| /* | 
 |  * Copyright (C) 2008 Red Hat.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/pagemap.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/ratelimit.h> | 
 | #include "ctree.h" | 
 | #include "free-space-cache.h" | 
 | #include "transaction.h" | 
 | #include "disk-io.h" | 
 | #include "extent_io.h" | 
 | #include "inode-map.h" | 
 |  | 
 | #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8) | 
 | #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024) | 
 |  | 
 | static int link_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			   struct btrfs_free_space *info); | 
 |  | 
 | static struct inode *__lookup_free_space_inode(struct btrfs_root *root, | 
 | 					       struct btrfs_path *path, | 
 | 					       u64 offset) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key location; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct inode *inode = NULL; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.offset = offset; | 
 | 	key.type = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ERR_PTR(ret); | 
 | 	if (ret > 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return ERR_PTR(-ENOENT); | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	btrfs_free_space_key(leaf, header, &disk_key); | 
 | 	btrfs_disk_key_to_cpu(&location, &disk_key); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); | 
 | 	if (!inode) | 
 | 		return ERR_PTR(-ENOENT); | 
 | 	if (IS_ERR(inode)) | 
 | 		return inode; | 
 | 	if (is_bad_inode(inode)) { | 
 | 		iput(inode); | 
 | 		return ERR_PTR(-ENOENT); | 
 | 	} | 
 |  | 
 | 	inode->i_mapping->flags &= ~__GFP_FS; | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | struct inode *lookup_free_space_inode(struct btrfs_root *root, | 
 | 				      struct btrfs_block_group_cache | 
 | 				      *block_group, struct btrfs_path *path) | 
 | { | 
 | 	struct inode *inode = NULL; | 
 | 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->inode) | 
 | 		inode = igrab(block_group->inode); | 
 | 	spin_unlock(&block_group->lock); | 
 | 	if (inode) | 
 | 		return inode; | 
 |  | 
 | 	inode = __lookup_free_space_inode(root, path, | 
 | 					  block_group->key.objectid); | 
 | 	if (IS_ERR(inode)) | 
 | 		return inode; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (!((BTRFS_I(inode)->flags & flags) == flags)) { | 
 | 		printk(KERN_INFO "Old style space inode found, converting.\n"); | 
 | 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | | 
 | 			BTRFS_INODE_NODATACOW; | 
 | 		block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
 | 	} | 
 |  | 
 | 	if (!block_group->iref) { | 
 | 		block_group->inode = igrab(inode); | 
 | 		block_group->iref = 1; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | int __create_free_space_inode(struct btrfs_root *root, | 
 | 			      struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_path *path, u64 ino, u64 offset) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_empty_inode(trans, root, path, ino); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* We inline crc's for the free disk space cache */ | 
 | 	if (ino != BTRFS_FREE_INO_OBJECTID) | 
 | 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 | 	btrfs_item_key(leaf, &disk_key, path->slots[0]); | 
 | 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item, | 
 | 			     sizeof(*inode_item)); | 
 | 	btrfs_set_inode_generation(leaf, inode_item, trans->transid); | 
 | 	btrfs_set_inode_size(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_nbytes(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_uid(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_gid(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); | 
 | 	btrfs_set_inode_flags(leaf, inode_item, flags); | 
 | 	btrfs_set_inode_nlink(leaf, inode_item, 1); | 
 | 	btrfs_set_inode_transid(leaf, inode_item, trans->transid); | 
 | 	btrfs_set_inode_block_group(leaf, inode_item, offset); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.offset = offset; | 
 | 	key.type = 0; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(struct btrfs_free_space_header)); | 
 | 	if (ret < 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return ret; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); | 
 | 	btrfs_set_free_space_key(leaf, header, &disk_key); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int create_free_space_inode(struct btrfs_root *root, | 
 | 			    struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_block_group_cache *block_group, | 
 | 			    struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	u64 ino; | 
 |  | 
 | 	ret = btrfs_find_free_objectid(root, &ino); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	return __create_free_space_inode(root, trans, path, ino, | 
 | 					 block_group->key.objectid); | 
 | } | 
 |  | 
 | int btrfs_truncate_free_space_cache(struct btrfs_root *root, | 
 | 				    struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_path *path, | 
 | 				    struct inode *inode) | 
 | { | 
 | 	struct btrfs_block_rsv *rsv; | 
 | 	u64 needed_bytes; | 
 | 	loff_t oldsize; | 
 | 	int ret = 0; | 
 |  | 
 | 	rsv = trans->block_rsv; | 
 | 	trans->block_rsv = &root->fs_info->global_block_rsv; | 
 |  | 
 | 	/* 1 for slack space, 1 for updating the inode */ | 
 | 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + | 
 | 		btrfs_calc_trans_metadata_size(root, 1); | 
 |  | 
 | 	spin_lock(&trans->block_rsv->lock); | 
 | 	if (trans->block_rsv->reserved < needed_bytes) { | 
 | 		spin_unlock(&trans->block_rsv->lock); | 
 | 		trans->block_rsv = rsv; | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	spin_unlock(&trans->block_rsv->lock); | 
 |  | 
 | 	oldsize = i_size_read(inode); | 
 | 	btrfs_i_size_write(inode, 0); | 
 | 	truncate_pagecache(inode, oldsize, 0); | 
 |  | 
 | 	/* | 
 | 	 * We don't need an orphan item because truncating the free space cache | 
 | 	 * will never be split across transactions. | 
 | 	 */ | 
 | 	ret = btrfs_truncate_inode_items(trans, root, inode, | 
 | 					 0, BTRFS_EXTENT_DATA_KEY); | 
 |  | 
 | 	if (ret) { | 
 | 		trans->block_rsv = rsv; | 
 | 		WARN_ON(1); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | 	trans->block_rsv = rsv; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int readahead_cache(struct inode *inode) | 
 | { | 
 | 	struct file_ra_state *ra; | 
 | 	unsigned long last_index; | 
 |  | 
 | 	ra = kzalloc(sizeof(*ra), GFP_NOFS); | 
 | 	if (!ra) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	file_ra_state_init(ra, inode->i_mapping); | 
 | 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); | 
 |  | 
 | 	kfree(ra); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct io_ctl { | 
 | 	void *cur, *orig; | 
 | 	struct page *page; | 
 | 	struct page **pages; | 
 | 	struct btrfs_root *root; | 
 | 	unsigned long size; | 
 | 	int index; | 
 | 	int num_pages; | 
 | 	unsigned check_crcs:1; | 
 | }; | 
 |  | 
 | static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, | 
 | 		       struct btrfs_root *root) | 
 | { | 
 | 	memset(io_ctl, 0, sizeof(struct io_ctl)); | 
 | 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> | 
 | 		PAGE_CACHE_SHIFT; | 
 | 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages, | 
 | 				GFP_NOFS); | 
 | 	if (!io_ctl->pages) | 
 | 		return -ENOMEM; | 
 | 	io_ctl->root = root; | 
 | 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) | 
 | 		io_ctl->check_crcs = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_free(struct io_ctl *io_ctl) | 
 | { | 
 | 	kfree(io_ctl->pages); | 
 | } | 
 |  | 
 | static void io_ctl_unmap_page(struct io_ctl *io_ctl) | 
 | { | 
 | 	if (io_ctl->cur) { | 
 | 		kunmap(io_ctl->page); | 
 | 		io_ctl->cur = NULL; | 
 | 		io_ctl->orig = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) | 
 | { | 
 | 	WARN_ON(io_ctl->cur); | 
 | 	BUG_ON(io_ctl->index >= io_ctl->num_pages); | 
 | 	io_ctl->page = io_ctl->pages[io_ctl->index++]; | 
 | 	io_ctl->cur = kmap(io_ctl->page); | 
 | 	io_ctl->orig = io_ctl->cur; | 
 | 	io_ctl->size = PAGE_CACHE_SIZE; | 
 | 	if (clear) | 
 | 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); | 
 | } | 
 |  | 
 | static void io_ctl_drop_pages(struct io_ctl *io_ctl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	for (i = 0; i < io_ctl->num_pages; i++) { | 
 | 		ClearPageChecked(io_ctl->pages[i]); | 
 | 		unlock_page(io_ctl->pages[i]); | 
 | 		page_cache_release(io_ctl->pages[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, | 
 | 				int uptodate) | 
 | { | 
 | 	struct page *page; | 
 | 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < io_ctl->num_pages; i++) { | 
 | 		page = find_or_create_page(inode->i_mapping, i, mask); | 
 | 		if (!page) { | 
 | 			io_ctl_drop_pages(io_ctl); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		io_ctl->pages[i] = page; | 
 | 		if (uptodate && !PageUptodate(page)) { | 
 | 			btrfs_readpage(NULL, page); | 
 | 			lock_page(page); | 
 | 			if (!PageUptodate(page)) { | 
 | 				printk(KERN_ERR "btrfs: error reading free " | 
 | 				       "space cache\n"); | 
 | 				io_ctl_drop_pages(io_ctl); | 
 | 				return -EIO; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < io_ctl->num_pages; i++) { | 
 | 		clear_page_dirty_for_io(io_ctl->pages[i]); | 
 | 		set_page_extent_mapped(io_ctl->pages[i]); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) | 
 | { | 
 | 	u64 *val; | 
 |  | 
 | 	io_ctl_map_page(io_ctl, 1); | 
 |  | 
 | 	/* | 
 | 	 * Skip the csum areas.  If we don't check crcs then we just have a | 
 | 	 * 64bit chunk at the front of the first page. | 
 | 	 */ | 
 | 	if (io_ctl->check_crcs) { | 
 | 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); | 
 | 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); | 
 | 	} else { | 
 | 		io_ctl->cur += sizeof(u64); | 
 | 		io_ctl->size -= sizeof(u64) * 2; | 
 | 	} | 
 |  | 
 | 	val = io_ctl->cur; | 
 | 	*val = cpu_to_le64(generation); | 
 | 	io_ctl->cur += sizeof(u64); | 
 | } | 
 |  | 
 | static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) | 
