blob: bfb2c3fcd2cb1ad60db5b1edaec3b436a51b072a [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dce110/dce110_resource.h"
#include "dce110/dce110_timing_generator.h"
#include "dce112/dce112_mem_input.h"
#include "irq/dce110/irq_service_dce110.h"
#include "dce/dce_transform.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_audio.h"
#include "dce112/dce112_opp.h"
#include "dce110/dce110_ipp.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_hwseq.h"
#include "dce112/dce112_hw_sequencer.h"
#include "reg_helper.h"
#include "dce/dce_11_2_d.h"
#include "dce/dce_11_2_sh_mask.h"
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7
#define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7
#define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_BS_SR_SWAP_CNTL
#define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC
#define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC
#define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC
#define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC
#define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC
#define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC
#define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC
#define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC
#define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC
#define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC
#endif
enum dce112_clk_src_array_id {
DCE112_CLK_SRC_PLL0,
DCE112_CLK_SRC_PLL1,
DCE112_CLK_SRC_PLL2,
DCE112_CLK_SRC_PLL3,
DCE112_CLK_SRC_PLL4,
DCE112_CLK_SRC_PLL5,
DCE112_CLK_SRC_TOTAL
};
static const struct dce110_timing_generator_offsets dce112_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
}
};
static const struct dce110_mem_input_reg_offsets dce112_mi_reg_offsets[] = {
{
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG0_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE0_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG1_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE1_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG2_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE2_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG3_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE3_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG4_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE4_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
},
{
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG5_DPG_WATERMARK_MASK_CONTROL
- mmDPG_WATERMARK_MASK_CONTROL),
.pipe = (mmPIPE5_DMIF_BUFFER_CONTROL
- mmPIPE0_DMIF_BUFFER_CONTROL),
}
};
static const struct dce110_ipp_reg_offsets ipp_reg_offsets[] = {
{
.dcp_offset = (mmDCP0_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP1_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP2_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP3_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP4_CUR_CONTROL - mmCUR_CONTROL),
},
{
.dcp_offset = (mmDCP5_CUR_CONTROL - mmCUR_CONTROL),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2),
transform_regs(3),
transform_regs(4),
transform_regs(5)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE110_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE112(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE112(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5)
};
static const struct dce_audio_shift audio_shift = {
AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_aduio_mask audio_mask = {
AUD_COMMON_MASK_SH_LIST(_MASK)
};
static const struct dce110_opp_reg_offsets dce112_opp_reg_offsets[] = {
{
.fmt_offset = (mmFMT0_FMT_CONTROL - mmFMT0_FMT_CONTROL),
.fmt_mem_offset = (mmFMT_MEMORY0_CONTROL - mmFMT_MEMORY0_CONTROL),
.dcfe_offset = (mmDCFE0_DCFE_MEM_PWR_CTRL - mmDCFE0_DCFE_MEM_PWR_CTRL),
.dcp_offset = (mmDCP0_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{ .fmt_offset = (mmFMT1_FMT_CONTROL - mmFMT0_FMT_CONTROL),
.fmt_mem_offset = (mmFMT_MEMORY1_CONTROL - mmFMT_MEMORY0_CONTROL),
.dcfe_offset = (mmDCFE1_DCFE_MEM_PWR_CTRL - mmDCFE0_DCFE_MEM_PWR_CTRL),
.dcp_offset = (mmDCP1_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{ .fmt_offset = (mmFMT2_FMT_CONTROL - mmFMT0_FMT_CONTROL),
.fmt_mem_offset = (mmFMT_MEMORY2_CONTROL - mmFMT_MEMORY0_CONTROL),
.dcfe_offset = (mmDCFE2_DCFE_MEM_PWR_CTRL - mmDCFE0_DCFE_MEM_PWR_CTRL),
.dcp_offset = (mmDCP2_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{
.fmt_offset = (mmFMT3_FMT_CONTROL - mmFMT0_FMT_CONTROL),
