Bypass mode to setup the test pattern */
enable_phy_bypass_mode(enc110, false);
/* Setup DIG encoder in DP SST mode */
enc110->base.funcs->setup(&enc110->base, SIGNAL_TYPE_DISPLAY_PORT);
/* program correct panel mode*/
{
ASSERT(REG(DP_DPHY_INTERNAL_CTRL));
REG_WRITE(DP_DPHY_INTERNAL_CTRL, 0x0);
}
/* no vbid after BS (SR)
* DP_LINK_FRAMING_CNTL changed history Sandra Liu
* 11000260 / 11000104 / 110000FC */
/* TODO DP_LINK_FRAMING_CNTL should always use hardware default value
* output except output hbr2_compliance pattern for physical PHY
* measurement. This is not normal usage case. SW should reset this
* register to hardware default value after end use of HBR2 eye
*/
BREAK_TO_DEBUGGER();
/* TODO: do we still need this, find out at compliance test
addr = mmDP_LINK_FRAMING_CNTL + fe_addr_offset;
value = dal_read_reg(ctx, addr);
set_reg_field_value(value, 0xFC,
DP_LINK_FRAMING_CNTL, DP_IDLE_BS_INTERVAL);
set_reg_field_value(value, 1,
DP_LINK_FRAMING_CNTL, DP_VBID_DISABLE);
set_reg_field_value(value, 1,
DP_LINK_FRAMING_CNTL, DP_VID_ENHANCED_FRAME_MODE);
dal_write_reg(ctx, addr, value);
*/
/* swap every BS with SR */
REG_UPDATE(DP_DPHY_SCRAM_CNTL, DPHY_SCRAMBLER_BS_COUNT, 0);
/*TODO add support for this test pattern
* support_dp_hbr2_eye_pattern
*/
/* set link training complete */
set_link_training_complete(enc110, true);
/* do not enable video stream */
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, 0);
/* Disable PHY Bypass mode to setup the test pattern */
enable_phy_bypass_mode(enc110, false);
}
static void set_dp_phy_pattern_passthrough_mode(
struct dce110_link_encoder *enc110,
enum dp_panel_mode panel_mode)
{
uint32_t value;
/* program correct panel mode */
{
ASSERT(REG(DP_DPHY_INTERNAL_CTRL));
value = REG_READ(DP_DPHY_INTERNAL_CTRL);
switch (panel_mode) {
case DP_PANEL_MODE_EDP:
value = 0x1;
break;
case DP_PANEL_MODE_SPECIAL:
value = 0x11;
break;
default:
value = 0x0;
break;
}
REG_WRITE(DP_DPHY_INTERNAL_CTRL, value);
}
REG_UPDATE(DP_DPHY_SCRAM_CNTL, DPHY_SCRAMBLER_BS_COUNT, 0x1FF);
/* set link training complete */
set_link_training_complete(enc110, true);
/* Disable PHY Bypass mode to setup the test pattern */
enable_phy_bypass_mode(enc110, false);
/* Disable PRBS mode,
* make sure DPHY_PRBS_CNTL.DPHY_PRBS_EN=0 */
disable_prbs_mode(enc110);
}
/* return value is bit-vector */
static uint8_t get_frontend_source(
enum engine_id engine)
{
switch (engine) {
case ENGINE_ID_DIGA:
return DCE110_DIG_FE_SOURCE_SELECT_DIGA;
case ENGINE_ID_DIGB:
return DCE110_DIG_FE_SOURCE_SELECT_DIGB;
case ENGINE_ID_DIGC:
return DCE110_DIG_FE_SOURCE_SELECT_DIGC;
case ENGINE_ID_DIGD:
return DCE110_DIG_FE_SOURCE_SELECT_DIGD;
case ENGINE_ID_DIGE:
return DCE110_DIG_FE_SOURCE_SELECT_DIGE;
case ENGINE_ID_DIGF:
return DCE110_DIG_FE_SOURCE_SELECT_DIGF;
default:
ASSERT_CRITICAL(false);
return DCE110_DIG_FE_SOURCE_SELECT_INVALID;
}
}
static void configure_encoder(
struct dce110_link_encoder *enc110,
const struct dc_link_settings *link_settings)
{
/* set number of lanes */
REG_SET(DP_CONFIG, 0,
DP_UDI_LANES, link_settings->lane_count - LANE_COUNT_ONE);
/* setup scrambler */
REG_UPDATE(DP_DPHY_SCRAM_CNTL, DPHY_SCRAMBLER_ADVANCE, 1);
}
static bool is_panel_powered_on(struct dce110_link_encoder *enc110)
{
bool ret;
uint32_t value;
REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &value);
ret = value;
return ret == 1;
}
/* TODO duplicate of dc_link.c version */
static struct gpio *get_hpd_gpio(const struct link_encoder *enc)
{
enum bp_result bp_result;
struct dc_bios *dcb = enc->ctx->dc_bios;
struct graphics_object_hpd_info hpd_info;
struct gpio_pin_info pin_info;
if (dcb->funcs->get_hpd_info(dcb, enc->connector, &hpd_info) != BP_RESULT_OK)
return NULL;
bp_result = dcb->funcs->get_gpio_pin_info(dcb,
hpd_info.hpd_int_gpio_uid, &pin_info);
if (bp_result != BP_RESULT_OK) {
ASSERT(bp_result == BP_RESULT_NORECORD);
return NULL;
}
return dal_gpio_service_create_irq(
enc->ctx->gpio_service,
pin_info.offset,
pin_info.mask);
}
/*
* @brief
* eDP only.
*/
static void link_encoder_edp_wait_for_hpd_ready(
struct dce110_link_encoder *enc110,
bool power_up)
{
struct dc_context *ctx = enc110->base.ctx;
struct graphics_object_id connector = enc110->base.connector;
struct gpio *hpd;
bool edp_hpd_high = false;
uint32_t time_elapsed = 0;
uint32_t timeout = power_up ?
PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
if (dal_graphics_object_id_get_connector_id(connector) !=
CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (!power_up)
/* from KV, we will not HPD low after turning off VCC -
* instead, we will check the SW timer in power_up(). */
return;
/* when we power on/off the eDP panel,
* we need to wait until SENSE bit is high/low */
/* obtain HPD */
/* TODO what to do with this? */
hpd = get_hpd_gpio(&enc110->base);
if (!hpd) {
BREAK_TO_DEBUGGER();
return;
}
dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
/* wait until timeout or panel detected */
do {
uint32_t detected = 0;
dal_gpio_get_value(hpd, &detected);
if (!(detected ^ power_up)) {
edp_hpd_high = true;
break;
}
msleep(HPD_CHECK_INTERVAL);
time_elapsed += HPD_CHECK_INTERVAL;
} while (time_elapsed < timeout);
dal_gpio_close(hpd);
dal_gpio_destroy_irq(&hpd);
if (false == edp_hpd_high) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: wait timed out!\n", __func__);
}
}
/*
* @brief
* eDP only. Control the power of the eDP panel.