 | { | 
 | 	u64 *gen; | 
 |  | 
 | 	/* | 
 | 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit | 
 | 	 * chunk at the front of the first page. | 
 | 	 */ | 
 | 	if (io_ctl->check_crcs) { | 
 | 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages; | 
 | 		io_ctl->size -= sizeof(u64) + | 
 | 			(sizeof(u32) * io_ctl->num_pages); | 
 | 	} else { | 
 | 		io_ctl->cur += sizeof(u64); | 
 | 		io_ctl->size -= sizeof(u64) * 2; | 
 | 	} | 
 |  | 
 | 	gen = io_ctl->cur; | 
 | 	if (le64_to_cpu(*gen) != generation) { | 
 | 		printk_ratelimited(KERN_ERR "btrfs: space cache generation " | 
 | 				   "(%Lu) does not match inode (%Lu)\n", *gen, | 
 | 				   generation); | 
 | 		io_ctl_unmap_page(io_ctl); | 
 | 		return -EIO; | 
 | 	} | 
 | 	io_ctl->cur += sizeof(u64); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) | 
 | { | 
 | 	u32 *tmp; | 
 | 	u32 crc = ~(u32)0; | 
 | 	unsigned offset = 0; | 
 |  | 
 | 	if (!io_ctl->check_crcs) { | 
 | 		io_ctl_unmap_page(io_ctl); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (index == 0) | 
 | 		offset = sizeof(u32) * io_ctl->num_pages; | 
 |  | 
 | 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, | 
 | 			      PAGE_CACHE_SIZE - offset); | 
 | 	btrfs_csum_final(crc, (char *)&crc); | 
 | 	io_ctl_unmap_page(io_ctl); | 
 | 	tmp = kmap(io_ctl->pages[0]); | 
 | 	tmp += index; | 
 | 	*tmp = crc; | 
 | 	kunmap(io_ctl->pages[0]); | 
 | } | 
 |  | 
 | static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) | 
 | { | 
 | 	u32 *tmp, val; | 
 | 	u32 crc = ~(u32)0; | 
 | 	unsigned offset = 0; | 
 |  | 
 | 	if (!io_ctl->check_crcs) { | 
 | 		io_ctl_map_page(io_ctl, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (index == 0) | 
 | 		offset = sizeof(u32) * io_ctl->num_pages; | 
 |  | 
 | 	tmp = kmap(io_ctl->pages[0]); | 
 | 	tmp += index; | 
 | 	val = *tmp; | 
 | 	kunmap(io_ctl->pages[0]); | 
 |  | 
 | 	io_ctl_map_page(io_ctl, 0); | 
 | 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, | 
 | 			      PAGE_CACHE_SIZE - offset); | 
 | 	btrfs_csum_final(crc, (char *)&crc); | 
 | 	if (val != crc) { | 
 | 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free " | 
 | 				   "space cache\n"); | 
 | 		io_ctl_unmap_page(io_ctl); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, | 
 | 			    void *bitmap) | 
 | { | 
 | 	struct btrfs_free_space_entry *entry; | 
 |  | 
 | 	if (!io_ctl->cur) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	entry = io_ctl->cur; | 
 | 	entry->offset = cpu_to_le64(offset); | 
 | 	entry->bytes = cpu_to_le64(bytes); | 
 | 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : | 
 | 		BTRFS_FREE_SPACE_EXTENT; | 
 | 	io_ctl->cur += sizeof(struct btrfs_free_space_entry); | 
 | 	io_ctl->size -= sizeof(struct btrfs_free_space_entry); | 
 |  | 
 | 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) | 
 | 		return 0; | 
 |  | 
 | 	io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 |  | 
 | 	/* No more pages to map */ | 
 | 	if (io_ctl->index >= io_ctl->num_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* map the next page */ | 
 | 	io_ctl_map_page(io_ctl, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) | 
 | { | 
 | 	if (!io_ctl->cur) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* | 
 | 	 * If we aren't at the start of the current page, unmap this one and | 
 | 	 * map the next one if there is any left. | 
 | 	 */ | 
 | 	if (io_ctl->cur != io_ctl->orig) { | 
 | 		io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 		if (io_ctl->index >= io_ctl->num_pages) | 
 | 			return -ENOSPC; | 
 | 		io_ctl_map_page(io_ctl, 0); | 
 | 	} | 
 |  | 
 | 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); | 
 | 	io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 	if (io_ctl->index < io_ctl->num_pages) | 
 | 		io_ctl_map_page(io_ctl, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) | 
 | { | 
 | 	/* | 
 | 	 * If we're not on the boundary we know we've modified the page and we | 
 | 	 * need to crc the page. | 
 | 	 */ | 
 | 	if (io_ctl->cur != io_ctl->orig) | 
 | 		io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 	else | 
 | 		io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	while (io_ctl->index < io_ctl->num_pages) { | 
 | 		io_ctl_map_page(io_ctl, 1); | 
 | 		io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 	} | 
 | } | 
 |  | 
 | static int io_ctl_read_entry(struct io_ctl *io_ctl, | 
 | 			    struct btrfs_free_space *entry, u8 *type) | 
 | { | 
 | 	struct btrfs_free_space_entry *e; | 
 | 	int ret; | 
 |  | 
 | 	if (!io_ctl->cur) { | 
 | 		ret = io_ctl_check_crc(io_ctl, io_ctl->index); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	e = io_ctl->cur; | 
 | 	entry->offset = le64_to_cpu(e->offset); | 
 | 	entry->bytes = le64_to_cpu(e->bytes); | 
 | 	*type = e->type; | 
 | 	io_ctl->cur += sizeof(struct btrfs_free_space_entry); | 
 | 	io_ctl->size -= sizeof(struct btrfs_free_space_entry); | 
 |  | 
 | 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) | 
 | 		return 0; | 
 |  | 
 | 	io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_ctl_read_bitmap(struct io_ctl *io_ctl, | 
 | 			      struct btrfs_free_space *entry) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = io_ctl_check_crc(io_ctl, io_ctl->index); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); | 
 | 	io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, | 
 | 			    struct btrfs_free_space_ctl *ctl, | 
 | 			    struct btrfs_path *path, u64 offset) | 
 | { | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct io_ctl io_ctl; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_free_space *e, *n; | 
 | 	struct list_head bitmaps; | 
 | 	u64 num_entries; | 
 | 	u64 num_bitmaps; | 
 | 	u64 generation; | 
 | 	u8 type; | 
 | 	int ret = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&bitmaps); | 
 |  | 
 | 	/* Nothing in the space cache, goodbye */ | 
 | 	if (!i_size_read(inode)) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.offset = offset; | 
 | 	key.type = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	else if (ret > 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = -1; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	num_entries = btrfs_free_space_entries(leaf, header); | 
 | 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header); | 
 | 	generation = btrfs_free_space_generation(leaf, header); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (BTRFS_I(inode)->generation != generation) { | 
 | 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did" | 
 | 		       " not match free space cache generation (%llu)\n", | 
 | 		       (unsigned long long)BTRFS_I(inode)->generation, | 
 | 		       (unsigned long long)generation); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!num_entries) | 
 | 		return 0; | 
 |  | 
 | 	io_ctl_init(&io_ctl, inode, root); | 
 | 	ret = readahead_cache(inode); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = io_ctl_check_crc(&io_ctl, 0); | 
 | 	if (ret) | 
 | 		goto free_cache; | 
 |  | 
 | 	ret = io_ctl_check_generation(&io_ctl, generation); | 
 | 	if (ret) | 
 | 		goto free_cache; | 
 |  | 
 | 	while (num_entries) { | 
 | 		e = kmem_cache_zalloc(btrfs_free_space_cachep, | 
 | 				      GFP_NOFS); | 
 | 		if (!e) | 
 | 			goto free_cache; | 
 |  | 
 | 		ret = io_ctl_read_entry(&io_ctl, e, &type); | 
 | 		if (ret) { | 
 | 			kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 			goto free_cache; | 
 | 		} | 
 |  | 
 | 		if (!e->bytes) { | 
 | 			kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 			goto free_cache; | 
 | 		} | 
 |  | 
 | 		if (type == BTRFS_FREE_SPACE_EXTENT) { | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 			ret = link_free_space(ctl, e); | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			if (ret) { | 
 | 				printk(KERN_ERR "Duplicate entries in " | 
 | 				       "free space cache, dumping\n"); | 
 | 				kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 				goto free_cache; | 
 | 			} | 
 | 		} else { | 
 | 			BUG_ON(!num_bitmaps); | 
 | 			num_bitmaps--; | 
 | 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); | 
 | 			if (!e->bitmap) { | 
 | 				kmem_cache_free( | 
 | 					btrfs_free_space_cachep, e); | 
 | 				goto free_cache; | 
 | 			} | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 			ret = link_free_space(ctl, e); | 
 | 			ctl->total_bitmaps++; | 
 | 			ctl->op->recalc_thresholds(ctl); | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			if (ret) { | 
 | 				printk(KERN_ERR "Duplicate entries in " | 
 | 				       "free space cache, dumping\n"); | 
 | 				kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 				goto free_cache; | 
 | 			} | 
 | 			list_add_tail(&e->list, &bitmaps); | 
 | 		} | 
 |  | 
 | 		num_entries--; | 
 | 	} | 
 |  | 
 | 	io_ctl_unmap_page(&io_ctl); | 
 |  | 
 | 	/* | 
 | 	 * We add the bitmaps at the end of the entries in order that | 
 | 	 * the bitmap entries are added to the cache. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(e, n, &bitmaps, list) { | 
 | 		list_del_init(&e->list); | 
 | 		ret = io_ctl_read_bitmap(&io_ctl, e); | 
 | 		if (ret) | 
 | 			goto free_cache; | 
 | 	} | 
 |  | 
 | 	io_ctl_drop_pages(&io_ctl); | 
 | 	ret = 1; | 
 | out: | 
 | 	io_ctl_free(&io_ctl); | 
 | 	return ret; | 
 | free_cache: | 
 | 	io_ctl_drop_pages(&io_ctl); | 
 | 	__btrfs_remove_free_space_cache(ctl); | 
 | 	goto out; | 
 | } | 
 |  | 
 | int load_free_space_cache(struct btrfs_fs_info *fs_info, | 
 | 			  struct btrfs_block_group_cache *block_group) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 | 	struct inode *inode; | 
 | 	struct btrfs_path *path; | 
 | 	int ret = 0; | 
 | 	bool matched; | 
 | 	u64 used = btrfs_block_group_used(&block_group->item); | 
 |  | 
 | 	/* | 
 | 	 * If we're unmounting then just return, since this does a search on the | 
 | 	 * normal root and not the commit root and we could deadlock. | 
 | 	 */ | 