.fmt_mem_offset = (mmFMT_MEMORY3_CONTROL - mmFMT_MEMORY0_CONTROL),
.dcfe_offset = (mmDCFE3_DCFE_MEM_PWR_CTRL - mmDCFE0_DCFE_MEM_PWR_CTRL),
.dcp_offset = (mmDCP3_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{ .fmt_offset = (mmFMT4_FMT_CONTROL - mmFMT0_FMT_CONTROL),
.fmt_mem_offset = (mmFMT_MEMORY4_CONTROL - mmFMT_MEMORY0_CONTROL),
.dcfe_offset = (mmDCFE4_DCFE_MEM_PWR_CTRL - mmDCFE0_DCFE_MEM_PWR_CTRL),
.dcp_offset = (mmDCP4_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{ .fmt_offset = (mmFMT5_FMT_CONTROL - mmFMT0_FMT_CONTROL),
.fmt_mem_offset = (mmFMT_MEMORY5_CONTROL - mmFMT_MEMORY0_CONTROL),
.dcfe_offset = (mmDCFE5_DCFE_MEM_PWR_CTRL - mmDCFE0_DCFE_MEM_PWR_CTRL),
.dcp_offset = (mmDCP5_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
}
};
#define clk_src_regs(index, id)\
[index] = {\
CS_COMMON_REG_LIST_DCE_112(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_112(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_112(_MASK)
};
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps polaris_10_resource_cap = {
.num_timing_generator = 6,
.num_audio = 6,
.num_stream_encoder = 6,
.num_pll = 8, /* why 8? 6 combo PHY PLL + 2 regular PLLs? */
};
static const struct resource_caps polaris_11_resource_cap = {
.num_timing_generator = 5,
.num_audio = 5,
.num_stream_encoder = 5,
.num_pll = 8, /* why 8? 6 combo PHY PLL + 2 regular PLLs? */
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x4819
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce112_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
dm_alloc(sizeof(struct dce110_timing_generator));
if (!tg110)
return NULL;
if (dce110_timing_generator_construct(tg110, ctx, instance, offsets))
return &tg110->base;
BREAK_TO_DEBUGGER();
dm_free(tg110);
return NULL;
}
static struct stream_encoder *dce112_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
dm_alloc(sizeof(struct dce110_stream_encoder));
if (!enc110)
return NULL;
if (dce110_stream_encoder_construct(
enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id], &se_shift, &se_mask))
return &enc110->base;
BREAK_TO_DEBUGGER();
dm_free(enc110);
return NULL;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCE112_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE112_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE112_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dce112_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = dm_alloc(sizeof(struct dce_hwseq));
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce112_stream_encoder_create,
.create_hwseq = dce112_hwseq_create,
};
#define mi_inst_regs(id) { MI_REG_LIST(id) }
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
mi_inst_regs(3),
mi_inst_regs(4),
mi_inst_regs(5),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE_MASK_SH_LIST(__SHIFT)
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE_MASK_SH_LIST(_MASK)
};
static struct mem_input *dce112_mem_input_create(
struct dc_context *ctx,
uint32_t inst,
const struct dce110_mem_input_reg_offsets *offset)
{
struct dce110_mem_input *mem_input110 =
dm_alloc(sizeof(struct dce110_mem_input));
if (!mem_input110)
return NULL;
if (dce112_mem_input_construct(mem_input110, ctx, inst, offset)) {
struct mem_input *mi = &mem_input110->base;
mi->regs = &mi_regs[inst];
mi->shifts = &mi_shifts;
mi->masks = &mi_masks;
return mi;
}
BREAK_TO_DEBUGGER();
dm_free(mem_input110);
return NULL;
}
static void dce112_transform_destroy(struct transform **xfm)
{
dm_free(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce112_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
dm_alloc(sizeof(struct dce_transform));
if (!transform)
return NULL;
if (dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask)) {
transform->lb_memory_size = 0x1404; /*5124*/
return &transform->base;
}
BREAK_TO_DEBUGGER();
dm_free(transform);
return NULL;
}
struct link_encoder *dce112_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
dm_alloc(sizeof(struct dce110_link_encoder));
if (!enc110)
return NULL;
if (dce110_link_encoder_construct(
enc110,
enc_init_data,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source])) {
enc110->base.features.ycbcr420_supported = false;
enc110->base.features.max_hdmi_pixel_clock = 600000;
return &enc110->base;
}
BREAK_TO_DEBUGGER();
dm_free(enc110);
return NULL;
}
struct input_pixel_processor *dce112_ipp_create(
struct dc_context *ctx,
uint32_t inst,
const struct dce110_ipp_reg_offsets *offset)
{