*/
void dce110_link_encoder_edp_power_control(
struct link_encoder *enc,
bool power_up)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result bp_result;
if (dal_graphics_object_id_get_connector_id(enc110->base.connector) !=
CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if ((power_up && !is_panel_powered_on(enc110)) ||
(!power_up && is_panel_powered_on(enc110))) {
/* Send VBIOS command to prompt eDP panel power */
dm_logger_write(ctx->logger, LOG_HW_RESUME_S3,
"%s: Panel Power action: %s\n",
__func__, (power_up ? "On":"Off"));
cntl.action = power_up ?
TRANSMITTER_CONTROL_POWER_ON :
TRANSMITTER_CONTROL_POWER_OFF;
cntl.transmitter = enc110->base.transmitter;
cntl.connector_obj_id = enc110->base.connector;
cntl.coherent = false;
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.hpd_sel = enc110->base.hpd_source;
bp_result = link_transmitter_control(enc110, &cntl);
if (BP_RESULT_OK != bp_result) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: Panel Power bp_result: %d\n",
__func__, bp_result);
}
} else {
dm_logger_write(ctx->logger, LOG_HW_RESUME_S3,
"%s: Skipping Panel Power action: %s\n",
__func__, (power_up ? "On":"Off"));
}
link_encoder_edp_wait_for_hpd_ready(enc110, true);
}
static void aux_initialize(
struct dce110_link_encoder *enc110)
{
struct dc_context *ctx = enc110->base.ctx;
enum hpd_source_id hpd_source = enc110->base.hpd_source;
uint32_t addr = AUX_REG(AUX_CONTROL);
uint32_t value = dm_read_reg(ctx, addr);
set_reg_field_value(value, hpd_source, AUX_CONTROL, AUX_HPD_SEL);
set_reg_field_value(value, 0, AUX_CONTROL, AUX_LS_READ_EN);
dm_write_reg(ctx, addr, value);
addr = AUX_REG(AUX_DPHY_RX_CONTROL0);
value = dm_read_reg(ctx, addr);
/* 1/4 window (the maximum allowed) */
set_reg_field_value(value, 1,
AUX_DPHY_RX_CONTROL0, AUX_RX_RECEIVE_WINDOW);
dm_write_reg(ctx, addr, value);
}
/*todo: cloned in stream enc, fix*/
static bool is_panel_backlight_on(struct dce110_link_encoder *enc110)
{
uint32_t value;
REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
return value;
}
/*todo: cloned in stream enc, fix*/
/*
* @brief
* eDP only. Control the backlight of the eDP panel
*/
void dce110_link_encoder_edp_backlight_control(
struct link_encoder *enc,
bool enable)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
if (dal_graphics_object_id_get_connector_id(enc110->base.connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (enable && is_panel_backlight_on(enc110)) {
dm_logger_write(ctx->logger, LOG_HW_RESUME_S3,
"%s: panel already powered up. Do nothing.\n",
__func__);
return;
}
if (!enable && !is_panel_powered_on(enc110)) {
dm_logger_write(ctx->logger, LOG_HW_RESUME_S3,
"%s: panel already powered down. Do nothing.\n",
__func__);
return;
}
/* Send VBIOS command to control eDP panel backlight */
dm_logger_write(ctx->logger, LOG_HW_RESUME_S3,
"%s: backlight action: %s\n",
__func__, (enable ? "On":"Off"));
cntl.action = enable ?
TRANSMITTER_CONTROL_BACKLIGHT_ON :
TRANSMITTER_CONTROL_BACKLIGHT_OFF;
/*cntl.engine_id = ctx->engine;*/
cntl.transmitter = enc110->base.transmitter;
cntl.connector_obj_id = enc110->base.connector;
/*todo: unhardcode*/
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.hpd_sel = enc110->base.hpd_source;
/* For eDP, the following delays might need to be considered
* after link training completed:
* idle period - min. accounts for required BS-Idle pattern,
* max. allows for source frame synchronization);
* 50 msec max. delay from valid video data from source
* to video on dislpay or backlight enable.
*
* Disable the delay for now.
* Enable it in the future if necessary.
*/
/* dc_service_sleep_in_milliseconds(50); */
link_transmitter_control(enc110, &cntl);
}
static bool is_dig_enabled(const struct dce110_link_encoder *enc110)
{
uint32_t value;
REG_GET(DIG_BE_EN_CNTL, DIG_ENABLE, &value);
return value;
}
static void link_encoder_disable(struct dce110_link_encoder *enc110)
{
/* reset training pattern */
REG_SET(DP_DPHY_TRAINING_PATTERN_SEL, 0,
DPHY_TRAINING_PATTERN_SEL, 0);
/* reset training complete */
REG_UPDATE(DP_LINK_CNTL, DP_LINK_TRAINING_COMPLETE, 0);
/* reset panel mode */
ASSERT(REG(DP_DPHY_INTERNAL_CTRL));
REG_WRITE(DP_DPHY_INTERNAL_CTRL, 0);
}
static void hpd_initialize(
struct dce110_link_encoder *enc110)
{
/* Associate HPD with DIG_BE */
enum hpd_source_id hpd_source = enc110->base.hpd_source;
REG_UPDATE(DIG_BE_CNTL, DIG_HPD_SELECT, hpd_source);
}
bool dce110_link_encoder_validate_dvi_output(
const struct dce110_link_encoder *enc110,
enum signal_type connector_signal,
enum signal_type signal,
const struct dc_crtc_timing *crtc_timing)
{
uint32_t max_pixel_clock = TMDS_MAX_PIXEL_CLOCK;
if (enc110->base.features.max_pixel_clock < TMDS_MAX_PIXEL_CLOCK)
max_pixel_clock = enc110->base.features.max_pixel_clock;
if (signal == SIGNAL_TYPE_DVI_DUAL_LINK)
max_pixel_clock <<= 1;
/* This handles the case of HDMI downgrade to DVI we don't want to
* we don't want to cap the pixel clock if the DDI is not DVI.