 | 	if (btrfs_fs_closing(fs_info)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If this block group has been marked to be cleared for one reason or | 
 | 	 * another then we can't trust the on disk cache, so just return. | 
 | 	 */ | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return 0; | 
 |  | 
 | 	inode = lookup_free_space_inode(root, block_group, path); | 
 | 	if (IS_ERR(inode)) { | 
 | 		btrfs_free_path(path); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We may have converted the inode and made the cache invalid. */ | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		goto out; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, | 
 | 				      path, block_group->key.objectid); | 
 | 	btrfs_free_path(path); | 
 | 	if (ret <= 0) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	matched = (ctl->free_space == (block_group->key.offset - used - | 
 | 				       block_group->bytes_super)); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	if (!matched) { | 
 | 		__btrfs_remove_free_space_cache(ctl); | 
 | 		printk(KERN_ERR "block group %llu has an wrong amount of free " | 
 | 		       "space\n", block_group->key.objectid); | 
 | 		ret = -1; | 
 | 	} | 
 | out: | 
 | 	if (ret < 0) { | 
 | 		/* This cache is bogus, make sure it gets cleared */ | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		ret = 0; | 
 |  | 
 | 		printk(KERN_ERR "btrfs: failed to load free space cache " | 
 | 		       "for block group %llu\n", block_group->key.objectid); | 
 | 	} | 
 |  | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * __btrfs_write_out_cache - write out cached info to an inode | 
 |  * @root - the root the inode belongs to | 
 |  * @ctl - the free space cache we are going to write out | 
 |  * @block_group - the block_group for this cache if it belongs to a block_group | 
 |  * @trans - the trans handle | 
 |  * @path - the path to use | 
 |  * @offset - the offset for the key we'll insert | 
 |  * | 
 |  * This function writes out a free space cache struct to disk for quick recovery | 
 |  * on mount.  This will return 0 if it was successfull in writing the cache out, | 
 |  * and -1 if it was not. | 
 |  */ | 
 | int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, | 
 | 			    struct btrfs_free_space_ctl *ctl, | 
 | 			    struct btrfs_block_group_cache *block_group, | 
 | 			    struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_path *path, u64 offset) | 
 | { | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct rb_node *node; | 
 | 	struct list_head *pos, *n; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct btrfs_free_cluster *cluster = NULL; | 
 | 	struct extent_io_tree *unpin = NULL; | 
 | 	struct io_ctl io_ctl; | 
 | 	struct list_head bitmap_list; | 
 | 	struct btrfs_key key; | 
 | 	u64 start, end, len; | 
 | 	int entries = 0; | 
 | 	int bitmaps = 0; | 
 | 	int ret; | 
 | 	int err = -1; | 
 |  | 
 | 	INIT_LIST_HEAD(&bitmap_list); | 
 |  | 
 | 	if (!i_size_read(inode)) | 
 | 		return -1; | 
 |  | 
 | 	io_ctl_init(&io_ctl, inode, root); | 
 |  | 
 | 	/* Get the cluster for this block_group if it exists */ | 
 | 	if (block_group && !list_empty(&block_group->cluster_list)) | 
 | 		cluster = list_entry(block_group->cluster_list.next, | 
 | 				     struct btrfs_free_cluster, | 
 | 				     block_group_list); | 
 |  | 
 | 	/* | 
 | 	 * We shouldn't have switched the pinned extents yet so this is the | 
 | 	 * right one | 
 | 	 */ | 
 | 	unpin = root->fs_info->pinned_extents; | 
 |  | 
 | 	/* Lock all pages first so we can lock the extent safely. */ | 
 | 	io_ctl_prepare_pages(&io_ctl, inode, 0); | 
 |  | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, | 
 | 			 0, &cached_state, GFP_NOFS); | 
 |  | 
 | 	/* | 
 | 	 * When searching for pinned extents, we need to start at our start | 
 | 	 * offset. | 
 | 	 */ | 
 | 	if (block_group) | 
 | 		start = block_group->key.objectid; | 
 |  | 
 | 	node = rb_first(&ctl->free_space_offset); | 
 | 	if (!node && cluster) { | 
 | 		node = rb_first(&cluster->root); | 
 | 		cluster = NULL; | 
 | 	} | 
 |  | 
 | 	/* Make sure we can fit our crcs into the first page */ | 
 | 	if (io_ctl.check_crcs && | 
 | 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) { | 
 | 		WARN_ON(1); | 
 | 		goto out_nospc; | 
 | 	} | 
 |  | 
 | 	io_ctl_set_generation(&io_ctl, trans->transid); | 
 |  | 
 | 	/* Write out the extent entries */ | 
 | 	while (node) { | 
 | 		struct btrfs_free_space *e; | 
 |  | 
 | 		e = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		entries++; | 
 |  | 
 | 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes, | 
 | 				       e->bitmap); | 
 | 		if (ret) | 
 | 			goto out_nospc; | 
 |  | 
 | 		if (e->bitmap) { | 
 | 			list_add_tail(&e->list, &bitmap_list); | 
 | 			bitmaps++; | 
 | 		} | 
 | 		node = rb_next(node); | 
 | 		if (!node && cluster) { | 
 | 			node = rb_first(&cluster->root); | 
 | 			cluster = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want to add any pinned extents to our free space cache | 
 | 	 * so we don't leak the space | 
 | 	 */ | 
 | 	while (block_group && (start < block_group->key.objectid + | 
 | 			       block_group->key.offset)) { | 
 | 		ret = find_first_extent_bit(unpin, start, &start, &end, | 
 | 					    EXTENT_DIRTY); | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* This pinned extent is out of our range */ | 
 | 		if (start >= block_group->key.objectid + | 
 | 		    block_group->key.offset) | 
 | 			break; | 
 |  | 
 | 		len = block_group->key.objectid + | 
 | 			block_group->key.offset - start; | 
 | 		len = min(len, end + 1 - start); | 
 |  | 
 | 		entries++; | 
 | 		ret = io_ctl_add_entry(&io_ctl, start, len, NULL); | 
 | 		if (ret) | 
 | 			goto out_nospc; | 
 |  | 
 | 		start = end + 1; | 
 | 	} | 
 |  | 
 | 	/* Write out the bitmaps */ | 
 | 	list_for_each_safe(pos, n, &bitmap_list) { | 
 | 		struct btrfs_free_space *entry = | 
 | 			list_entry(pos, struct btrfs_free_space, list); | 
 |  | 
 | 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap); | 
 | 		if (ret) | 
 | 			goto out_nospc; | 
 | 		list_del_init(&entry->list); | 
 | 	} | 
 |  | 
 | 	/* Zero out the rest of the pages just to make sure */ | 
 | 	io_ctl_zero_remaining_pages(&io_ctl); | 
 |  | 
 | 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, | 
 | 				0, i_size_read(inode), &cached_state); | 
 | 	io_ctl_drop_pages(&io_ctl); | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, | 
 | 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS); | 
 |  | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 |  | 
 | 	ret = filemap_write_and_wait(inode->i_mapping); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.offset = offset; | 
 | 	key.type = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 	if (ret < 0) { | 
 | 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, | 
 | 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, | 
 | 				 GFP_NOFS); | 
 | 		goto out; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	if (ret > 0) { | 
 | 		struct btrfs_key found_key; | 
 | 		BUG_ON(!path->slots[0]); | 
 | 		path->slots[0]--; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || | 
 | 		    found_key.offset != offset) { | 
 | 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, | 
 | 					 inode->i_size - 1, | 
 | 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, | 
 | 					 NULL, GFP_NOFS); | 
 | 			btrfs_release_path(path); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BTRFS_I(inode)->generation = trans->transid; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	btrfs_set_free_space_entries(leaf, header, entries); | 
 | 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps); | 
 | 	btrfs_set_free_space_generation(leaf, header, trans->transid); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	err = 0; | 
 | out: | 
 | 	io_ctl_free(&io_ctl); | 
 | 	if (err) { | 
 | 		invalidate_inode_pages2(inode->i_mapping); | 
 | 		BTRFS_I(inode)->generation = 0; | 
 | 	} | 
 | 	btrfs_update_inode(trans, root, inode); | 
 | 	return err; | 
 |  | 
 | out_nospc: | 
 | 	list_for_each_safe(pos, n, &bitmap_list) { | 
 | 		struct btrfs_free_space *entry = | 
 | 			list_entry(pos, struct btrfs_free_space, list); | 
 | 		list_del_init(&entry->list); | 
 | 	} | 
 | 	io_ctl_drop_pages(&io_ctl); | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, | 
 | 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS); | 
 | 	goto out; | 
 | } | 
 |  | 
 | int btrfs_write_out_cache(struct btrfs_root *root, | 
 | 			  struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_block_group_cache *block_group, | 
 | 			  struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct inode *inode; | 
 | 	int ret = 0; | 
 |  | 
 | 	root = root->fs_info->tree_root; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	inode = lookup_free_space_inode(root, block_group, path); | 
 | 	if (IS_ERR(inode)) | 
 | 		return 0; | 
 |  | 
 | 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, | 
 | 				      path, block_group->key.objectid); | 
 | 	if (ret) { | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_ERROR; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		ret = 0; | 
 | #ifdef DEBUG | 
 | 		printk(KERN_ERR "btrfs: failed to write free space cace " | 
 | 		       "for block group %llu\n", block_group->key.objectid); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, | 
 | 					  u64 offset) | 
 | { | 
 | 	BUG_ON(offset < bitmap_start); | 
 | 	offset -= bitmap_start; | 
 | 	return (unsigned long)(div_u64(offset, unit)); | 
 | } | 
 |  | 
 | static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) | 
 | { | 
 | 	return (unsigned long)(div_u64(bytes, unit)); | 
 | } | 
 |  | 
 | static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 				   u64 offset) | 
 | { | 
 | 	u64 bitmap_start; | 
 | 	u64 bytes_per_bitmap; | 
 |  | 
 | 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; | 
 | 	bitmap_start = offset - ctl->start; | 