struct dce110_ipp *ipp =
dm_alloc(sizeof(struct dce110_ipp));
if (!ipp)
return NULL;
if (dce110_ipp_construct(ipp, ctx, inst, offset))
return &ipp->base;
BREAK_TO_DEBUGGER();
dm_free(ipp);
return NULL;
}
void dce112_ipp_destroy(struct input_pixel_processor **ipp)
{
dm_free(TO_DCE110_IPP(*ipp));
*ipp = NULL;
}
struct output_pixel_processor *dce112_opp_create(
struct dc_context *ctx,
uint32_t inst,
const struct dce110_opp_reg_offsets *offset)
{
struct dce110_opp *opp =
dm_alloc(sizeof(struct dce110_opp));
if (!opp)
return NULL;
if (dce112_opp_construct(opp,
ctx, inst, offset))
return &opp->base;
BREAK_TO_DEBUGGER();
dm_free(opp);
return NULL;
}
void dce112_opp_destroy(struct output_pixel_processor **opp)
{
struct dce110_opp *dce110_opp;
if (!opp || !*opp)
return;
dce110_opp = FROM_DCE11_OPP(*opp);
dm_free(dce110_opp->regamma.coeff128_dx);
dm_free(dce110_opp->regamma.coeff128_oem);
dm_free(dce110_opp->regamma.coeff128);
dm_free(dce110_opp->regamma.axis_x_1025);
dm_free(dce110_opp->regamma.axis_x_256);
dm_free(dce110_opp->regamma.coordinates_x);
dm_free(dce110_opp->regamma.rgb_regamma);
dm_free(dce110_opp->regamma.rgb_resulted);
dm_free(dce110_opp->regamma.rgb_oem);
dm_free(dce110_opp->regamma.rgb_user);
dm_free(dce110_opp);
*opp = NULL;
}
struct clock_source *dce112_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
dm_alloc(sizeof(struct dce110_clk_src));
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
void dce112_clock_source_destroy(struct clock_source **clk_src)
{
dm_free(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static void destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce112_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce112_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce112_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
dm_free(TO_DCE110_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
dm_free(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
dm_free(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dce112_clock_source_destroy(&pool->base.clock_sources[i]);
}
}
if (pool->base.dp_clock_source != NULL)
dce112_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL) {
dce_aud_destroy(&pool->base.audios[i]);
}
}
if (pool->base.display_clock != NULL) {
dal_display_clock_destroy(&pool->base.display_clock);
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
static struct clock_source *find_matching_pll(struct resource_context *res_ctx,
const struct core_stream *const stream)
{
switch (stream->sink->link->link_enc->transmitter) {
case TRANSMITTER_UNIPHY_A:
return res_ctx->pool->clock_sources[DCE112_CLK_SRC_PLL0];
case TRANSMITTER_UNIPHY_B:
return res_ctx->pool->clock_sources[DCE112_CLK_SRC_PLL1];
case TRANSMITTER_UNIPHY_C:
return res_ctx->pool->clock_sources[DCE112_CLK_SRC_PLL2];
case TRANSMITTER_UNIPHY_D:
return res_ctx->pool->clock_sources[DCE112_CLK_SRC_PLL3];
case TRANSMITTER_UNIPHY_E:
return res_ctx->pool->clock_sources[DCE112_CLK_SRC_PLL4];
case TRANSMITTER_UNIPHY_F:
return res_ctx->pool->clock_sources[DCE112_CLK_SRC_PLL5];
default:
return NULL;
};
return 0;
}
static enum dc_status validate_mapped_resource(
const struct core_dc *dc,
struct validate_context *context)
{
enum dc_status status = DC_OK;
uint8_t i, j, k;
for (i = 0; i < context->target_count; i++) {
struct core_target *target = context->targets[i];
for (j = 0; j < target->public.stream_count; j++) {
struct core_stream *stream =
DC_STREAM_TO_CORE(target->public.streams[j]);
struct core_link *link = stream->sink->link;
if (resource_is_stream_unchanged(dc->current_context, stream))
continue;
for (k = 0; k < MAX_PIPES; k++) {
struct pipe_ctx *pipe_ctx =
&context->res_ctx.pipe_ctx[k];
if (context->res_ctx.pipe_ctx[k].stream != stream)
continue;
if (!pipe_ctx->tg->funcs->validate_timing(
pipe_ctx->tg, &stream->public.timing))
return DC_FAIL_CONTROLLER_VALIDATE;
status = dce110_resource_build_pipe_hw_param(pipe_ctx);
if (status != DC_OK)
return status;
if (!link->link_enc->funcs->validate_output_with_stream(
link->link_enc,
pipe_ctx))
return DC_FAIL_ENC_VALIDATE;
/* TODO: validate audio ASIC caps, encoder */
status = dc_link_validate_mode_timing(stream,
link,
&stream->public.timing);
if (status != DC_OK)
return status;
resource_build_info_frame(pipe_ctx);
/* do not need to validate non root pipes */
break;
}
}
}
return DC_OK;
}
enum dc_status dce112_validate_bandwidth(
const struct core_dc *dc,
struct validate_context *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