*/
if (connector_signal != SIGNAL_TYPE_DVI_DUAL_LINK &&
connector_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
max_pixel_clock = enc110->base.features.max_pixel_clock;
/* DVI only support RGB pixel encoding */
if (crtc_timing->pixel_encoding != PIXEL_ENCODING_RGB)
return false;
if (crtc_timing->pix_clk_khz < TMDS_MIN_PIXEL_CLOCK)
return false;
if (crtc_timing->pix_clk_khz > max_pixel_clock)
return false;
/* DVI supports 6/8bpp single-link and 10/16bpp dual-link */
switch (crtc_timing->display_color_depth) {
case COLOR_DEPTH_666:
case COLOR_DEPTH_888:
break;
case COLOR_DEPTH_101010:
case COLOR_DEPTH_161616:
if (signal != SIGNAL_TYPE_DVI_DUAL_LINK)
return false;
break;
default:
return false;
}
return true;
}
static bool dce110_link_encoder_validate_hdmi_output(
const struct dce110_link_encoder *enc110,
const struct dc_crtc_timing *crtc_timing,
int adjusted_pix_clk_khz)
{
enum dc_color_depth max_deep_color =
enc110->base.features.max_hdmi_deep_color;
if (max_deep_color > enc110->base.features.max_deep_color)
max_deep_color = enc110->base.features.max_deep_color;
if (max_deep_color < crtc_timing->display_color_depth)
return false;
if (adjusted_pix_clk_khz < TMDS_MIN_PIXEL_CLOCK)
return false;
if ((adjusted_pix_clk_khz == 0) ||
(adjusted_pix_clk_khz > enc110->base.features.max_hdmi_pixel_clock) ||
(adjusted_pix_clk_khz > enc110->base.features.max_pixel_clock))
return false;
/* DCE11 HW does not support 420 */
if (!enc110->base.features.ycbcr420_supported &&
crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
return false;
return true;
}
bool dce110_link_encoder_validate_rgb_output(
const struct dce110_link_encoder *enc110,
const struct dc_crtc_timing *crtc_timing)
{
if (crtc_timing->pix_clk_khz > enc110->base.features.max_pixel_clock)
return false;
if (crtc_timing->pixel_encoding != PIXEL_ENCODING_RGB)
return false;
return true;
}
bool dce110_link_encoder_validate_dp_output(
const struct dce110_link_encoder *enc110,
const struct dc_crtc_timing *crtc_timing)
{
/* default RGB only */
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_RGB)
return true;
if (enc110->base.features.flags.bits.IS_YCBCR_CAPABLE)
return true;
/* for DCE 8.x or later DP Y-only feature,
* we need ASIC cap + FeatureSupportDPYonly, not support 666 */
if (crtc_timing->flags.Y_ONLY &&
enc110->base.features.flags.bits.IS_YCBCR_CAPABLE &&
crtc_timing->display_color_depth != COLOR_DEPTH_666)
return true;
return false;
}
bool dce110_link_encoder_validate_wireless_output(
const struct dce110_link_encoder *enc110,
const struct dc_crtc_timing *crtc_timing)
{
if (crtc_timing->pix_clk_khz > enc110->base.features.max_pixel_clock)
return false;
/* Wireless only supports YCbCr444 */
if (crtc_timing->pixel_encoding ==
PIXEL_ENCODING_YCBCR444)
return true;
return false;
}
bool dce110_link_encoder_construct(
struct dce110_link_encoder *enc110,
const struct encoder_init_data *init_data,
const struct dce110_link_enc_registers *link_regs,
const struct dce110_link_enc_aux_registers *aux_regs,
const struct dce110_link_enc_hpd_registers *hpd_regs)
{
enc110->base.funcs = &dce110_lnk_enc_funcs;
enc110->base.ctx = init_data->ctx;
enc110->base.id = init_data->encoder;
enc110->base.hpd_source = init_data->hpd_source;
enc110->base.connector = init_data->connector;
enc110->base.input_signals = SIGNAL_TYPE_ALL;
enc110->base.preferred_engine = ENGINE_ID_UNKNOWN;
enc110->base.features.flags.raw = 0;
enc110->base.transmitter = init_data->transmitter;
enc110->base.features.flags.bits.IS_AUDIO_CAPABLE = true;
enc110->base.features.max_pixel_clock =
MAX_ENCODER_CLK;
enc110->base.features.max_deep_color = COLOR_DEPTH_121212;
enc110->base.features.max_hdmi_deep_color = COLOR_DEPTH_121212;
/* set the flag to indicate whether driver poll the I2C data pin
* while doing the DP sink detect
*/
/* if (dal_adapter_service_is_feature_supported(as,
FEATURE_DP_SINK_DETECT_POLL_DATA_PIN))
enc110->base.features.flags.bits.
DP_SINK_DETECT_POLL_DATA_PIN = true;*/
enc110->base.output_signals =
SIGNAL_TYPE_DVI_SINGLE_LINK |
SIGNAL_TYPE_DVI_DUAL_LINK |
SIGNAL_TYPE_LVDS |
SIGNAL_TYPE_DISPLAY_PORT |
SIGNAL_TYPE_DISPLAY_PORT_MST |
SIGNAL_TYPE_EDP |
SIGNAL_TYPE_HDMI_TYPE_A;
/* For DCE 8.0 and 8.1, by design, UNIPHY is hardwired to DIG_BE.
* SW always assign DIG_FE 1:1 mapped to DIG_FE for non-MST UNIPHY.
* SW assign DIG_FE to non-MST UNIPHY first and MST last. So prefer
* DIG is per UNIPHY and used by SST DP, eDP, HDMI, DVI and LVDS.
* Prefer DIG assignment is decided by board design.
* For DCE 8.0, there are only max 6 UNIPHYs, we assume board design
* and VBIOS will filter out 7 UNIPHY for DCE 8.0.
* By this, adding DIGG should not hurt DCE 8.0.
* This will let DCE 8.1 share DCE 8.0 as much as possible
*/
enc110->link_regs = link_regs;
enc110->aux_regs = aux_regs;
enc110->hpd_regs = hpd_regs;
switch (enc110->base.transmitter) {
case TRANSMITTER_UNIPHY_A:
enc110->base.preferred_engine = ENGINE_ID_DIGA;
break;
case TRANSMITTER_UNIPHY_B:
enc110->base.preferred_engine = ENGINE_ID_DIGB;
break;
case TRANSMITTER_UNIPHY_C:
enc110->base.preferred_engine = ENGINE_ID_DIGC;
break;
case TRANSMITTER_UNIPHY_D:
enc110->base.preferred_engine = ENGINE_ID_DIGD;
break;
case TRANSMITTER_UNIPHY_E:
enc110->base.preferred_engine = ENGINE_ID_DIGE;
break;
case TRANSMITTER_UNIPHY_F:
enc110->base.preferred_engine = ENGINE_ID_DIGF;
break;
default:
ASSERT_CRITICAL(false);
enc110->base.preferred_engine = ENGINE_ID_UNKNOWN;
}
dm_logger_write(init_data->ctx->logger, LOG_I2C_AUX,
"Using channel: %s [%d]\n",
DECODE_CHANNEL_ID(init_data->channel),
init_data->channel);
/* Override features with DCE-specific values */
{
struct bp_encoder_cap_info bp_cap_info = {0};
const struct dc_vbios_funcs *bp_funcs = enc110->base.ctx->dc_bios->funcs;
if (BP_RESULT_OK == bp_funcs->get_encoder_cap_info(
enc110->base.ctx->dc_bios, enc110->base.id,
&bp_cap_info))
enc110->base.features.flags.bits.IS_HBR2_CAPABLE =
bp_cap_info.DP_HBR2_CAP;
}
/* test pattern 3 support */
enc110->base.features.flags.bits.IS_TPS3_CAPABLE = true;
enc110->base.features.flags.bits.IS_Y_ONLY_CAPABLE = false;
/*
dal_adapter_service_is_feature_supported(as,
FEATURE_SUPPORT_DP_Y_ONLY);
*/
enc110->base.features.flags.bits.IS_YCBCR_CAPABLE = true;
/*
dal_adapter_service_is_feature_supported(as,
FEATURE_SUPPORT_DP_YUV);
*/
return true;
}
bool dce110_link_encoder_validate_output_with_stream(
struct link_encoder *enc,
struct pipe_ctx *pipe_ctx)
{
struct core_stream *stream = pipe_ctx->stream;
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
bool is_valid;
switch (pipe_ctx->stream->signal) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
is_valid = dce110_link_encoder_validate_dvi_output(
enc110,
stream->sink->link->public.connector_signal,
pipe_ctx->stream->signal,
&stream->public.timing);
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
is_valid = dce110_link_encoder_validate_hdmi_output(
enc110,
&stream->public.timing,
stream->phy_pix_clk);
break;
case SIGNAL_TYPE_RGB:
is_valid = dce110_link_encoder_validate_rgb_output(
enc110, &stream->public.timing);
break;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_EDP:
is_valid = dce110_link_encoder_validate_dp_output(
enc110, &stream->public.timing);
break;
case SIGNAL_TYPE_WIRELESS:
is_valid = dce110_link_encoder_validate_wireless_output(
enc110, &stream->public.timing);
break;
default:
is_valid = true;
break;
}
return is_valid;
}
void dce110_link_encoder_hw_init(
struct link_encoder *enc)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result result;
cntl.action = TRANSMITTER_CONTROL_INIT;
cntl.engine_id = ENGINE_ID_UNKNOWN;
cntl.transmitter = enc110->base.transmitter;
cntl.connector_obj_id = enc110->base.connector;
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.coherent = false;
cntl.hpd_sel = enc110->base.hpd_source;
result = link_transmitter_control(enc110, &cntl);
if (result != BP_RESULT_OK) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: Failed to execute VBIOS command table!\n",
__func__);
BREAK_TO_DEBUGGER();
return;
}
if (enc110->base.connector.id == CONNECTOR_ID_LVDS) {
cntl.action = TRANSMITTER_CONTROL_BACKLIGHT_BRIGHTNESS;
result = link_transmitter_control(enc110, &cntl);
ASSERT(result == BP_RESULT_OK);
} else if (enc110->base.connector.id == CONNECTOR_ID_EDP) {
enc->funcs->power_control(&enc110->base, true);
}
aux_initialize(enc110);
/* reinitialize HPD.