 | 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); | 
 | 	bitmap_start *= bytes_per_bitmap; | 
 | 	bitmap_start += ctl->start; | 
 |  | 
 | 	return bitmap_start; | 
 | } | 
 |  | 
 | static int tree_insert_offset(struct rb_root *root, u64 offset, | 
 | 			      struct rb_node *node, int bitmap) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_free_space *info; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		info = rb_entry(parent, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (offset < info->offset) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (offset > info->offset) { | 
 | 			p = &(*p)->rb_right; | 
 | 		} else { | 
 | 			/* | 
 | 			 * we could have a bitmap entry and an extent entry | 
 | 			 * share the same offset.  If this is the case, we want | 
 | 			 * the extent entry to always be found first if we do a | 
 | 			 * linear search through the tree, since we want to have | 
 | 			 * the quickest allocation time, and allocating from an | 
 | 			 * extent is faster than allocating from a bitmap.  So | 
 | 			 * if we're inserting a bitmap and we find an entry at | 
 | 			 * this offset, we want to go right, or after this entry | 
 | 			 * logically.  If we are inserting an extent and we've | 
 | 			 * found a bitmap, we want to go left, or before | 
 | 			 * logically. | 
 | 			 */ | 
 | 			if (bitmap) { | 
 | 				if (info->bitmap) { | 
 | 					WARN_ON_ONCE(1); | 
 | 					return -EEXIST; | 
 | 				} | 
 | 				p = &(*p)->rb_right; | 
 | 			} else { | 
 | 				if (!info->bitmap) { | 
 | 					WARN_ON_ONCE(1); | 
 | 					return -EEXIST; | 
 | 				} | 
 | 				p = &(*p)->rb_left; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * searches the tree for the given offset. | 
 |  * | 
 |  * fuzzy - If this is set, then we are trying to make an allocation, and we just | 
 |  * want a section that has at least bytes size and comes at or after the given | 
 |  * offset. | 
 |  */ | 
 | static struct btrfs_free_space * | 
 | tree_search_offset(struct btrfs_free_space_ctl *ctl, | 
 | 		   u64 offset, int bitmap_only, int fuzzy) | 
 | { | 
 | 	struct rb_node *n = ctl->free_space_offset.rb_node; | 
 | 	struct btrfs_free_space *entry, *prev = NULL; | 
 |  | 
 | 	/* find entry that is closest to the 'offset' */ | 
 | 	while (1) { | 
 | 		if (!n) { | 
 | 			entry = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		prev = entry; | 
 |  | 
 | 		if (offset < entry->offset) | 
 | 			n = n->rb_left; | 
 | 		else if (offset > entry->offset) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (bitmap_only) { | 
 | 		if (!entry) | 
 | 			return NULL; | 
 | 		if (entry->bitmap) | 
 | 			return entry; | 
 |  | 
 | 		/* | 
 | 		 * bitmap entry and extent entry may share same offset, | 
 | 		 * in that case, bitmap entry comes after extent entry. | 
 | 		 */ | 
 | 		n = rb_next(n); | 
 | 		if (!n) | 
 | 			return NULL; | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (entry->offset != offset) | 
 | 			return NULL; | 
 |  | 
 | 		WARN_ON(!entry->bitmap); | 
 | 		return entry; | 
 | 	} else if (entry) { | 
 | 		if (entry->bitmap) { | 
 | 			/* | 
 | 			 * if previous extent entry covers the offset, | 
 | 			 * we should return it instead of the bitmap entry | 
 | 			 */ | 
 | 			n = &entry->offset_index; | 
 | 			while (1) { | 
 | 				n = rb_prev(n); | 
 | 				if (!n) | 
 | 					break; | 
 | 				prev = rb_entry(n, struct btrfs_free_space, | 
 | 						offset_index); | 
 | 				if (!prev->bitmap) { | 
 | 					if (prev->offset + prev->bytes > offset) | 
 | 						entry = prev; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		return entry; | 
 | 	} | 
 |  | 
 | 	if (!prev) | 
 | 		return NULL; | 
 |  | 
 | 	/* find last entry before the 'offset' */ | 
 | 	entry = prev; | 
 | 	if (entry->offset > offset) { | 
 | 		n = rb_prev(&entry->offset_index); | 
 | 		if (n) { | 
 | 			entry = rb_entry(n, struct btrfs_free_space, | 
 | 					offset_index); | 
 | 			BUG_ON(entry->offset > offset); | 
 | 		} else { | 
 | 			if (fuzzy) | 
 | 				return entry; | 
 | 			else | 
 | 				return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (entry->bitmap) { | 
 | 		n = &entry->offset_index; | 
 | 		while (1) { | 
 | 			n = rb_prev(n); | 
 | 			if (!n) | 
 | 				break; | 
 | 			prev = rb_entry(n, struct btrfs_free_space, | 
 | 					offset_index); | 
 | 			if (!prev->bitmap) { | 
 | 				if (prev->offset + prev->bytes > offset) | 
 | 					return prev; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) | 
 | 			return entry; | 
 | 	} else if (entry->offset + entry->bytes > offset) | 
 | 		return entry; | 
 |  | 
 | 	if (!fuzzy) | 
 | 		return NULL; | 
 |  | 
 | 	while (1) { | 
 | 		if (entry->bitmap) { | 
 | 			if (entry->offset + BITS_PER_BITMAP * | 
 | 			    ctl->unit > offset) | 
 | 				break; | 
 | 		} else { | 
 | 			if (entry->offset + entry->bytes > offset) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		n = rb_next(&entry->offset_index); | 
 | 		if (!n) | 
 | 			return NULL; | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 	} | 
 | 	return entry; | 
 | } | 
 |  | 
 | static inline void | 
 | __unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 		    struct btrfs_free_space *info) | 
 | { | 
 | 	rb_erase(&info->offset_index, &ctl->free_space_offset); | 
 | 	ctl->free_extents--; | 
 | } | 
 |  | 
 | static void unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info) | 
 | { | 
 | 	__unlink_free_space(ctl, info); | 
 | 	ctl->free_space -= info->bytes; | 
 | } | 
 |  | 
 | static int link_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			   struct btrfs_free_space *info) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(!info->bitmap && !info->bytes); | 
 | 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset, | 
 | 				 &info->offset_index, (info->bitmap != NULL)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ctl->free_space += info->bytes; | 
 | 	ctl->free_extents++; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group = ctl->private; | 
 | 	u64 max_bytes; | 
 | 	u64 bitmap_bytes; | 
 | 	u64 extent_bytes; | 
 | 	u64 size = block_group->key.offset; | 
 | 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize; | 
 | 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); | 
 |  | 
 | 	BUG_ON(ctl->total_bitmaps > max_bitmaps); | 
 |  | 
 | 	/* | 
 | 	 * The goal is to keep the total amount of memory used per 1gb of space | 
 | 	 * at or below 32k, so we need to adjust how much memory we allow to be | 
 | 	 * used by extent based free space tracking | 
 | 	 */ | 
 | 	if (size < 1024 * 1024 * 1024) | 
 | 		max_bytes = MAX_CACHE_BYTES_PER_GIG; | 
 | 	else | 
 | 		max_bytes = MAX_CACHE_BYTES_PER_GIG * | 
 | 			div64_u64(size, 1024 * 1024 * 1024); | 
 |  | 
 | 	/* | 
 | 	 * we want to account for 1 more bitmap than what we have so we can make | 
 | 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as | 
 | 	 * we add more bitmaps. | 
 | 	 */ | 
 | 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; | 
 |  | 
 | 	if (bitmap_bytes >= max_bytes) { | 
 | 		ctl->extents_thresh = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we want the extent entry threshold to always be at most 1/2 the maxw | 
 | 	 * bytes we can have, or whatever is less than that. | 
 | 	 */ | 
 | 	extent_bytes = max_bytes - bitmap_bytes; | 
 | 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); | 
 |  | 
 | 	ctl->extents_thresh = | 
 | 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); | 
 | } | 
 |  | 
 | static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, | 
 | 				       struct btrfs_free_space *info, | 
 | 				       u64 offset, u64 bytes) | 
 | { | 
 | 	unsigned long start, count; | 
 |  | 
 | 	start = offset_to_bit(info->offset, ctl->unit, offset); | 
 | 	count = bytes_to_bits(bytes, ctl->unit); | 
 | 	BUG_ON(start + count > BITS_PER_BITMAP); | 
 |  | 
 | 	bitmap_clear(info->bitmap, start, count); | 
 |  | 
 | 	info->bytes -= bytes; | 
 | } | 
 |  | 
 | static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info, u64 offset, | 
 | 			      u64 bytes) | 
 | { | 
 | 	__bitmap_clear_bits(ctl, info, offset, bytes); | 
 | 	ctl->free_space -= bytes; | 
 | } | 
 |  | 
 | static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, | 
 | 			    struct btrfs_free_space *info, u64 offset, | 
 | 			    u64 bytes) | 
 | { | 
 | 	unsigned long start, count; | 
 |  | 
 | 	start = offset_to_bit(info->offset, ctl->unit, offset); | 
 | 	count = bytes_to_bits(bytes, ctl->unit); | 
 | 	BUG_ON(start + count > BITS_PER_BITMAP); | 
 |  | 
 | 	bitmap_set(info->bitmap, start, count); | 
 |  | 
 | 	info->bytes += bytes; | 
 | 	ctl->free_space += bytes; | 
 | } | 
 |  | 
 | static int search_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			 struct btrfs_free_space *bitmap_info, u64 *offset, | 
 | 			 u64 *bytes) | 
 | { | 
 | 	unsigned long found_bits = 0; | 
 | 	unsigned long bits, i; | 
 | 	unsigned long next_zero; | 
 |  | 
 | 	i = offset_to_bit(bitmap_info->offset, ctl->unit, | 
 | 			  max_t(u64, *offset, bitmap_info->offset)); | 
 | 	bits = bytes_to_bits(*bytes, ctl->unit); | 
 |  | 
 | 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); | 
 | 	     i < BITS_PER_BITMAP; | 
 | 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) { | 
 | 		next_zero = find_next_zero_bit(bitmap_info->bitmap, | 
 | 					       BITS_PER_BITMAP, i); | 
 | 		if ((next_zero - i) >= bits) { | 
 | 			found_bits = next_zero - i; | 
 | 			break; | 
 | 		} | 
 | 		i = next_zero; | 
 | 	} | 
 |  | 
 | 	if (found_bits) { | 
 | 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset; | 
 | 		*bytes = (u64)(found_bits) * ctl->unit; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | static struct btrfs_free_space * | 
 | find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes) | 
 | { | 
 | 	struct btrfs_free_space *entry; | 
 | 	struct rb_node *node; | 
 | 	int ret; | 
 |  | 
 | 	if (!ctl->free_space_offset.rb_node) | 
 | 		return NULL; | 
 |  | 