dm_logger_write(
dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"%s: start",
__func__);
if (!bw_calcs(
dc->ctx,
&dc->bw_dceip,
&dc->bw_vbios,
context->res_ctx.pipe_ctx,
context->res_ctx.pool->pipe_count,
&context->bw_results))
result = DC_FAIL_BANDWIDTH_VALIDATE;
else
result = DC_OK;
if (result == DC_FAIL_BANDWIDTH_VALIDATE)
dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_VALIDATION,
"%s: Bandwidth validation failed!",
__func__);
if (memcmp(&dc->current_context->bw_results,
&context->bw_results, sizeof(context->bw_results))) {
struct log_entry log_entry;
dm_logger_open(
dc->ctx->logger,
&log_entry,
LOG_BANDWIDTH_CALCS);
dm_logger_append(&log_entry, "%s: finish,\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n",
__func__,
context->bw_results.nbp_state_change_wm_ns[0].b_mark,
context->bw_results.nbp_state_change_wm_ns[0].a_mark,
context->bw_results.urgent_wm_ns[0].b_mark,
context->bw_results.urgent_wm_ns[0].a_mark,
context->bw_results.stutter_exit_wm_ns[0].b_mark,
context->bw_results.stutter_exit_wm_ns[0].a_mark);
dm_logger_append(&log_entry,
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n",
context->bw_results.nbp_state_change_wm_ns[1].b_mark,
context->bw_results.nbp_state_change_wm_ns[1].a_mark,
context->bw_results.urgent_wm_ns[1].b_mark,
context->bw_results.urgent_wm_ns[1].a_mark,
context->bw_results.stutter_exit_wm_ns[1].b_mark,
context->bw_results.stutter_exit_wm_ns[1].a_mark);
dm_logger_append(&log_entry,
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n",
context->bw_results.nbp_state_change_wm_ns[2].b_mark,
context->bw_results.nbp_state_change_wm_ns[2].a_mark,
context->bw_results.urgent_wm_ns[2].b_mark,
context->bw_results.urgent_wm_ns[2].a_mark,
context->bw_results.stutter_exit_wm_ns[2].b_mark,
context->bw_results.stutter_exit_wm_ns[2].a_mark,
context->bw_results.stutter_mode_enable);
dm_logger_append(&log_entry,
"cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n"
"sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n",
context->bw_results.cpuc_state_change_enable,
context->bw_results.cpup_state_change_enable,
context->bw_results.nbp_state_change_enable,
context->bw_results.all_displays_in_sync,
context->bw_results.dispclk_khz,
context->bw_results.required_sclk,
context->bw_results.required_sclk_deep_sleep,
context->bw_results.required_yclk,
context->bw_results.blackout_recovery_time_us);
dm_logger_close(&log_entry);
}
return result;
}
enum dc_status resource_map_phy_clock_resources(
const struct core_dc *dc,
struct validate_context *context)
{
uint8_t i, j, k;
/* acquire new resources */
for (i = 0; i < context->target_count; i++) {
struct core_target *target = context->targets[i];
for (j = 0; j < target->public.stream_count; j++) {
struct core_stream *stream =
DC_STREAM_TO_CORE(target->public.streams[j]);
if (resource_is_stream_unchanged(dc->current_context, stream))
continue;
for (k = 0; k < MAX_PIPES; k++) {
struct pipe_ctx *pipe_ctx =
&context->res_ctx.pipe_ctx[k];
if (context->res_ctx.pipe_ctx[k].stream != stream)
continue;
if (dc_is_dp_signal(pipe_ctx->stream->signal)
|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
pipe_ctx->clock_source =
context->res_ctx.pool->dp_clock_source;
else
pipe_ctx->clock_source =
find_matching_pll(&context->res_ctx,
stream);
if (pipe_ctx->clock_source == NULL)
return DC_NO_CLOCK_SOURCE_RESOURCE;
resource_reference_clock_source(
&context->res_ctx,
pipe_ctx->clock_source);
/* only one cs per stream regardless of mpo */
break;
}
}
}
return DC_OK;
}
static bool dce112_validate_surface_sets(
const struct dc_validation_set set[],
int set_count)
{
int i;
for (i = 0; i < set_count; i++) {
if (set[i].surface_count == 0)
continue;
if (set[i].surface_count > 1)
return false;
if (set[i].surfaces[0]->clip_rect.width
!= set[i].target->streams[0]->src.width
|| set[i].surfaces[0]->clip_rect.height
!= set[i].target->streams[0]->src.height)
return false;
if (set[i].surfaces[0]->format
>= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
}
return true;
}
enum dc_status dce112_validate_with_context(
const struct core_dc *dc,
const struct dc_validation_set set[],
int set_count,
struct validate_context *context)
{
struct dc_context *dc_ctx = dc->ctx;
enum dc_status result = DC_ERROR_UNEXPECTED;
int i;
if (!dce112_validate_surface_sets(set, set_count))
return DC_FAIL_SURFACE_VALIDATE;
context->res_ctx.pool = dc->res_pool;
for (i = 0; i < set_count; i++) {