* hpd_initialize() will pass DIG_FE id to HW context.
* All other routine within HW context will use fe_engine_offset
* as DIG_FE id even caller pass DIG_FE id.
* So this routine must be called first. */
hpd_initialize(enc110);
}
void dce110_link_encoder_destroy(struct link_encoder **enc)
{
dm_free(TO_DCE110_LINK_ENC(*enc));
*enc = NULL;
}
void dce110_link_encoder_setup(
struct link_encoder *enc,
enum signal_type signal)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
switch (signal) {
case SIGNAL_TYPE_EDP:
case SIGNAL_TYPE_DISPLAY_PORT:
/* DP SST */
REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 0);
break;
case SIGNAL_TYPE_LVDS:
/* LVDS */
REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 1);
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
/* TMDS-DVI */
REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 2);
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
/* TMDS-HDMI */
REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 3);
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
/* DP MST */
REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 5);
break;
default:
ASSERT_CRITICAL(false);
/* invalid mode ! */
break;
}
}
/* TODO: still need depth or just pass in adjusted pixel clock? */
void dce110_link_encoder_enable_tmds_output(
struct link_encoder *enc,
enum clock_source_id clock_source,
enum dc_color_depth color_depth,
bool hdmi,
bool dual_link,
uint32_t pixel_clock)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result result;
/* Enable the PHY */
cntl.action = TRANSMITTER_CONTROL_ENABLE;
cntl.engine_id = ENGINE_ID_UNKNOWN;
cntl.transmitter = enc110->base.transmitter;
cntl.pll_id = clock_source;
if (hdmi) {
cntl.signal = SIGNAL_TYPE_HDMI_TYPE_A;
cntl.lanes_number = 4;
} else if (dual_link) {
cntl.signal = SIGNAL_TYPE_DVI_DUAL_LINK;
cntl.lanes_number = 8;
} else {
cntl.signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
cntl.lanes_number = 4;
}
cntl.hpd_sel = enc110->base.hpd_source;
cntl.pixel_clock = pixel_clock;
cntl.color_depth = color_depth;
result = link_transmitter_control(enc110, &cntl);
if (result != BP_RESULT_OK) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: Failed to execute VBIOS command table!\n",
__func__);
BREAK_TO_DEBUGGER();
}
}
/* enables DP PHY output */
void dce110_link_encoder_enable_dp_output(
struct link_encoder *enc,
const struct dc_link_settings *link_settings,
enum clock_source_id clock_source)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result result;
/* Enable the PHY */
/* number_of_lanes is used for pixel clock adjust,
* but it's not passed to asic_control.
* We need to set number of lanes manually.
*/
configure_encoder(enc110, link_settings);
cntl.action = TRANSMITTER_CONTROL_ENABLE;
cntl.engine_id = ENGINE_ID_UNKNOWN;
cntl.transmitter = enc110->base.transmitter;
cntl.pll_id = clock_source;
cntl.signal = SIGNAL_TYPE_DISPLAY_PORT;
cntl.lanes_number = link_settings->lane_count;
cntl.hpd_sel = enc110->base.hpd_source;
cntl.pixel_clock = link_settings->link_rate
* LINK_RATE_REF_FREQ_IN_KHZ;
/* TODO: check if undefined works */
cntl.color_depth = COLOR_DEPTH_UNDEFINED;
result = link_transmitter_control(enc110, &cntl);
if (result != BP_RESULT_OK) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: Failed to execute VBIOS command table!\n",
__func__);
BREAK_TO_DEBUGGER();
}
}
/* enables DP PHY output in MST mode */
void dce110_link_encoder_enable_dp_mst_output(
struct link_encoder *enc,
const struct dc_link_settings *link_settings,
enum clock_source_id clock_source)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result result;
/* Enable the PHY */
/* number_of_lanes is used for pixel clock adjust,
* but it's not passed to asic_control.
* We need to set number of lanes manually.
*/
configure_encoder(enc110, link_settings);
cntl.action = TRANSMITTER_CONTROL_ENABLE;
cntl.engine_id = ENGINE_ID_UNKNOWN;
cntl.transmitter = enc110->base.transmitter;
cntl.pll_id = clock_source;
cntl.signal = SIGNAL_TYPE_DISPLAY_PORT_MST;
cntl.lanes_number = link_settings->lane_count;
cntl.hpd_sel = enc110->base.hpd_source;
cntl.pixel_clock = link_settings->link_rate
* LINK_RATE_REF_FREQ_IN_KHZ;
/* TODO: check if undefined works */
cntl.color_depth = COLOR_DEPTH_UNDEFINED;
result = link_transmitter_control(enc110, &cntl);
if (result != BP_RESULT_OK) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: Failed to execute VBIOS command table!\n",
__func__);
BREAK_TO_DEBUGGER();
}
}
/*
* @brief
* Disable transmitter and its encoder
*/
void dce110_link_encoder_disable_output(
struct link_encoder *enc,
enum signal_type signal)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result result;
if (!is_dig_enabled(enc110)) {
/* OF_SKIP_POWER_DOWN_INACTIVE_ENCODER */
return;
}
/* Power-down RX and disable GPU PHY should be paired.