 | 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); | 
 | 	if (!entry) | 
 | 		return NULL; | 
 |  | 
 | 	for (node = &entry->offset_index; node; node = rb_next(node)) { | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		if (entry->bytes < *bytes) | 
 | 			continue; | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			ret = search_bitmap(ctl, entry, offset, bytes); | 
 | 			if (!ret) | 
 | 				return entry; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		*offset = entry->offset; | 
 | 		*bytes = entry->bytes; | 
 | 		return entry; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			   struct btrfs_free_space *info, u64 offset) | 
 | { | 
 | 	info->offset = offset_to_bitmap(ctl, offset); | 
 | 	info->bytes = 0; | 
 | 	INIT_LIST_HEAD(&info->list); | 
 | 	link_free_space(ctl, info); | 
 | 	ctl->total_bitmaps++; | 
 |  | 
 | 	ctl->op->recalc_thresholds(ctl); | 
 | } | 
 |  | 
 | static void free_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			struct btrfs_free_space *bitmap_info) | 
 | { | 
 | 	unlink_free_space(ctl, bitmap_info); | 
 | 	kfree(bitmap_info->bitmap); | 
 | 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info); | 
 | 	ctl->total_bitmaps--; | 
 | 	ctl->op->recalc_thresholds(ctl); | 
 | } | 
 |  | 
 | static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *bitmap_info, | 
 | 			      u64 *offset, u64 *bytes) | 
 | { | 
 | 	u64 end; | 
 | 	u64 search_start, search_bytes; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; | 
 |  | 
 | 	/* | 
 | 	 * XXX - this can go away after a few releases. | 
 | 	 * | 
 | 	 * since the only user of btrfs_remove_free_space is the tree logging | 
 | 	 * stuff, and the only way to test that is under crash conditions, we | 
 | 	 * want to have this debug stuff here just in case somethings not | 
 | 	 * working.  Search the bitmap for the space we are trying to use to | 
 | 	 * make sure its actually there.  If its not there then we need to stop | 
 | 	 * because something has gone wrong. | 
 | 	 */ | 
 | 	search_start = *offset; | 
 | 	search_bytes = *bytes; | 
 | 	search_bytes = min(search_bytes, end - search_start + 1); | 
 | 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); | 
 | 	BUG_ON(ret < 0 || search_start != *offset); | 
 |  | 
 | 	if (*offset > bitmap_info->offset && *offset + *bytes > end) { | 
 | 		bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1); | 
 | 		*bytes -= end - *offset + 1; | 
 | 		*offset = end + 1; | 
 | 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) { | 
 | 		bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes); | 
 | 		*bytes = 0; | 
 | 	} | 
 |  | 
 | 	if (*bytes) { | 
 | 		struct rb_node *next = rb_next(&bitmap_info->offset_index); | 
 | 		if (!bitmap_info->bytes) | 
 | 			free_bitmap(ctl, bitmap_info); | 
 |  | 
 | 		/* | 
 | 		 * no entry after this bitmap, but we still have bytes to | 
 | 		 * remove, so something has gone wrong. | 
 | 		 */ | 
 | 		if (!next) | 
 | 			return -EINVAL; | 
 |  | 
 | 		bitmap_info = rb_entry(next, struct btrfs_free_space, | 
 | 				       offset_index); | 
 |  | 
 | 		/* | 
 | 		 * if the next entry isn't a bitmap we need to return to let the | 
 | 		 * extent stuff do its work. | 
 | 		 */ | 
 | 		if (!bitmap_info->bitmap) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		/* | 
 | 		 * Ok the next item is a bitmap, but it may not actually hold | 
 | 		 * the information for the rest of this free space stuff, so | 
 | 		 * look for it, and if we don't find it return so we can try | 
 | 		 * everything over again. | 
 | 		 */ | 
 | 		search_start = *offset; | 
 | 		search_bytes = *bytes; | 
 | 		ret = search_bitmap(ctl, bitmap_info, &search_start, | 
 | 				    &search_bytes); | 
 | 		if (ret < 0 || search_start != *offset) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		goto again; | 
 | 	} else if (!bitmap_info->bytes) | 
 | 		free_bitmap(ctl, bitmap_info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			       struct btrfs_free_space *info, u64 offset, | 
 | 			       u64 bytes) | 
 | { | 
 | 	u64 bytes_to_set = 0; | 
 | 	u64 end; | 
 |  | 
 | 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); | 
 |  | 
 | 	bytes_to_set = min(end - offset, bytes); | 
 |  | 
 | 	bitmap_set_bits(ctl, info, offset, bytes_to_set); | 
 |  | 
 | 	return bytes_to_set; | 
 |  | 
 | } | 
 |  | 
 | static bool use_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 		      struct btrfs_free_space *info) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group = ctl->private; | 
 |  | 
 | 	/* | 
 | 	 * If we are below the extents threshold then we can add this as an | 
 | 	 * extent, and don't have to deal with the bitmap | 
 | 	 */ | 
 | 	if (ctl->free_extents < ctl->extents_thresh) { | 
 | 		/* | 
 | 		 * If this block group has some small extents we don't want to | 
 | 		 * use up all of our free slots in the cache with them, we want | 
 | 		 * to reserve them to larger extents, however if we have plent | 
 | 		 * of cache left then go ahead an dadd them, no sense in adding | 
 | 		 * the overhead of a bitmap if we don't have to. | 
 | 		 */ | 
 | 		if (info->bytes <= block_group->sectorsize * 4) { | 
 | 			if (ctl->free_extents * 2 <= ctl->extents_thresh) | 
 | 				return false; | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * some block groups are so tiny they can't be enveloped by a bitmap, so | 
 | 	 * don't even bother to create a bitmap for this | 
 | 	 */ | 
 | 	if (BITS_PER_BITMAP * block_group->sectorsize > | 
 | 	    block_group->key.offset) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct btrfs_free_space_op free_space_op = { | 
 | 	.recalc_thresholds	= recalculate_thresholds, | 
 | 	.use_bitmap		= use_bitmap, | 
 | }; | 
 |  | 
 | static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info) | 
 | { | 
 | 	struct btrfs_free_space *bitmap_info; | 
 | 	struct btrfs_block_group_cache *block_group = NULL; | 
 | 	int added = 0; | 
 | 	u64 bytes, offset, bytes_added; | 
 | 	int ret; | 
 |  | 
 | 	bytes = info->bytes; | 
 | 	offset = info->offset; | 
 |  | 
 | 	if (!ctl->op->use_bitmap(ctl, info)) | 
 | 		return 0; | 
 |  | 
 | 	if (ctl->op == &free_space_op) | 
 | 		block_group = ctl->private; | 
 | again: | 
 | 	/* | 
 | 	 * Since we link bitmaps right into the cluster we need to see if we | 
 | 	 * have a cluster here, and if so and it has our bitmap we need to add | 
 | 	 * the free space to that bitmap. | 
 | 	 */ | 
 | 	if (block_group && !list_empty(&block_group->cluster_list)) { | 
 | 		struct btrfs_free_cluster *cluster; | 
 | 		struct rb_node *node; | 
 | 		struct btrfs_free_space *entry; | 
 |  | 
 | 		cluster = list_entry(block_group->cluster_list.next, | 
 | 				     struct btrfs_free_cluster, | 
 | 				     block_group_list); | 
 | 		spin_lock(&cluster->lock); | 
 | 		node = rb_first(&cluster->root); | 
 | 		if (!node) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			goto no_cluster_bitmap; | 
 | 		} | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		if (!entry->bitmap) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			goto no_cluster_bitmap; | 
 | 		} | 
 |  | 
 | 		if (entry->offset == offset_to_bitmap(ctl, offset)) { | 
 | 			bytes_added = add_bytes_to_bitmap(ctl, entry, | 
 | 							  offset, bytes); | 
 | 			bytes -= bytes_added; | 
 | 			offset += bytes_added; | 
 | 		} | 
 | 		spin_unlock(&cluster->lock); | 
 | 		if (!bytes) { | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | no_cluster_bitmap: | 
 | 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
 | 					 1, 0); | 
 | 	if (!bitmap_info) { | 
 | 		BUG_ON(added); | 
 | 		goto new_bitmap; | 
 | 	} | 
 |  | 
 | 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); | 
 | 	bytes -= bytes_added; | 
 | 	offset += bytes_added; | 
 | 	added = 0; | 
 |  | 
 | 	if (!bytes) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} else | 
 | 		goto again; | 
 |  | 
 | new_bitmap: | 
 | 	if (info && info->bitmap) { | 
 | 		add_new_bitmap(ctl, info, offset); | 
 | 		added = 1; | 
 | 		info = NULL; | 
 | 		goto again; | 
 | 	} else { | 
 | 		spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 		/* no pre-allocated info, allocate a new one */ | 
 | 		if (!info) { | 
 | 			info = kmem_cache_zalloc(btrfs_free_space_cachep, | 
 | 						 GFP_NOFS); | 
 | 			if (!info) { | 
 | 				spin_lock(&ctl->tree_lock); | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* allocate the bitmap */ | 
 | 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); | 
 | 		spin_lock(&ctl->tree_lock); | 
 | 		if (!info->bitmap) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (info) { | 
 | 		if (info->bitmap) | 
 | 			kfree(info->bitmap); | 
 | 		kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			  struct btrfs_free_space *info, bool update_stat) | 
 | { | 
 | 	struct btrfs_free_space *left_info; | 
 | 	struct btrfs_free_space *right_info; | 
 | 	bool merged = false; | 
 | 	u64 offset = info->offset; | 
 | 	u64 bytes = info->bytes; | 
 |  | 
 | 	/* | 
 | 	 * first we want to see if there is free space adjacent to the range we | 
 | 	 * are adding, if there is remove that struct and add a new one to | 
 | 	 * cover the entire range | 
 | 	 */ | 
 | 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0); | 
 | 	if (right_info && rb_prev(&right_info->offset_index)) | 
 | 		left_info = rb_entry(rb_prev(&right_info->offset_index), | 
 | 				     struct btrfs_free_space, offset_index); | 
 | 	else | 
 | 		left_info = tree_search_offset(ctl, offset - 1, 0, 0); | 
 |  | 
 | 	if (right_info && !right_info->bitmap) { | 
 | 		if (update_stat) | 
 | 			unlink_free_space(ctl, right_info); | 
 | 		else | 
 | 			__unlink_free_space(ctl, right_info); | 
 | 		info->bytes += right_info->bytes; | 
 | 		kmem_cache_free(btrfs_free_space_cachep, right_info); | 
 | 		merged = true; | 
 | 	} | 
 |  | 
 | 	if (left_info && !left_info->bitmap && | 
 | 	    left_info->offset + left_info->bytes == offset) { | 
 | 		if (update_stat) | 