context->targets[i] = DC_TARGET_TO_CORE(set[i].target);
dc_target_retain(&context->targets[i]->public);
context->target_count++;
}
result = resource_map_pool_resources(dc, context);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, context);
if (!resource_validate_attach_surfaces(
set, set_count, dc->current_context, context)) {
DC_ERROR("Failed to attach surface to target!\n");
return DC_FAIL_ATTACH_SURFACES;
}
if (result == DC_OK)
result = validate_mapped_resource(dc, context);
if (result == DC_OK)
result = resource_build_scaling_params_for_context(dc, context);
if (result == DC_OK)
result = dce112_validate_bandwidth(dc, context);
return result;
}
enum dc_status dce112_validate_guaranteed(
const struct core_dc *dc,
const struct dc_target *dc_target,
struct validate_context *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
context->res_ctx.pool = dc->res_pool;
context->targets[0] = DC_TARGET_TO_CORE(dc_target);
dc_target_retain(&context->targets[0]->public);
context->target_count++;
result = resource_map_pool_resources(dc, context);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, context);
if (result == DC_OK)
result = validate_mapped_resource(dc, context);
if (result == DC_OK) {
validate_guaranteed_copy_target(
context, dc->public.caps.max_targets);
result = resource_build_scaling_params_for_context(dc, context);
}
if (result == DC_OK)
result = dce112_validate_bandwidth(dc, context);
return result;
}
static void dce112_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
destruct(dce110_pool);
dm_free(dce110_pool);
*pool = NULL;
}
static const struct resource_funcs dce112_res_pool_funcs = {
.destroy = dce112_destroy_resource_pool,
.link_enc_create = dce112_link_encoder_create,
.validate_with_context = dce112_validate_with_context,
.validate_guaranteed = dce112_validate_guaranteed,
.validate_bandwidth = dce112_validate_bandwidth
};
static void bw_calcs_data_update_from_pplib(struct core_dc *dc)
{
struct dm_pp_clock_levels_with_latency eng_clks = {0};
struct dm_pp_clock_levels_with_latency mem_clks = {0};
struct dm_pp_wm_sets_with_clock_ranges clk_ranges = {0};
struct dm_pp_clock_levels clks = {0};
/*do system clock TODO PPLIB: after PPLIB implement,
* then remove old way
*/
if (!dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&eng_clks)) {
/* This is only for temporary */
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&clks);
/* convert all the clock fro kHz to fix point mHz */
dc->bw_vbios.high_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios.mid1_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels/8], 1000);
dc->bw_vbios.mid2_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*2/8], 1000);
dc->bw_vbios.mid3_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*3/8], 1000);
dc->bw_vbios.mid4_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*4/8], 1000);
dc->bw_vbios.mid5_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*5/8], 1000);
dc->bw_vbios.mid6_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*6/8], 1000);
dc->bw_vbios.low_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&clks);
dc->bw_vbios.low_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[0] * MEMORY_TYPE_MULTIPLIER, 1000);
dc->bw_vbios.mid_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1] * MEMORY_TYPE_MULTIPLIER,
1000);
dc->bw_vbios.high_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1] * MEMORY_TYPE_MULTIPLIER,
1000);
return;
}
/* convert all the clock fro kHz to fix point mHz TODO: wloop data */
dc->bw_vbios.high_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels-1].clocks_in_khz, 1000);
dc->bw_vbios.mid1_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels/8].clocks_in_khz, 1000);
dc->bw_vbios.mid2_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*2/8].clocks_in_khz, 1000);
dc->bw_vbios.mid3_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz, 1000);
dc->bw_vbios.mid4_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*4/8].clocks_in_khz, 1000);
dc->bw_vbios.mid5_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*5/8].clocks_in_khz, 1000);
dc->bw_vbios.mid6_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*6/8].clocks_in_khz, 1000);
dc->bw_vbios.low_sclk = bw_frc_to_fixed(
eng_clks.data[0].clocks_in_khz, 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&mem_clks);
/* we don't need to call PPLIB for validation clock since they
* also give us the highest sclk and highest mclk (UMA clock).
* ALSO always convert UMA clock (from PPLIB) to YCLK (HW formula):
* YCLK = UMACLK*m_memoryTypeMultiplier
*/
dc->bw_vbios.low_yclk = bw_frc_to_fixed(
mem_clks.data[0].clocks_in_khz * MEMORY_TYPE_MULTIPLIER, 1000);
dc->bw_vbios.mid_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz * MEMORY_TYPE_MULTIPLIER,
1000);
dc->bw_vbios.high_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels-1].clocks_in_khz * MEMORY_TYPE_MULTIPLIER,
1000);
/* Now notify PPLib/SMU about which Watermarks sets they should select
* depending on DPM state they are in. And update BW MGR GFX Engine and
* Memory clock member variables for Watermarks calculations for each
* Watermark Set
*/
clk_ranges.num_wm_sets = 4;
clk_ranges.wm_clk_ranges[0].wm_set_id = WM_SET_A;
clk_ranges.wm_clk_ranges[0].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[0].wm_min_memg_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[1].wm_set_id = WM_SET_B;
clk_ranges.wm_clk_ranges[1].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[1].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[1].wm_min_memg_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[1].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_set_id = WM_SET_C;
clk_ranges.wm_clk_ranges[2].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[2].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_min_memg_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[2].wm_max_mem_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_set_id = WM_SET_D;
clk_ranges.wm_clk_ranges[3].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_min_memg_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_mem_clk_in_khz = 5000000;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
dm_pp_notify_wm_clock_changes(dc->ctx, &clk_ranges);
}
const struct resource_caps *dce112_resource_cap(
struct hw_asic_id *asic_id)
{
if (ASIC_REV_IS_POLARIS11_M(asic_id->hw_internal_rev))
return &polaris_11_resource_cap;
else
return &polaris_10_resource_cap;
}
static bool construct(
uint8_t num_virtual_links,
struct core_dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dm_pp_static_clock_info static_clk_info = {0};
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = dce112_resource_cap(&ctx->asic_id);
pool->base.funcs = &dce112_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = -1;
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
dc->public.caps.max_downscale_ratio = 200;
dc->public.caps.i2c_speed_in_khz = 100;
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCE112_CLK_SRC_PLL0] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL1] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL2] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL3] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL4] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL5] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCE112_CLK_SRC_TOTAL;
pool->base.dp_clock_source = dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.display_clock = dal_display_clock_dce112_create(
ctx);
if (pool->base.display_clock == NULL) {
dm_error("DC: failed to create display clock!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
/* get static clock information for PPLIB or firmware, save
* max_clock_state
*/
if (dm_pp_get_static_clocks(ctx, &static_clk_info)) {
enum clocks_state max_clocks_state =
dce110_resource_convert_clock_state_pp_to_dc(
static_clk_info.max_clocks_state);
dal_display_clock_store_max_clocks_state(
pool->base.display_clock, max_clocks_state);
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce110_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] =
dce112_timing_generator_create(
ctx,
i,
&dce112_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce112_mem_input_create(
ctx,
i,
&dce112_mi_reg_offsets[i]);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce112_ipp_create(
ctx,
i,
&ipp_reg_offsets[i]);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce112_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce112_opp_create(
ctx,
i,
&dce112_opp_reg_offsets[i]);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create output pixel processor!\n");
goto res_create_fail;
}
}
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
if (!dce112_hw_sequencer_construct(dc))
goto res_create_fail;
bw_calcs_init(&dc->bw_dceip, &dc->bw_vbios, BW_CALCS_VERSION_POLARIS11);
bw_calcs_data_update_from_pplib(dc);
return true;
res_create_fail:
destruct(pool);
return false;
}
struct resource_pool *dce112_create_resource_pool(
uint8_t num_virtual_links,
struct core_dc *dc)
{
struct dce110_resource_pool *pool =
dm_alloc(sizeof(struct dce110_resource_pool));
if (!pool)
return NULL;
if (construct(num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
return NULL;
}