* Disabling PHY without powering down RX may cause
* symbol lock loss, on which we will get DP Sink interrupt. */
/* There is a case for the DP active dongles
* where we want to disable the PHY but keep RX powered,
* for those we need to ignore DP Sink interrupt
* by checking lane count that has been set
* on the last do_enable_output(). */
/* disable transmitter */
cntl.action = TRANSMITTER_CONTROL_DISABLE;
cntl.transmitter = enc110->base.transmitter;
cntl.hpd_sel = enc110->base.hpd_source;
cntl.signal = signal;
cntl.connector_obj_id = enc110->base.connector;
result = link_transmitter_control(enc110, &cntl);
if (result != BP_RESULT_OK) {
dm_logger_write(ctx->logger, LOG_ERROR,
"%s: Failed to execute VBIOS command table!\n",
__func__);
BREAK_TO_DEBUGGER();
return;
}
/* disable encoder */
if (dc_is_dp_signal(signal))
link_encoder_disable(enc110);
if (enc110->base.connector.id == CONNECTOR_ID_EDP) {
/* power down eDP panel */
/* TODO: Power control cause regression, we should implement
* it properly, for now just comment it.
*
* link_encoder_edp_wait_for_hpd_ready(
link_enc,
link_enc->connector,
false);
* link_encoder_edp_power_control(
link_enc, false); */
}
}
void dce110_link_encoder_dp_set_lane_settings(
struct link_encoder *enc,
const struct link_training_settings *link_settings)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
union dpcd_training_lane_set training_lane_set = { { 0 } };
int32_t lane = 0;
struct bp_transmitter_control cntl = { 0 };
if (!link_settings) {
BREAK_TO_DEBUGGER();
return;
}
cntl.action = TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS;
cntl.transmitter = enc110->base.transmitter;
cntl.connector_obj_id = enc110->base.connector;
cntl.lanes_number = link_settings->link_settings.lane_count;
cntl.hpd_sel = enc110->base.hpd_source;
cntl.pixel_clock = link_settings->link_settings.link_rate *
LINK_RATE_REF_FREQ_IN_KHZ;
for (lane = 0; lane < link_settings->link_settings.lane_count; ++lane) {
/* translate lane settings */
training_lane_set.bits.VOLTAGE_SWING_SET =
link_settings->lane_settings[lane].VOLTAGE_SWING;
training_lane_set.bits.PRE_EMPHASIS_SET =
link_settings->lane_settings[lane].PRE_EMPHASIS;
/* post cursor 2 setting only applies to HBR2 link rate */
if (link_settings->link_settings.link_rate == LINK_RATE_HIGH2) {
/* this is passed to VBIOS
* to program post cursor 2 level */
training_lane_set.bits.POST_CURSOR2_SET =
link_settings->lane_settings[lane].POST_CURSOR2;
}
cntl.lane_select = lane;
cntl.lane_settings = training_lane_set.raw;
/* call VBIOS table to set voltage swing and pre-emphasis */
link_transmitter_control(enc110, &cntl);
}
}
/* set DP PHY test and training patterns */
void dce110_link_encoder_dp_set_phy_pattern(
struct link_encoder *enc,
const struct encoder_set_dp_phy_pattern_param *param)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
switch (param->dp_phy_pattern) {
case DP_TEST_PATTERN_TRAINING_PATTERN1:
dce110_link_encoder_set_dp_phy_pattern_training_pattern(enc, 0);
break;
case DP_TEST_PATTERN_TRAINING_PATTERN2:
dce110_link_encoder_set_dp_phy_pattern_training_pattern(enc, 1);
break;
case DP_TEST_PATTERN_TRAINING_PATTERN3:
dce110_link_encoder_set_dp_phy_pattern_training_pattern(enc, 2);
break;
case DP_TEST_PATTERN_D102:
set_dp_phy_pattern_d102(enc110);
break;
case DP_TEST_PATTERN_SYMBOL_ERROR:
set_dp_phy_pattern_symbol_error(enc110);
break;
case DP_TEST_PATTERN_PRBS7:
set_dp_phy_pattern_prbs7(enc110);
break;
case DP_TEST_PATTERN_80BIT_CUSTOM:
set_dp_phy_pattern_80bit_custom(
enc110, param->custom_pattern);
break;
case DP_TEST_PATTERN_HBR2_COMPLIANCE_EYE:
set_dp_phy_pattern_hbr2_compliance(enc110);
break;
case DP_TEST_PATTERN_VIDEO_MODE: {
set_dp_phy_pattern_passthrough_mode(
enc110, param->dp_panel_mode);
break;
}
default:
/* invalid phy pattern */
ASSERT_CRITICAL(false);
break;
}
}
static void fill_stream_allocation_row_info(
const struct link_mst_stream_allocation *stream_allocation,
uint32_t *src,
uint32_t *slots)
{
const struct stream_encoder *stream_enc = stream_allocation->stream_enc;
if (stream_enc) {
*src = stream_enc->id;
*slots = stream_allocation->slot_count;
} else {
*src = 0;
*slots = 0;
}
}
/* programs DP MST VC payload allocation */
void dce110_link_encoder_update_mst_stream_allocation_table(
struct link_encoder *enc,
const struct link_mst_stream_allocation_table *table)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
uint32_t value0 = 0;
uint32_t value1 = 0;
uint32_t value2 = 0;
uint32_t slots = 0;
uint32_t src = 0;
uint32_t retries = 0;
/* For CZ, there are only 3 pipes. So Virtual channel is up 3.*/
/* --- Set MSE Stream Attribute -
* Setup VC Payload Table on Tx Side,
* Issue allocation change trigger
* to commit payload on both tx and rx side */
/* we should clean-up table each time */
if (table->stream_count >= 1) {
fill_stream_allocation_row_info(
&table->stream_allocations[0],
&src,
&slots);
} else {
src = 0;
slots = 0;
}
REG_UPDATE_2(DP_MSE_SAT0,
DP_MSE_SAT_SRC0, src,
DP_MSE_SAT_SLOT_COUNT0, slots);
if (table->stream_count >= 2) {
fill_stream_allocation_row_info(
&table->stream_allocations[1],
&src,
&slots);
} else {
src = 0;
slots = 0;
}
REG_UPDATE_2(DP_MSE_SAT0,
DP_MSE_SAT_SRC1, src,
DP_MSE_SAT_SLOT_COUNT1, slots);
if (table->stream_count >= 3) {
fill_stream_allocation_row_info(
&table->stream_allocations[2],
&src,
&slots);
} else {
src = 0;
slots = 0;
}
REG_UPDATE_2(DP_MSE_SAT1,
DP_MSE_SAT_SRC2, src,
DP_MSE_SAT_SLOT_COUNT2, slots);
if (table->stream_count >= 4) {
fill_stream_allocation_row_info(
&table->stream_allocations[3],
&src,
&slots);
} else {
src = 0;
slots = 0;
}
REG_UPDATE_2(DP_MSE_SAT1,
DP_MSE_SAT_SRC3, src,
DP_MSE_SAT_SLOT_COUNT3, slots);
/* --- wait for transaction finish */
/* send allocation change trigger (ACT) ?