 | 			unlink_free_space(ctl, left_info); | 
 | 		else | 
 | 			__unlink_free_space(ctl, left_info); | 
 | 		info->offset = left_info->offset; | 
 | 		info->bytes += left_info->bytes; | 
 | 		kmem_cache_free(btrfs_free_space_cachep, left_info); | 
 | 		merged = true; | 
 | 	} | 
 |  | 
 | 	return merged; | 
 | } | 
 |  | 
 | int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			   u64 offset, u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	int ret = 0; | 
 |  | 
 | 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	info->offset = offset; | 
 | 	info->bytes = bytes; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	if (try_merge_free_space(ctl, info, true)) | 
 | 		goto link; | 
 |  | 
 | 	/* | 
 | 	 * There was no extent directly to the left or right of this new | 
 | 	 * extent then we know we're going to have to allocate a new extent, so | 
 | 	 * before we do that see if we need to drop this into a bitmap | 
 | 	 */ | 
 | 	ret = insert_into_bitmap(ctl, info); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | link: | 
 | 	ret = link_free_space(ctl, info); | 
 | 	if (ret) | 
 | 		kmem_cache_free(btrfs_free_space_cachep, info); | 
 | out: | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	if (ret) { | 
 | 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); | 
 | 		BUG_ON(ret == -EEXIST); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			    u64 offset, u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	struct btrfs_free_space *next_info = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | again: | 
 | 	info = tree_search_offset(ctl, offset, 0, 0); | 
 | 	if (!info) { | 
 | 		/* | 
 | 		 * oops didn't find an extent that matched the space we wanted | 
 | 		 * to remove, look for a bitmap instead | 
 | 		 */ | 
 | 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
 | 					  1, 0); | 
 | 		if (!info) { | 
 | 			/* the tree logging code might be calling us before we | 
 | 			 * have fully loaded the free space rbtree for this | 
 | 			 * block group.  So it is possible the entry won't | 
 | 			 * be in the rbtree yet at all.  The caching code | 
 | 			 * will make sure not to put it in the rbtree if | 
 | 			 * the logging code has pinned it. | 
 | 			 */ | 
 | 			goto out_lock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (info->bytes < bytes && rb_next(&info->offset_index)) { | 
 | 		u64 end; | 
 | 		next_info = rb_entry(rb_next(&info->offset_index), | 
 | 					     struct btrfs_free_space, | 
 | 					     offset_index); | 
 |  | 
 | 		if (next_info->bitmap) | 
 | 			end = next_info->offset + | 
 | 			      BITS_PER_BITMAP * ctl->unit - 1; | 
 | 		else | 
 | 			end = next_info->offset + next_info->bytes; | 
 |  | 
 | 		if (next_info->bytes < bytes || | 
 | 		    next_info->offset > offset || offset > end) { | 
 | 			printk(KERN_CRIT "Found free space at %llu, size %llu," | 
 | 			      " trying to use %llu\n", | 
 | 			      (unsigned long long)info->offset, | 
 | 			      (unsigned long long)info->bytes, | 
 | 			      (unsigned long long)bytes); | 
 | 			WARN_ON(1); | 
 | 			ret = -EINVAL; | 
 | 			goto out_lock; | 
 | 		} | 
 |  | 
 | 		info = next_info; | 
 | 	} | 
 |  | 
 | 	if (info->bytes == bytes) { | 
 | 		unlink_free_space(ctl, info); | 
 | 		if (info->bitmap) { | 
 | 			kfree(info->bitmap); | 
 | 			ctl->total_bitmaps--; | 
 | 		} | 
 | 		kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 		ret = 0; | 
 | 		goto out_lock; | 
 | 	} | 
 |  | 
 | 	if (!info->bitmap && info->offset == offset) { | 
 | 		unlink_free_space(ctl, info); | 
 | 		info->offset += bytes; | 
 | 		info->bytes -= bytes; | 
 | 		ret = link_free_space(ctl, info); | 
 | 		WARN_ON(ret); | 
 | 		goto out_lock; | 
 | 	} | 
 |  | 
 | 	if (!info->bitmap && info->offset <= offset && | 
 | 	    info->offset + info->bytes >= offset + bytes) { | 
 | 		u64 old_start = info->offset; | 
 | 		/* | 
 | 		 * we're freeing space in the middle of the info, | 
 | 		 * this can happen during tree log replay | 
 | 		 * | 
 | 		 * first unlink the old info and then | 
 | 		 * insert it again after the hole we're creating | 
 | 		 */ | 
 | 		unlink_free_space(ctl, info); | 
 | 		if (offset + bytes < info->offset + info->bytes) { | 
 | 			u64 old_end = info->offset + info->bytes; | 
 |  | 
 | 			info->offset = offset + bytes; | 
 | 			info->bytes = old_end - info->offset; | 
 | 			ret = link_free_space(ctl, info); | 
 | 			WARN_ON(ret); | 
 | 			if (ret) | 
 | 				goto out_lock; | 
 | 		} else { | 
 | 			/* the hole we're creating ends at the end | 
 | 			 * of the info struct, just free the info | 
 | 			 */ | 
 | 			kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 		} | 
 | 		spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 		/* step two, insert a new info struct to cover | 
 | 		 * anything before the hole | 
 | 		 */ | 
 | 		ret = btrfs_add_free_space(block_group, old_start, | 
 | 					   offset - old_start); | 
 | 		WARN_ON(ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = remove_from_bitmap(ctl, info, &offset, &bytes); | 
 | 	if (ret == -EAGAIN) | 
 | 		goto again; | 
 | 	BUG_ON(ret); | 
 | out_lock: | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			   u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *n; | 
 | 	int count = 0; | 
 |  | 
 | 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { | 
 | 		info = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (info->bytes >= bytes) | 
 | 			count++; | 
 | 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", | 
 | 		       (unsigned long long)info->offset, | 
 | 		       (unsigned long long)info->bytes, | 
 | 		       (info->bitmap) ? "yes" : "no"); | 
 | 	} | 
 | 	printk(KERN_INFO "block group has cluster?: %s\n", | 
 | 	       list_empty(&block_group->cluster_list) ? "no" : "yes"); | 
 | 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" | 
 | 	       "\n", count); | 
 | } | 
 |  | 
 | void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 |  | 
 | 	spin_lock_init(&ctl->tree_lock); | 
 | 	ctl->unit = block_group->sectorsize; | 
 | 	ctl->start = block_group->key.objectid; | 
 | 	ctl->private = block_group; | 
 | 	ctl->op = &free_space_op; | 
 |  | 
 | 	/* | 
 | 	 * we only want to have 32k of ram per block group for keeping | 
 | 	 * track of free space, and if we pass 1/2 of that we want to | 
 | 	 * start converting things over to using bitmaps | 
 | 	 */ | 
 | 	ctl->extents_thresh = ((1024 * 32) / 2) / | 
 | 				sizeof(struct btrfs_free_space); | 
 | } | 
 |  | 
 | /* | 
 |  * for a given cluster, put all of its extents back into the free | 
 |  * space cache.  If the block group passed doesn't match the block group | 
 |  * pointed to by the cluster, someone else raced in and freed the | 
 |  * cluster already.  In that case, we just return without changing anything | 
 |  */ | 
 | static int | 
 | __btrfs_return_cluster_to_free_space( | 
 | 			     struct btrfs_block_group_cache *block_group, | 
 | 			     struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (cluster->block_group != block_group) | 
 | 		goto out; | 
 |  | 
 | 	cluster->block_group = NULL; | 
 | 	cluster->window_start = 0; | 
 | 	list_del_init(&cluster->block_group_list); | 
 |  | 
 | 	node = rb_first(&cluster->root); | 
 | 	while (node) { | 
 | 		bool bitmap; | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		rb_erase(&entry->offset_index, &cluster->root); | 
 |  | 
 | 		bitmap = (entry->bitmap != NULL); | 
 | 		if (!bitmap) | 
 | 			try_merge_free_space(ctl, entry, false); | 
 | 		tree_insert_offset(&ctl->free_space_offset, | 
 | 				   entry->offset, &entry->offset_index, bitmap); | 
 | 	} | 
 | 	cluster->root = RB_ROOT; | 
 |  | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 | 	btrfs_put_block_group(block_group); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) { | 
 | 		info = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		if (!info->bitmap) { | 
 | 			unlink_free_space(ctl, info); | 
 | 			kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 		} else { | 
 | 			free_bitmap(ctl, info); | 
 | 		} | 
 | 		if (need_resched()) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			cond_resched(); | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	__btrfs_remove_free_space_cache_locked(ctl); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | } | 
 |  | 
 | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_cluster *cluster; | 
 | 	struct list_head *head; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	while ((head = block_group->cluster_list.next) != | 
 | 	       &block_group->cluster_list) { | 
 | 		cluster = list_entry(head, struct btrfs_free_cluster, | 
 | 				     block_group_list); | 
 |  | 
 | 		WARN_ON(cluster->block_group != block_group); | 
 | 		__btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 		if (need_resched()) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			cond_resched(); | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 		} | 
 | 	} | 
 | 	__btrfs_remove_free_space_cache_locked(ctl); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | } | 
 |  | 
 | u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, | 
 | 			       u64 offset, u64 bytes, u64 empty_size) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	u64 bytes_search = bytes + empty_size; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	entry = find_free_space(ctl, &offset, &bytes_search); | 
 | 	if (!entry) | 
 | 		goto out; | 
 |  | 
 | 	ret = offset; | 
 | 	if (entry->bitmap) { | 
 | 		bitmap_clear_bits(ctl, entry, offset, bytes); | 
 | 		if (!entry->bytes) | 
 | 			free_bitmap(ctl, entry); | 
 | 	} else { | 
 | 		unlink_free_space(ctl, entry); | 
 | 		entry->offset += bytes; | 
 | 		entry->bytes -= bytes; | 
 | 		if (!entry->bytes) | 
 | 			kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 		else | 
 | 			link_free_space(ctl, entry); | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a cluster, put all of its extents back into the free space | 