* this step first sends the ACT,
* then double buffers the SAT into the hardware
* making the new allocation active on the DP MST mode link */
/* DP_MSE_SAT_UPDATE:
* 0 - No Action
* 1 - Update SAT with trigger
* 2 - Update SAT without trigger */
REG_UPDATE(DP_MSE_SAT_UPDATE,
DP_MSE_SAT_UPDATE, 1);
/* wait for update to complete
* (i.e. DP_MSE_SAT_UPDATE field is reset to 0)
* then wait for the transmission
* of at least 16 MTP headers on immediate local link.
* i.e. DP_MSE_16_MTP_KEEPOUT field (read only) is reset to 0
* a value of 1 indicates that DP MST mode
* is in the 16 MTP keepout region after a VC has been added.
* MST stream bandwidth (VC rate) can be configured
* after this bit is cleared */
do {
udelay(10);
value0 = REG_READ(DP_MSE_SAT_UPDATE);
REG_GET(DP_MSE_SAT_UPDATE,
DP_MSE_SAT_UPDATE, &value1);
REG_GET(DP_MSE_SAT_UPDATE,
DP_MSE_16_MTP_KEEPOUT, &value2);
/* bit field DP_MSE_SAT_UPDATE is set to 1 already */
if (!value1 && !value2)
break;
++retries;
} while (retries < DP_MST_UPDATE_MAX_RETRY);
}
void dce110_link_encoder_set_lcd_backlight_level(
struct link_encoder *enc,
uint32_t level)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
const uint32_t backlight_update_pending_max_retry = 1000;
uint32_t backlight_lock;
uint32_t i;
uint32_t backlight_24bit;
uint32_t backlight_17bit;
uint32_t backlight_16bit;
uint32_t masked_pwm_period;
uint8_t rounding_bit;
uint8_t bit_count;
uint64_t active_duty_cycle;
uint32_t pwm_period_bitcnt;
backlight_lock = REG_READ(BL_PWM_GRP1_REG_LOCK);
/*
* 1. Convert 8-bit value to 17 bit U1.16 format
* (1 integer, 16 fractional bits)
*/
/* 1.1 multiply 8 bit value by 0x10101 to get a 24 bit value,
* effectively multiplying value by 256/255
* eg. for a level of 0xEF, backlight_24bit = 0xEF * 0x10101 = 0xEFEFEF
*/
backlight_24bit = level * 0x10101;
/* 1.2 The upper 16 bits of the 24 bit value is the fraction, lower 8
* used for rounding, take most significant bit of fraction for
* rounding, e.g. for 0xEFEFEF, rounding bit is 1
*/
rounding_bit = (backlight_24bit >> 7) & 1;
/* 1.3 Add the upper 16 bits of the 24 bit value with the rounding bit
* resulting in a 17 bit value e.g. 0xEFF0 = (0xEFEFEF >> 8) + 1
*/
backlight_17bit = (backlight_24bit >> 8) + rounding_bit;
/*
* 2. Find 16 bit backlight active duty cycle, where 0 <= backlight
* active duty cycle <= backlight period
*/
/* 2.1 Apply bitmask for backlight period value based on value of BITCNT
*/
{
REG_GET(BL_PWM_PERIOD_CNTL,
BL_PWM_PERIOD_BITCNT, &pwm_period_bitcnt);
if (pwm_period_bitcnt == 0)
bit_count = 16;
else
bit_count = pwm_period_bitcnt;
}
/* e.g. maskedPwmPeriod = 0x24 when bitCount is 6 */
masked_pwm_period =
REG_GET(BL_PWM_PERIOD_CNTL,
BL_PWM_PERIOD, &masked_pwm_period)
& ((1 << bit_count) - 1);
/* 2.2 Calculate integer active duty cycle required upper 16 bits
* contain integer component, lower 16 bits contain fractional component
* of active duty cycle e.g. 0x21BDC0 = 0xEFF0 * 0x24
*/
active_duty_cycle = backlight_17bit * masked_pwm_period;
/* 2.3 Calculate 16 bit active duty cycle from integer and fractional
* components shift by bitCount then mask 16 bits and add rounding bit
* from MSB of fraction e.g. 0x86F7 = ((0x21BDC0 >> 6) & 0xFFF) + 0
*/
backlight_16bit = active_duty_cycle >> bit_count;
backlight_16bit &= 0xFFFF;
backlight_16bit += (active_duty_cycle >> (bit_count - 1)) & 0x1;
REG_UPDATE(BL_PWM_CNTL,
BL_ACTIVE_INT_FRAC_CNT, backlight_16bit);
/*
* 3. Program register with updated value
*/
/* 3.1 Lock group 2 backlight registers */
REG_UPDATE(BL_PWM_GRP1_REG_LOCK,
BL_PWM_GRP1_IGNORE_MASTER_LOCK_EN, 1);
REG_UPDATE(BL_PWM_GRP1_REG_LOCK,
BL_PWM_GRP1_REG_LOCK, 1);
/* 3.3 Unlock group 2 backlight registers */
REG_UPDATE(BL_PWM_GRP1_REG_LOCK,
BL_PWM_GRP1_REG_LOCK, 0);
/* 5.4.4 Wait for pending bit to be cleared */
for (i = 0; i < backlight_update_pending_max_retry; ++i) {
REG_GET(BL_PWM_GRP1_REG_LOCK,
BL_PWM_GRP1_REG_UPDATE_PENDING, &backlight_lock);
if (!backlight_lock)
break;
udelay(10);
}
}
void dce110_link_encoder_set_dmcu_backlight_level(
struct link_encoder *enc,
uint32_t level,
uint32_t frame_ramp,
uint32_t controller_id)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
unsigned int dmcu_max_retry_on_wait_reg_ready = 801;
unsigned int dmcu_wait_reg_ready_interval = 100;
unsigned int backlight_17bit = level * 0x10101;
unsigned char temp_uchar =
(unsigned char)(((backlight_17bit & 0x80) >> 7) & 1);
unsigned int regValue;
uint32_t rampingBoundary = 0xFFFF;
uint32_t s2;
backlight_17bit = (backlight_17bit >> 8) + temp_uchar;
/* set ramping boundary */
REG_WRITE(MASTER_COMM_DATA_REG1, rampingBoundary);
/* setDMCUParam_Pipe */
REG_UPDATE_2(MASTER_COMM_CMD_REG,
MASTER_COMM_CMD_REG_BYTE0, MCP_ABM_PIPE_SET,
MASTER_COMM_CMD_REG_BYTE1, controller_id);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
/* waitDMCUReadyForCmd */
do {
dm_delay_in_microseconds(ctx, dmcu_wait_reg_ready_interval);
regValue = REG_READ(MASTER_COMM_CNTL_REG);
dmcu_max_retry_on_wait_reg_ready--;
} while
/* expected value is 0, loop while not 0*/
((MASTER_COMM_CNTL_REG__MASTER_COMM_INTERRUPT_MASK & regValue) &&
dmcu_max_retry_on_wait_reg_ready > 0);
/* setDMCUParam_BL */
REG_UPDATE(BL1_PWM_USER_LEVEL, BL1_PWM_USER_LEVEL, backlight_17bit);
/* write ramp */
REG_WRITE(MASTER_COMM_DATA_REG1, frame_ramp);
/* setDMCUParam_Cmd */
REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_BL_SET);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
/* UpdateRequestedBacklightLevel */
s2 = REG_READ(BIOS_SCRATCH_2);
s2 &= ~ATOM_S2_CURRENT_BL_LEVEL_MASK;
level &= (ATOM_S2_CURRENT_BL_LEVEL_MASK >>
ATOM_S2_CURRENT_BL_LEVEL_SHIFT);
s2 |= (level << ATOM_S2_CURRENT_BL_LEVEL_SHIFT);
REG_WRITE(BIOS_SCRATCH_2, s2);
}
void dce110_link_encoder_init_dmcu_backlight_settings(
struct link_encoder *enc)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
uint32_t bl_pwm_cntl;
uint32_t pwmCntl;
uint32_t pwmCntl2;
uint32_t periodCntl;
uint32_t s2;
uint32_t value;
bl_pwm_cntl = REG_READ(BL_PWM_CNTL);
/* It must not be 0, so we have to restore them
* Bios bug w/a - period resets to zero,
* restoring to cache values which is always correct
*/
REG_GET(BL_PWM_CNTL,
BL_ACTIVE_INT_FRAC_CNT, &value);
if (value == 0 || bl_pwm_cntl == 1) {
if (stored_backlight_registers.vBL_PWM_CNTL != 0) {
pwmCntl = stored_backlight_registers.vBL_PWM_CNTL;
REG_WRITE(BL_PWM_CNTL, pwmCntl);
pwmCntl2 = stored_backlight_registers.vBL_PWM_CNTL2;
REG_WRITE(BL_PWM_CNTL2, pwmCntl2);
periodCntl =
stored_backlight_registers.vBL_PWM_PERIOD_CNTL;
REG_WRITE(BL_PWM_PERIOD_CNTL, periodCntl);
REG_UPDATE(LVTMA_PWRSEQ_REF_DIV,
BL_PWM_REF_DIV,
stored_backlight_registers.
vLVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV);
}
} else {
stored_backlight_registers.vBL_PWM_CNTL =
REG_READ(BL_PWM_CNTL);
stored_backlight_registers.vBL_PWM_CNTL2 =
REG_READ(BL_PWM_CNTL2);
stored_backlight_registers.vBL_PWM_PERIOD_CNTL =
REG_READ(BL_PWM_PERIOD_CNTL);
REG_GET(LVTMA_PWRSEQ_REF_DIV, BL_PWM_REF_DIV,
&stored_backlight_registers.
vLVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV);
}
/* Have driver take backlight control
* TakeBacklightControl(true)
*/
s2 = REG_READ(BIOS_SCRATCH_2);
s2 |= ATOM_S2_VRI_BRIGHT_ENABLE;
REG_WRITE(BIOS_SCRATCH_2, s2);
/* Enable the backlight output */
REG_UPDATE(BL_PWM_CNTL, BL_PWM_EN, 1);
}
void dce110_link_encoder_set_dmcu_abm_level(
struct link_encoder *enc, uint32_t level)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
unsigned int dmcu_max_retry_on_wait_reg_ready = 801;
unsigned int dmcu_wait_reg_ready_interval = 100;
unsigned int regValue;
/* waitDMCUReadyForCmd */
do {
dm_delay_in_microseconds(ctx, dmcu_wait_reg_ready_interval);
regValue = REG_READ(MASTER_COMM_CNTL_REG);
dmcu_max_retry_on_wait_reg_ready--;
} while
/* expected value is 0, loop while not 0*/
((MASTER_COMM_CNTL_REG__MASTER_COMM_INTERRUPT_MASK & regValue) &&
dmcu_max_retry_on_wait_reg_ready > 0);
/* setDMCUParam_ABMLevel */
REG_UPDATE_2(MASTER_COMM_CMD_REG,
MASTER_COMM_CMD_REG_BYTE0, MCP_ABM_LEVEL_SET,
MASTER_COMM_CMD_REG_BYTE2, level);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
}
static void get_dmcu_psr_state(struct link_encoder *enc, uint32_t *psr_state)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
uint32_t count = 0;
uint32_t psrStateOffset = 0xf0;
uint32_t value;
/* Enable write access to IRAM */
REG_UPDATE(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 1);
do {
dm_delay_in_microseconds(ctx, 2);
REG_GET(DCI_MEM_PWR_STATUS,
DMCU_IRAM_MEM_PWR_STATE, &value);
} while
(value != 0 && count++ < 10);
/* Write address to IRAM_RD_ADDR in DMCU_IRAM_RD_CTRL */
REG_WRITE(DMCU_IRAM_RD_CTRL, psrStateOffset);
/* Read data from IRAM_RD_DATA in DMCU_IRAM_RD_DATA*/
*psr_state = REG_READ(DMCU_IRAM_RD_DATA);
/* Disable write access to IRAM after finished using IRAM
* in order to allow dynamic sleep state
*/
REG_UPDATE(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 0);
}
void dce110_link_encoder_set_dmcu_psr_enable(struct link_encoder *enc,
bool enable)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
unsigned int dmcu_max_retry_on_wait_reg_ready = 801;
unsigned int dmcu_wait_reg_ready_interval = 100;
unsigned int regValue;
unsigned int retryCount;
uint32_t psr_state = 0;
/* waitDMCUReadyForCmd */
do {
dm_delay_in_microseconds(ctx, dmcu_wait_reg_ready_interval);
regValue = REG_READ(MASTER_COMM_CNTL_REG);
dmcu_max_retry_on_wait_reg_ready--;
} while
/* expected value is 0, loop while not 0*/
((MASTER_COMM_CNTL_REG__MASTER_COMM_INTERRUPT_MASK & regValue) &&
dmcu_max_retry_on_wait_reg_ready > 0);
/* setDMCUParam_Cmd */
if (enable)
REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_ENABLE);
else
REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_EXIT);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
for (retryCount = 0; retryCount <= 100; retryCount++) {
get_dmcu_psr_state(enc, &psr_state);
if (enable) {
if (psr_state != 0)
break;
} else {
if (psr_state == 0)
break;
}
dm_delay_in_microseconds(ctx, 10);
}
}
void dce110_link_encoder_setup_dmcu_psr(struct link_encoder *enc,
struct psr_dmcu_context *psr_context)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
unsigned int dmcu_max_retry_on_wait_reg_ready = 801;
unsigned int dmcu_wait_reg_ready_interval = 100;
unsigned int regValue;
union dce110_dmcu_psr_config_data_reg1 masterCmdData1;
union dce110_dmcu_psr_config_data_reg2 masterCmdData2;
union dce110_dmcu_psr_config_data_reg3 masterCmdData3;
if (psr_context->psrExitLinkTrainingRequired)
REG_UPDATE(DP_DPHY_FAST_TRAINING, DPHY_RX_FAST_TRAINING_CAPABLE, 1);
else {
REG_UPDATE(DP_DPHY_FAST_TRAINING, DPHY_RX_FAST_TRAINING_CAPABLE, 0);
/*In DCE 11, we are able to pre-program a Force SR register
* to be able to trigger SR symbol after 5 idle patterns
* transmitted. Upon PSR Exit, DMCU can trigger
* DPHY_LOAD_BS_COUNT_START = 1. Upon writing 1 to
* DPHY_LOAD_BS_COUNT_START and the internal counter
* reaches DPHY_LOAD_BS_COUNT, the next BS symbol will be
* replaced by SR symbol once.