 |  * cache.  If a block group is passed, this function will only free | 
 |  * a cluster that belongs to the passed block group. | 
 |  * | 
 |  * Otherwise, it'll get a reference on the block group pointed to by the | 
 |  * cluster and remove the cluster from it. | 
 |  */ | 
 | int btrfs_return_cluster_to_free_space( | 
 | 			       struct btrfs_block_group_cache *block_group, | 
 | 			       struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl; | 
 | 	int ret; | 
 |  | 
 | 	/* first, get a safe pointer to the block group */ | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (!block_group) { | 
 | 		block_group = cluster->block_group; | 
 | 		if (!block_group) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			return 0; | 
 | 		} | 
 | 	} else if (cluster->block_group != block_group) { | 
 | 		/* someone else has already freed it don't redo their work */ | 
 | 		spin_unlock(&cluster->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	atomic_inc(&block_group->count); | 
 | 	spin_unlock(&cluster->lock); | 
 |  | 
 | 	ctl = block_group->free_space_ctl; | 
 |  | 
 | 	/* now return any extents the cluster had on it */ | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	/* finally drop our ref */ | 
 | 	btrfs_put_block_group(block_group); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, | 
 | 				   struct btrfs_free_cluster *cluster, | 
 | 				   struct btrfs_free_space *entry, | 
 | 				   u64 bytes, u64 min_start) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	int err; | 
 | 	u64 search_start = cluster->window_start; | 
 | 	u64 search_bytes = bytes; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	search_start = min_start; | 
 | 	search_bytes = bytes; | 
 |  | 
 | 	err = search_bitmap(ctl, entry, &search_start, &search_bytes); | 
 | 	if (err) | 
 | 		return 0; | 
 |  | 
 | 	ret = search_start; | 
 | 	__bitmap_clear_bits(ctl, entry, ret, bytes); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a cluster, try to allocate 'bytes' from it, returns 0 | 
 |  * if it couldn't find anything suitably large, or a logical disk offset | 
 |  * if things worked out | 
 |  */ | 
 | u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, | 
 | 			     struct btrfs_free_cluster *cluster, u64 bytes, | 
 | 			     u64 min_start) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct rb_node *node; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (bytes > cluster->max_size) | 
 | 		goto out; | 
 |  | 
 | 	if (cluster->block_group != block_group) | 
 | 		goto out; | 
 |  | 
 | 	node = rb_first(&cluster->root); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 	while(1) { | 
 | 		if (entry->bytes < bytes || | 
 | 		    (!entry->bitmap && entry->offset < min_start)) { | 
 | 			node = rb_next(&entry->offset_index); | 
 | 			if (!node) | 
 | 				break; | 
 | 			entry = rb_entry(node, struct btrfs_free_space, | 
 | 					 offset_index); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			ret = btrfs_alloc_from_bitmap(block_group, | 
 | 						      cluster, entry, bytes, | 
 | 						      min_start); | 
 | 			if (ret == 0) { | 
 | 				node = rb_next(&entry->offset_index); | 
 | 				if (!node) | 
 | 					break; | 
 | 				entry = rb_entry(node, struct btrfs_free_space, | 
 | 						 offset_index); | 
 | 				continue; | 
 | 			} | 
 | 		} else { | 
 | 			ret = entry->offset; | 
 |  | 
 | 			entry->offset += bytes; | 
 | 			entry->bytes -= bytes; | 
 | 		} | 
 |  | 
 | 		if (entry->bytes == 0) | 
 | 			rb_erase(&entry->offset_index, &cluster->root); | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 |  | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	ctl->free_space -= bytes; | 
 | 	if (entry->bytes == 0) { | 
 | 		ctl->free_extents--; | 
 | 		if (entry->bitmap) { | 
 | 			kfree(entry->bitmap); | 
 | 			ctl->total_bitmaps--; | 
 | 			ctl->op->recalc_thresholds(ctl); | 
 | 		} | 
 | 		kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, | 
 | 				struct btrfs_free_space *entry, | 
 | 				struct btrfs_free_cluster *cluster, | 
 | 				u64 offset, u64 bytes, u64 min_bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	unsigned long next_zero; | 
 | 	unsigned long i; | 
 | 	unsigned long search_bits; | 
 | 	unsigned long total_bits; | 
 | 	unsigned long found_bits; | 
 | 	unsigned long start = 0; | 
 | 	unsigned long total_found = 0; | 
 | 	int ret; | 
 | 	bool found = false; | 
 |  | 
 | 	i = offset_to_bit(entry->offset, block_group->sectorsize, | 
 | 			  max_t(u64, offset, entry->offset)); | 
 | 	search_bits = bytes_to_bits(bytes, block_group->sectorsize); | 
 | 	total_bits = bytes_to_bits(min_bytes, block_group->sectorsize); | 
 |  | 
 | again: | 
 | 	found_bits = 0; | 
 | 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i); | 
 | 	     i < BITS_PER_BITMAP; | 
 | 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) { | 
 | 		next_zero = find_next_zero_bit(entry->bitmap, | 
 | 					       BITS_PER_BITMAP, i); | 
 | 		if (next_zero - i >= search_bits) { | 
 | 			found_bits = next_zero - i; | 
 | 			break; | 
 | 		} | 
 | 		i = next_zero; | 
 | 	} | 
 |  | 
 | 	if (!found_bits) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	if (!found) { | 
 | 		start = i; | 
 | 		cluster->max_size = 0; | 
 | 		found = true; | 
 | 	} | 
 |  | 
 | 	total_found += found_bits; | 
 |  | 
 | 	if (cluster->max_size < found_bits * block_group->sectorsize) | 
 | 		cluster->max_size = found_bits * block_group->sectorsize; | 
 |  | 
 | 	if (total_found < total_bits) { | 
 | 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero); | 
 | 		if (i - start > total_bits * 2) { | 
 | 			total_found = 0; | 
 | 			cluster->max_size = 0; | 
 | 			found = false; | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	cluster->window_start = start * block_group->sectorsize + | 
 | 		entry->offset; | 
 | 	rb_erase(&entry->offset_index, &ctl->free_space_offset); | 
 | 	ret = tree_insert_offset(&cluster->root, entry->offset, | 
 | 				 &entry->offset_index, 1); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This searches the block group for just extents to fill the cluster with. | 
 |  */ | 
 | static noinline int | 
 | setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, | 
 | 			struct btrfs_free_cluster *cluster, | 
 | 			struct list_head *bitmaps, u64 offset, u64 bytes, | 
 | 			u64 min_bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *first = NULL; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct btrfs_free_space *prev = NULL; | 
 | 	struct btrfs_free_space *last; | 
 | 	struct rb_node *node; | 
 | 	u64 window_start; | 
 | 	u64 window_free; | 
 | 	u64 max_extent; | 
 | 	u64 max_gap = 128 * 1024; | 
 |  | 
 | 	entry = tree_search_offset(ctl, offset, 0, 1); | 
 | 	if (!entry) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* | 
 | 	 * We don't want bitmaps, so just move along until we find a normal | 
 | 	 * extent entry. | 
 | 	 */ | 
 | 	while (entry->bitmap) { | 
 | 		if (list_empty(&entry->list)) | 
 | 			list_add_tail(&entry->list, bitmaps); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		if (!node) | 
 | 			return -ENOSPC; | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 	} | 
 |  | 
 | 	window_start = entry->offset; | 
 | 	window_free = entry->bytes; | 
 | 	max_extent = entry->bytes; | 
 | 	first = entry; | 
 | 	last = entry; | 
 | 	prev = entry; | 
 |  | 
 | 	while (window_free <= min_bytes) { | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		if (!node) | 
 | 			return -ENOSPC; | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			if (list_empty(&entry->list)) | 
 | 				list_add_tail(&entry->list, bitmaps); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * we haven't filled the empty size and the window is | 
 | 		 * very large.  reset and try again | 
 | 		 */ | 
 | 		if (entry->offset - (prev->offset + prev->bytes) > max_gap || | 
 | 		    entry->offset - window_start > (min_bytes * 2)) { | 
 | 			first = entry; | 
 | 			window_start = entry->offset; | 
 | 			window_free = entry->bytes; | 
 | 			last = entry; | 
 | 			max_extent = entry->bytes; | 
 | 		} else { | 
 | 			last = entry; | 
 | 			window_free += entry->bytes; | 
 | 			if (entry->bytes > max_extent) | 
 | 				max_extent = entry->bytes; | 
 | 		} | 
 | 		prev = entry; | 
 | 	} | 
 |  | 
 | 	cluster->window_start = first->offset; | 
 |  | 
 | 	node = &first->offset_index; | 
 |  | 
 | 	/* | 
 | 	 * now we've found our entries, pull them out of the free space | 
 | 	 * cache and put them into the cluster rbtree | 
 | 	 */ | 
 | 	do { | 
 | 		int ret; | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		if (entry->bitmap) | 
 | 			continue; | 
 |  | 
 | 		rb_erase(&entry->offset_index, &ctl->free_space_offset); | 
 | 		ret = tree_insert_offset(&cluster->root, entry->offset, | 
 | 					 &entry->offset_index, 0); | 
 | 		BUG_ON(ret); | 
 | 	} while (node && entry != last); | 
 |  | 
 | 	cluster->max_size = max_extent; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This specifically looks for bitmaps that may work in the cluster, we assume | 
 |  * that we have already failed to find extents that will work. | 
 |  */ | 
 | static noinline int | 
 | setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, | 
 | 		     struct btrfs_free_cluster *cluster, | 
 | 		     struct list_head *bitmaps, u64 offset, u64 bytes, | 
 | 		     u64 min_bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry; | 
 | 	int ret = -ENOSPC; | 
 | 	u64 bitmap_offset = offset_to_bitmap(ctl, offset); | 
 |  | 
 | 	if (ctl->total_bitmaps == 0) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* | 
 | 	 * The bitmap that covers offset won't be in the list unless offset | 
 | 	 * is just its start offset. | 
 | 	 */ | 
 | 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list); | 
 | 	if (entry->offset != bitmap_offset) { | 
 | 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
 | 		if (entry && list_empty(&entry->list)) | 