*/
REG_UPDATE(DP_DPHY_BS_SR_SWAP_CNTL, DPHY_LOAD_BS_COUNT, 0x5);
}
/* Enable static screen interrupts for PSR supported display */
/* Disable the interrupt coming from other displays. */
REG_UPDATE_4(DMCU_INTERRUPT_TO_UC_EN_MASK,
STATIC_SCREEN1_INT_TO_UC_EN, 0,
STATIC_SCREEN2_INT_TO_UC_EN, 0,
STATIC_SCREEN3_INT_TO_UC_EN, 0,
STATIC_SCREEN4_INT_TO_UC_EN, 0);
switch (psr_context->controllerId) {
/* Driver uses case 1 for unconfigured */
case 1:
psr_crtc_offset = mmCRTC0_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK,
STATIC_SCREEN1_INT_TO_UC_EN, 1);
break;
case 2:
psr_crtc_offset = mmCRTC1_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK,
STATIC_SCREEN2_INT_TO_UC_EN, 1);
break;
case 3:
psr_crtc_offset = mmCRTC2_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK,
STATIC_SCREEN3_INT_TO_UC_EN, 1);
break;
case 4:
psr_crtc_offset = mmCRTC3_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK,
STATIC_SCREEN4_INT_TO_UC_EN, 1);
break;
case 5:
psr_crtc_offset = mmCRTC4_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
/* CZ/NL only has 4 CRTC!!
* really valid.
* There is no interrupt enable mask for these instances.
*/
break;
case 6:
psr_crtc_offset = mmCRTC5_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
/* CZ/NL only has 4 CRTC!!
* These are here because they are defined in HW regspec,
* but not really valid. There is no interrupt enable mask
* for these instances.
*/
break;
default:
psr_crtc_offset = mmCRTC0_CRTC_STATIC_SCREEN_CONTROL -
mmCRTC0_CRTC_STATIC_SCREEN_CONTROL;
REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK,
STATIC_SCREEN1_INT_TO_UC_EN, 1);
break;
}
REG_UPDATE_2(DP_SEC_CNTL1,
DP_SEC_GSP0_LINE_NUM, psr_context->sdpTransmitLineNumDeadline,
DP_SEC_GSP0_PRIORITY, 1);
if (psr_context->psr_level.bits.SKIP_SMU_NOTIFICATION) {
REG_UPDATE(SMU_INTERRUPT_CONTROL, DC_SMU_INT_ENABLE, 1);
}
/* waitDMCUReadyForCmd */
do {
dm_delay_in_microseconds(ctx, dmcu_wait_reg_ready_interval);
regValue = REG_READ(MASTER_COMM_CNTL_REG);
dmcu_max_retry_on_wait_reg_ready--;
} while
/* expected value is 0, loop while not 0*/
((MASTER_COMM_CNTL_REG__MASTER_COMM_INTERRUPT_MASK & regValue) &&
dmcu_max_retry_on_wait_reg_ready > 0);
/* setDMCUParam_PSRHostConfigData */
masterCmdData1.u32All = 0;
masterCmdData1.bits.timehyst_frames = psr_context->timehyst_frames;
masterCmdData1.bits.hyst_lines = psr_context->hyst_lines;
masterCmdData1.bits.rfb_update_auto_en =
psr_context->rfb_update_auto_en;
masterCmdData1.bits.dp_port_num = psr_context->transmitterId;
masterCmdData1.bits.dcp_sel = psr_context->controllerId;
masterCmdData1.bits.phy_type = psr_context->phyType;
masterCmdData1.bits.frame_cap_ind =
psr_context->psrFrameCaptureIndicationReq;
masterCmdData1.bits.aux_chan = psr_context->channel;
masterCmdData1.bits.aux_repeat = psr_context->aux_repeats;
dm_write_reg(ctx, REG(MASTER_COMM_DATA_REG1),
masterCmdData1.u32All);
masterCmdData2.u32All = 0;
masterCmdData2.bits.dig_fe = psr_context->engineId;
masterCmdData2.bits.dig_be = psr_context->transmitterId;
masterCmdData2.bits.skip_wait_for_pll_lock =
psr_context->skipPsrWaitForPllLock;
masterCmdData2.bits.frame_delay = psr_context->frame_delay;
masterCmdData2.bits.smu_phy_id = psr_context->smuPhyId;
masterCmdData2.bits.num_of_controllers =
psr_context->numberOfControllers;
dm_write_reg(ctx, REG(MASTER_COMM_DATA_REG2),
masterCmdData2.u32All);
masterCmdData3.u32All = 0;
masterCmdData3.bits.psr_level = psr_context->psr_level.u32all;
dm_write_reg(ctx, REG(MASTER_COMM_DATA_REG3),
masterCmdData3.u32All);
/* setDMCUParam_Cmd */
REG_UPDATE(MASTER_COMM_CMD_REG,
MASTER_COMM_CMD_REG_BYTE0, PSR_SET);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
}
void dce110_link_encoder_connect_dig_be_to_fe(
struct link_encoder *enc,
enum engine_id engine,
bool connect)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
uint32_t field;
if (engine != ENGINE_ID_UNKNOWN) {
REG_GET(DIG_BE_CNTL, DIG_FE_SOURCE_SELECT, &field);
if (connect)
field |= get_frontend_source(engine);
else
field &= ~get_frontend_source(engine);
REG_UPDATE(DIG_BE_CNTL, DIG_FE_SOURCE_SELECT, field);
}
}
void dce110_link_encoder_enable_hpd(struct link_encoder *enc)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
uint32_t addr = HPD_REG(DC_HPD_CONTROL);
uint32_t hpd_enable = 0;
uint32_t value = dm_read_reg(ctx, addr);
get_reg_field_value(hpd_enable, DC_HPD_CONTROL, DC_HPD_EN);
if (hpd_enable == 0)
set_reg_field_value(value, 1, DC_HPD_CONTROL, DC_HPD_EN);
}
void dce110_link_encoder_disable_hpd(struct link_encoder *enc)
{
struct dce110_link_encoder *enc110 = TO_DCE110_LINK_ENC(enc);
struct dc_context *ctx = enc110->base.ctx;
uint32_t addr = HPD_REG(DC_HPD_CONTROL);
uint32_t value = dm_read_reg(ctx, addr);
set_reg_field_value(value, 0, DC_HPD_CONTROL, DC_HPD_EN);
}