 | 			list_add(&entry->list, bitmaps); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(entry, bitmaps, list) { | 
 | 		if (entry->bytes < min_bytes) | 
 | 			continue; | 
 | 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, | 
 | 					   bytes, min_bytes); | 
 | 		if (!ret) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The bitmaps list has all the bitmaps that record free space | 
 | 	 * starting after offset, so no more search is required. | 
 | 	 */ | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | /* | 
 |  * here we try to find a cluster of blocks in a block group.  The goal | 
 |  * is to find at least bytes free and up to empty_size + bytes free. | 
 |  * We might not find them all in one contiguous area. | 
 |  * | 
 |  * returns zero and sets up cluster if things worked out, otherwise | 
 |  * it returns -enospc | 
 |  */ | 
 | int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct btrfs_block_group_cache *block_group, | 
 | 			     struct btrfs_free_cluster *cluster, | 
 | 			     u64 offset, u64 bytes, u64 empty_size) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry, *tmp; | 
 | 	LIST_HEAD(bitmaps); | 
 | 	u64 min_bytes; | 
 | 	int ret; | 
 |  | 
 | 	/* for metadata, allow allocates with more holes */ | 
 | 	if (btrfs_test_opt(root, SSD_SPREAD)) { | 
 | 		min_bytes = bytes + empty_size; | 
 | 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
 | 		/* | 
 | 		 * we want to do larger allocations when we are | 
 | 		 * flushing out the delayed refs, it helps prevent | 
 | 		 * making more work as we go along. | 
 | 		 */ | 
 | 		if (trans->transaction->delayed_refs.flushing) | 
 | 			min_bytes = max(bytes, (bytes + empty_size) >> 1); | 
 | 		else | 
 | 			min_bytes = max(bytes, (bytes + empty_size) >> 4); | 
 | 	} else | 
 | 		min_bytes = max(bytes, (bytes + empty_size) >> 2); | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	/* | 
 | 	 * If we know we don't have enough space to make a cluster don't even | 
 | 	 * bother doing all the work to try and find one. | 
 | 	 */ | 
 | 	if (ctl->free_space < min_bytes) { | 
 | 		spin_unlock(&ctl->tree_lock); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 |  | 
 | 	/* someone already found a cluster, hooray */ | 
 | 	if (cluster->block_group) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, | 
 | 				      bytes, min_bytes); | 
 | 	if (ret) | 
 | 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, | 
 | 					   offset, bytes, min_bytes); | 
 |  | 
 | 	/* Clear our temporary list */ | 
 | 	list_for_each_entry_safe(entry, tmp, &bitmaps, list) | 
 | 		list_del_init(&entry->list); | 
 |  | 
 | 	if (!ret) { | 
 | 		atomic_inc(&block_group->count); | 
 | 		list_add_tail(&cluster->block_group_list, | 
 | 			      &block_group->cluster_list); | 
 | 		cluster->block_group = block_group; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * simple code to zero out a cluster | 
 |  */ | 
 | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	spin_lock_init(&cluster->lock); | 
 | 	spin_lock_init(&cluster->refill_lock); | 
 | 	cluster->root = RB_ROOT; | 
 | 	cluster->max_size = 0; | 
 | 	INIT_LIST_HEAD(&cluster->block_group_list); | 
 | 	cluster->block_group = NULL; | 
 | } | 
 |  | 
 | int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, | 
 | 			   u64 *trimmed, u64 start, u64 end, u64 minlen) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	u64 bytes = 0; | 
 | 	u64 actually_trimmed; | 
 | 	int ret = 0; | 
 |  | 
 | 	*trimmed = 0; | 
 |  | 
 | 	while (start < end) { | 
 | 		spin_lock(&ctl->tree_lock); | 
 |  | 
 | 		if (ctl->free_space < minlen) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		entry = tree_search_offset(ctl, start, 0, 1); | 
 | 		if (!entry) | 
 | 			entry = tree_search_offset(ctl, | 
 | 						   offset_to_bitmap(ctl, start), | 
 | 						   1, 1); | 
 |  | 
 | 		if (!entry || entry->offset >= end) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			ret = search_bitmap(ctl, entry, &start, &bytes); | 
 | 			if (!ret) { | 
 | 				if (start >= end) { | 
 | 					spin_unlock(&ctl->tree_lock); | 
 | 					break; | 
 | 				} | 
 | 				bytes = min(bytes, end - start); | 
 | 				bitmap_clear_bits(ctl, entry, start, bytes); | 
 | 				if (entry->bytes == 0) | 
 | 					free_bitmap(ctl, entry); | 
 | 			} else { | 
 | 				start = entry->offset + BITS_PER_BITMAP * | 
 | 					block_group->sectorsize; | 
 | 				spin_unlock(&ctl->tree_lock); | 
 | 				ret = 0; | 
 | 				continue; | 
 | 			} | 
 | 		} else { | 
 | 			start = entry->offset; | 
 | 			bytes = min(entry->bytes, end - start); | 
 | 			unlink_free_space(ctl, entry); | 
 | 			kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 		if (bytes >= minlen) { | 
 | 			struct btrfs_space_info *space_info; | 
 | 			int update = 0; | 
 |  | 
 | 			space_info = block_group->space_info; | 
 | 			spin_lock(&space_info->lock); | 
 | 			spin_lock(&block_group->lock); | 
 | 			if (!block_group->ro) { | 
 | 				block_group->reserved += bytes; | 
 | 				space_info->bytes_reserved += bytes; | 
 | 				update = 1; | 
 | 			} | 
 | 			spin_unlock(&block_group->lock); | 
 | 			spin_unlock(&space_info->lock); | 
 |  | 
 | 			ret = btrfs_error_discard_extent(fs_info->extent_root, | 
 | 							 start, | 
 | 							 bytes, | 
 | 							 &actually_trimmed); | 
 |  | 
 | 			btrfs_add_free_space(block_group, start, bytes); | 
 | 			if (update) { | 
 | 				spin_lock(&space_info->lock); | 
 | 				spin_lock(&block_group->lock); | 
 | 				if (block_group->ro) | 
 | 					space_info->bytes_readonly += bytes; | 
 | 				block_group->reserved -= bytes; | 
 | 				space_info->bytes_reserved -= bytes; | 
 | 				spin_unlock(&space_info->lock); | 
 | 				spin_unlock(&block_group->lock); | 
 | 			} | 
 |  | 
 | 			if (ret) | 
 | 				break; | 
 | 			*trimmed += actually_trimmed; | 
 | 		} | 
 | 		start += bytes; | 
 | 		bytes = 0; | 
 |  | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -ERESTARTSYS; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the left-most item in the cache tree, and then return the | 
 |  * smallest inode number in the item. | 
 |  * | 
 |  * Note: the returned inode number may not be the smallest one in | 
 |  * the tree, if the left-most item is a bitmap. | 
 |  */ | 
 | u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	u64 ino = 0; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	if (RB_EMPTY_ROOT(&ctl->free_space_offset)) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(rb_first(&ctl->free_space_offset), | 
 | 			 struct btrfs_free_space, offset_index); | 
 |  | 
 | 	if (!entry->bitmap) { | 
 | 		ino = entry->offset; | 
 |  | 
 | 		unlink_free_space(ctl, entry); | 
 | 		entry->offset++; | 
 | 		entry->bytes--; | 
 | 		if (!entry->bytes) | 
 | 			kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 		else | 
 | 			link_free_space(ctl, entry); | 
 | 	} else { | 
 | 		u64 offset = 0; | 
 | 		u64 count = 1; | 
 | 		int ret; | 
 |  | 
 | 		ret = search_bitmap(ctl, entry, &offset, &count); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		ino = offset; | 
 | 		bitmap_clear_bits(ctl, entry, offset, 1); | 
 | 		if (entry->bytes == 0) | 
 | 			free_bitmap(ctl, entry); | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	return ino; | 
 | } | 
 |  | 
 | struct inode *lookup_free_ino_inode(struct btrfs_root *root, | 
 | 				    struct btrfs_path *path) | 
 | { | 
 | 	struct inode *inode = NULL; | 
 |  | 
 | 	spin_lock(&root->cache_lock); | 
 | 	if (root->cache_inode) | 
 | 		inode = igrab(root->cache_inode); | 
 | 	spin_unlock(&root->cache_lock); | 
 | 	if (inode) | 
 | 		return inode; | 
 |  | 
 | 	inode = __lookup_free_space_inode(root, path, 0); | 
 | 	if (IS_ERR(inode)) | 
 | 		return inode; | 
 |  | 
 | 	spin_lock(&root->cache_lock); | 
 | 	if (!btrfs_fs_closing(root->fs_info)) | 
 | 		root->cache_inode = igrab(inode); | 
 | 	spin_unlock(&root->cache_lock); | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | int create_free_ino_inode(struct btrfs_root *root, | 
 | 			  struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_path *path) | 
 | { | 
 | 	return __create_free_space_inode(root, trans, path, | 
 | 					 BTRFS_FREE_INO_OBJECTID, 0); | 
 | } | 
 |  | 
 | int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; | 
 | 	struct btrfs_path *path; | 
 | 	struct inode *inode; | 
 | 	int ret = 0; | 
 | 	u64 root_gen = btrfs_root_generation(&root->root_item); | 
 |  | 
 | 	if (!btrfs_test_opt(root, INODE_MAP_CACHE)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If we're unmounting then just return, since this does a search on the | 
 | 	 * normal root and not the commit root and we could deadlock. | 
 | 	 */ | 
 | 	if (btrfs_fs_closing(fs_info)) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return 0; | 
 |  | 
 | 	inode = lookup_free_ino_inode(root, path); | 
 | 	if (IS_ERR(inode)) | 
 | 		goto out; | 
 |  | 
 | 	if (root_gen != BTRFS_I(inode)->generation) | 
 | 		goto out_put; | 
 |  | 
 | 	ret = __load_free_space_cache(root, inode, ctl, path, 0); | 
 |  | 
 | 	if (ret < 0) | 
 | 		printk(KERN_ERR "btrfs: failed to load free ino cache for " | 
 | 		       "root %llu\n", root->root_key.objectid); | 
 | out_put: | 
 | 	iput(inode); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_write_out_ino_cache(struct btrfs_root *root, | 
 | 			      struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; | 
 | 	struct inode *inode; | 
 | 	int ret; | 
 |  | 
 | 	if (!btrfs_test_opt(root, INODE_MAP_CACHE)) | 
 | 		return 0; | 
 |  | 
 | 	inode = lookup_free_ino_inode(root, path); | 
 | 	if (IS_ERR(inode)) | 
 | 		return 0; | 
 |  | 
 | 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); | 
 | 	if (ret) { | 
 | 		btrfs_delalloc_release_metadata(inode, inode->i_size); | 
 | #ifdef DEBUG | 
 | 		printk(KERN_ERR "btrfs: failed to write free ino cache " | 
 | 		       "for root %llu\n", root->root_key.objectid); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } |