blob: e83f95e1d9a8b3380280e40cdf179925495a39f0 [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: dpc.c
*
* Purpose: handle dpc rx functions
*
* Author: Lyndon Chen
*
* Date: May 20, 2003
*
* Functions:
* device_receive_frame - Rcv 802.11 frame function
* s_bAPModeRxCtl- AP Rcv frame filer Ctl.
* s_bAPModeRxData- AP Rcv data frame handle
* s_bHandleRxEncryption- Rcv decrypted data via on-fly
* s_bHostWepRxEncryption- Rcv encrypted data via host
* s_byGetRateIdx- get rate index
* s_vGetDASA- get data offset
* s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
*
* Revision History:
*
*/
#include "device.h"
#include "rxtx.h"
#include "tether.h"
#include "card.h"
#include "bssdb.h"
#include "mac.h"
#include "baseband.h"
#include "michael.h"
#include "tkip.h"
#include "tcrc.h"
#include "wctl.h"
#include "hostap.h"
#include "rf.h"
#include "iowpa.h"
#include "aes_ccmp.h"
#include "datarate.h"
#include "usbpipe.h"
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Classes ----------------------------*/
/*--------------------- Static Variables --------------------------*/
//static int msglevel =MSG_LEVEL_DEBUG;
static int msglevel =MSG_LEVEL_INFO;
const BYTE acbyRxRate[MAX_RATE] =
{2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
/*--------------------- Static Functions --------------------------*/
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Functions --------------------------*/
static BYTE s_byGetRateIdx(BYTE byRate);
static
void
s_vGetDASA(
PBYTE pbyRxBufferAddr,
unsigned int *pcbHeaderSize,
PSEthernetHeader psEthHeader
);
static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
u32 *pcbHeadSize);
static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
s32 iSANodeIndex);
static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex);
static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
/*--------------------- Export Variables --------------------------*/
/*+
*
* Description:
* Translate Rcv 802.11 header to 802.3 header with Rx buffer
*
* Parameters:
* In:
* pDevice
* dwRxBufferAddr - Address of Rcv Buffer
* cbPacketSize - Rcv Packet size
* bIsWEP - If Rcv with WEP
* Out:
* pcbHeaderSize - 802.11 header size
*
* Return Value: None
*
-*/
static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
u32 *pcbHeadSize)
{
u8 *pbyRxBuffer;
u32 cbHeaderSize = 0;
u16 *pwType;
PS802_11Header pMACHeader;
int ii;
pMACHeader = (PS802_11Header) (pbyRxBufferAddr + cbHeaderSize);
s_vGetDASA((PBYTE)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);
if (bIsWEP) {
if (bExtIV) {
// strip IV&ExtIV , add 8 byte
cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
} else {
// strip IV , add 4 byte
cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
}
}
else {
cbHeaderSize += WLAN_HDR_ADDR3_LEN;
};
pbyRxBuffer = (PBYTE) (pbyRxBufferAddr + cbHeaderSize);
if (!compare_ether_addr(pbyRxBuffer, &pDevice->abySNAP_Bridgetunnel[0])) {
cbHeaderSize += 6;
} else if (!compare_ether_addr(pbyRxBuffer, &pDevice->abySNAP_RFC1042[0])) {
cbHeaderSize += 6;
pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
if ((*pwType == cpu_to_be16(ETH_P_IPX)) ||
(*pwType == cpu_to_le16(0xF380))) {
cbHeaderSize -= 8;
pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
if (bIsWEP) {
if (bExtIV) {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
} else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
}
}
else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
}
}
}
else {
cbHeaderSize -= 2;
pwType = (PWORD) (pbyRxBufferAddr + cbHeaderSize);
if (bIsWEP) {
if (bExtIV) {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
} else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
}
}
else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
}
}
cbHeaderSize -= (ETH_ALEN * 2);
pbyRxBuffer = (PBYTE) (pbyRxBufferAddr + cbHeaderSize);
for (ii = 0; ii < ETH_ALEN; ii++)
*pbyRxBuffer++ = pDevice->sRxEthHeader.abyDstAddr[ii];
for (ii = 0; ii < ETH_ALEN; ii++)
*pbyRxBuffer++ = pDevice->sRxEthHeader.abySrcAddr[ii];
*pcbHeadSize = cbHeaderSize;
}
static BYTE s_byGetRateIdx(BYTE byRate)
{
BYTE byRateIdx;
for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
return byRateIdx;
}
return 0;
}
static
void
s_vGetDASA (
PBYTE pbyRxBufferAddr,
unsigned int *pcbHeaderSize,
PSEthernetHeader psEthHeader
)
{
unsigned int cbHeaderSize = 0;
PS802_11Header pMACHeader;
int ii;
pMACHeader = (PS802_11Header) (pbyRxBufferAddr + cbHeaderSize);
if ((pMACHeader->wFrameCtl & FC_TODS) == 0) {
if (pMACHeader->wFrameCtl & FC_FROMDS) {
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->abyDstAddr[ii] =
pMACHeader->abyAddr1[ii];
psEthHeader->abySrcAddr[ii] =
pMACHeader->abyAddr3[ii];
}
} else {
/* IBSS mode */
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->abyDstAddr[ii] =
pMACHeader->abyAddr1[ii];
psEthHeader->abySrcAddr[ii] =
pMACHeader->abyAddr2[ii];
}
}
} else {
/* Is AP mode.. */
if (pMACHeader->wFrameCtl & FC_FROMDS) {
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->abyDstAddr[ii] =
pMACHeader->abyAddr3[ii];
psEthHeader->abySrcAddr[ii] =
pMACHeader->abyAddr4[ii];
cbHeaderSize += 6;
}
} else {
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->abyDstAddr[ii] =
pMACHeader->abyAddr3[ii];
psEthHeader->abySrcAddr[ii] =
pMACHeader->abyAddr2[ii];
}
}
};
*pcbHeaderSize = cbHeaderSize;
}
int RXbBulkInProcessData(struct vnt_private *pDevice, PRCB pRCB,
unsigned long BytesToIndicate)
{
struct net_device_stats *pStats = &pDevice->stats;
struct sk_buff *skb;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_rx_mgmt *pRxPacket = &pMgmt->sRxPacket;
PS802_11Header p802_11Header;
u8 *pbyRsr, *pbyNewRsr, *pbyRSSI, *pbyFrame;
u64 *pqwTSFTime;
u32 bDeFragRx = false;
u32 cbHeaderOffset, cbIVOffset;
u32 FrameSize;
u16 wEtherType = 0;
s32 iSANodeIndex = -1, iDANodeIndex = -1;
int ii;
u8 *pbyRxSts, *pbyRxRate, *pbySQ, *pby3SQ;
u32 cbHeaderSize;
PSKeyItem pKey = NULL;
u16 wRxTSC15_0 = 0;
u32 dwRxTSC47_16 = 0;
SKeyItem STempKey;
/* signed long ldBm = 0; */
int bIsWEP = false; int bExtIV = false;
u32 dwWbkStatus;
PRCB pRCBIndicate = pRCB;
u8 *pbyDAddress;
u16 *pwPLCP_Length;
u8 abyVaildRate[MAX_RATE]
= {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
u16 wPLCPwithPadding;
PS802_11Header pMACHeader;
int bRxeapol_key = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- RXbBulkInProcessData---\n");
skb = pRCB->skb;
/* [31:16]RcvByteCount ( not include 4-byte Status ) */
dwWbkStatus = *((u32 *)(skb->data));
FrameSize = dwWbkStatus >> 16;
FrameSize += 4;
if (BytesToIndicate != FrameSize) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"------- WRONG Length 1\n");
return false;
}
if ((BytesToIndicate > 2372) || (BytesToIndicate <= 40)) {
// Frame Size error drop this packet.
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2\n");
return false;
}
pbyDAddress = (PBYTE)(skb->data);
pbyRxSts = pbyDAddress+4;
pbyRxRate = pbyDAddress+5;
//real Frame Size = USBFrameSize -4WbkStatus - 4RxStatus - 8TSF - 4RSR - 4SQ3 - ?Padding
//if SQ3 the range is 24~27, if no SQ3 the range is 20~23
//real Frame size in PLCPLength field.
pwPLCP_Length = (PWORD) (pbyDAddress + 6);
//Fix hardware bug => PLCP_Length error
if ( ((BytesToIndicate - (*pwPLCP_Length)) > 27) ||
((BytesToIndicate - (*pwPLCP_Length)) < 24) ||
(BytesToIndicate < (*pwPLCP_Length)) ) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong PLCP Length %x\n", (int) *pwPLCP_Length);
ASSERT(0);
return false;
}
for ( ii=RATE_1M;ii<MAX_RATE;ii++) {
if ( *pbyRxRate == abyVaildRate[ii] ) {
break;
}
}
if ( ii==MAX_RATE ) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong RxRate %x\n",(int) *pbyRxRate);
return false;
}
wPLCPwithPadding = ( (*pwPLCP_Length / 4) + ( (*pwPLCP_Length % 4) ? 1:0 ) ) *4;
pqwTSFTime = (u64 *)(pbyDAddress + 8 + wPLCPwithPadding);
if(pDevice->byBBType == BB_TYPE_11G) {
pby3SQ = pbyDAddress + 8 + wPLCPwithPadding + 12;
pbySQ = pby3SQ;
}
else {
pbySQ = pbyDAddress + 8 + wPLCPwithPadding + 8;
pby3SQ = pbySQ;
}
pbyNewRsr = pbyDAddress + 8 + wPLCPwithPadding + 9;
pbyRSSI = pbyDAddress + 8 + wPLCPwithPadding + 10;
pbyRsr = pbyDAddress + 8 + wPLCPwithPadding + 11;
FrameSize = *pwPLCP_Length;
pbyFrame = pbyDAddress + 8;
// update receive statistic counter
STAvUpdateRDStatCounter(&pDevice->scStatistic,
*pbyRsr,
*pbyNewRsr,
*pbyRxSts,
*pbyRxRate,
pbyFrame,
FrameSize
);
pMACHeader = (PS802_11Header) pbyFrame;
//mike add: to judge if current AP is activated?
if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
if (pMgmt->sNodeDBTable[0].bActive) {
if (!compare_ether_addr(pMgmt->abyCurrBSSID, pMACHeader->abyAddr2)) {
if (pMgmt->sNodeDBTable[0].uInActiveCount != 0)
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
}
}
}
if (!is_multicast_ether_addr(pMACHeader->abyAddr1)) {
if ( WCTLbIsDuplicate(&(pDevice->sDupRxCache), (PS802_11Header) pbyFrame) ) {
pDevice->s802_11Counter.FrameDuplicateCount++;
return false;
}
if (compare_ether_addr(pDevice->abyCurrentNetAddr,
pMACHeader->abyAddr1)) {
return false;
}
}
// Use for TKIP MIC
s_vGetDASA(pbyFrame, &cbHeaderSize, &pDevice->sRxEthHeader);
if (!compare_ether_addr((PBYTE)&(pDevice->sRxEthHeader.abySrcAddr[0]),
pDevice->abyCurrentNetAddr))
return false;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
p802_11Header = (PS802_11Header) (pbyFrame);
// get SA NodeIndex
if (BSSbIsSTAInNodeDB(pDevice, (PBYTE)(p802_11Header->abyAddr2), &iSANodeIndex)) {
pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == true) {
return false;
}
}
if (IS_FC_WEP(pbyFrame)) {
bool bRxDecryOK = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
bIsWEP = true;
if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
pKey = &STempKey;
pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
memcpy(pKey->abyKey,
&pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
pKey->uKeyLength
);
bRxDecryOK = s_bHostWepRxEncryption(pDevice,
pbyFrame,
FrameSize,
pbyRsr,
pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
pKey,
pbyNewRsr,
&bExtIV,
&wRxTSC15_0,
&dwRxTSC47_16);
} else {
bRxDecryOK = s_bHandleRxEncryption(pDevice,
pbyFrame,
FrameSize,
pbyRsr,
pbyNewRsr,
&pKey,
&bExtIV,
&wRxTSC15_0,
&dwRxTSC47_16);
}
if (bRxDecryOK) {
if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
if ( (pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
pDevice->s802_11Counter.TKIPICVErrors++;
} else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP)) {
pDevice->s802_11Counter.CCMPDecryptErrors++;
} else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_WEP)) {
// pDevice->s802_11Counter.WEPICVErrorCount.QuadPart++;
}
}
return false;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
return false;
}
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
FrameSize -= 8; // Message Integrity Code
else
FrameSize -= 4; // 4 is ICV
}
//
// RX OK
//
/* remove the FCS/CRC length */
FrameSize -= ETH_FCS_LEN;
if ( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) && // unicast address
(IS_FRAGMENT_PKT((pbyFrame)))
) {
// defragment
bDeFragRx = WCTLbHandleFragment(pDevice, (PS802_11Header) (pbyFrame), FrameSize, bIsWEP, bExtIV);
pDevice->s802_11Counter.ReceivedFragmentCount++;
if (bDeFragRx) {
// defrag complete
// TODO skb, pbyFrame
skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
pbyFrame = skb->data + 8;
}
else {
return false;
}
}
//
// Management & Control frame Handle
//
if ((IS_TYPE_DATA((pbyFrame))) == false) {
// Handle Control & Manage Frame
if (IS_TYPE_MGMT((pbyFrame))) {
PBYTE pbyData1;
PBYTE pbyData2;
pRxPacket = &(pRCB->sMngPacket);
pRxPacket->p80211Header = (PUWLAN_80211HDR)(pbyFrame);
pRxPacket->cbMPDULen = FrameSize;
pRxPacket->uRSSI = *pbyRSSI;
pRxPacket->bySQ = *pbySQ;
pRxPacket->qwLocalTSF = cpu_to_le64(*pqwTSFTime);
if (bIsWEP) {
// strip IV
pbyData1 = WLAN_HDR_A3_DATA_PTR(pbyFrame);
pbyData2 = WLAN_HDR_A3_DATA_PTR(pbyFrame) + 4;
for (ii = 0; ii < (FrameSize - 4); ii++) {
*pbyData1 = *pbyData2;
pbyData1++;
pbyData2++;
}
}
pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
if ( *pbyRxSts == 0 ) {
//Discard beacon packet which channel is 0
if ( (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_BEACON) ||
(WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_PROBERESP) ) {
return false;
}
}
pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
// hostap Deamon handle 802.11 management
if (pDevice->bEnableHostapd) {
skb->dev = pDevice->apdev;
//skb->data += 4;
//skb->tail += 4;
skb->data += 8;
skb->tail += 8;
skb_put(skb, FrameSize);
skb_reset_mac_header(skb);
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
return true;
}
//
// Insert the RCB in the Recv Mng list
//
EnqueueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList, pRCBIndicate);
pDevice->NumRecvMngList++;
if ( bDeFragRx == false) {
pRCB->Ref++;
}
if (pDevice->bIsRxMngWorkItemQueued == false) {
pDevice->bIsRxMngWorkItemQueued = true;
tasklet_schedule(&pDevice->RxMngWorkItem);
}
}
else {
// Control Frame
};
return false;
}
else {
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
//In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
if ( !(*pbyRsr & RSR_BSSIDOK)) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
}
else {
// discard DATA packet while not associate || BSSID error
if ((pDevice->bLinkPass == false) ||
!(*pbyRsr & RSR_BSSIDOK)) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
//mike add:station mode check eapol-key challenge--->
{
BYTE Protocol_Version; //802.1x Authentication
BYTE Packet_Type; //802.1x Authentication
BYTE Descriptor_type;
WORD Key_info;
if (bIsWEP)
cbIVOffset = 8;
else
cbIVOffset = 0;
wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
skb->data[cbIVOffset + 8 + 24 + 6 + 1];
Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
if (wEtherType == ETH_P_PAE) { //Protocol Type in LLC-Header
if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
(Packet_Type==3)) { //802.1x OR eapol-key challenge frame receive
bRxeapol_key = true;
Descriptor_type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2];
Key_info = (skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+1]<<8) |skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+2] ;
if(Descriptor_type==2) { //RSN
// printk("WPA2_Rx_eapol-key_info<-----:%x\n",Key_info);
}
else if(Descriptor_type==254) {
// printk("WPA_Rx_eapol-key_info<-----:%x\n",Key_info);
}
}
}
}
//mike add:station mode check eapol-key challenge<---
}
}
// Data frame Handle
if (pDevice->bEnablePSMode) {
if (IS_FC_MOREDATA((pbyFrame))) {
if (*pbyRsr & RSR_ADDROK) {
//PSbSendPSPOLL((PSDevice)pDevice);
}
}
else {
if (pMgmt->bInTIMWake == true) {
pMgmt->bInTIMWake = false;
}
}
}
// Now it only supports 802.11g Infrastructure Mode, and support rate must up to 54 Mbps
if (pDevice->bDiversityEnable && (FrameSize>50) &&
(pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
(pDevice->bLinkPass == true)) {
BBvAntennaDiversity(pDevice, s_byGetRateIdx(*pbyRxRate), 0);
}
// ++++++++ For BaseBand Algorithm +++++++++++++++
pDevice->uCurrRSSI = *pbyRSSI;
pDevice->byCurrSQ = *pbySQ;
// todo
/*
if ((*pbyRSSI != 0) &&
(pMgmt->pCurrBSS!=NULL)) {
RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
// Monitor if RSSI is too strong.
pMgmt->pCurrBSS->byRSSIStatCnt++;
pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
pMgmt->pCurrBSS->ldBmMAX =
max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
}
}
}
*/
// -----------------------------------------------
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->bEnable8021x == true)){
BYTE abyMacHdr[24];
// Only 802.1x packet incoming allowed
if (bIsWEP)
cbIVOffset = 8;
else
cbIVOffset = 0;
wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
skb->data[cbIVOffset + 8 + 24 + 6 + 1];
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"wEtherType = %04x \n", wEtherType);
if (wEtherType == ETH_P_PAE) {
skb->dev = pDevice->apdev;
if (bIsWEP == true) {
// strip IV header(8)
memcpy(&abyMacHdr[0], (skb->data + 8), 24);
memcpy((skb->data + 8 + cbIVOffset), &abyMacHdr[0], 24);
}
skb->data += (cbIVOffset + 8);
skb->tail += (cbIVOffset + 8);
skb_put(skb, FrameSize);
skb_reset_mac_header(skb);
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
return true;
}
// check if 802.1x authorized
if (!(pMgmt->sNodeDBTable[iSANodeIndex].dwFlags & WLAN_STA_AUTHORIZED))
return false;
}
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
if (bIsWEP) {
FrameSize -= 8; //MIC
}
}
//--------------------------------------------------------------------------------
// Soft MIC
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
if (bIsWEP) {
PDWORD pdwMIC_L;
PDWORD pdwMIC_R;
DWORD dwMIC_Priority;
DWORD dwMICKey0 = 0, dwMICKey1 = 0;
DWORD dwLocalMIC_L = 0;
DWORD dwLocalMIC_R = 0;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[24]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[28]));
}
else {
if (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[16]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[20]));
} else if ((pKey->dwKeyIndex & BIT28) == 0) {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[16]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[20]));
} else {
dwMICKey0 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[24]));
dwMICKey1 = cpu_to_le32(*(PDWORD)(&pKey->abyKey[28]));
}
}
MIC_vInit(dwMICKey0, dwMICKey1);
MIC_vAppend((PBYTE)&(pDevice->sRxEthHeader.abyDstAddr[0]), 12);
dwMIC_Priority = 0;
MIC_vAppend((PBYTE)&dwMIC_Priority, 4);
// 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
MIC_vAppend((PBYTE)(skb->data + 8 + WLAN_HDR_ADDR3_LEN + 8),
FrameSize - WLAN_HDR_ADDR3_LEN - 8);
MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
MIC_vUnInit();
pdwMIC_L = (PDWORD)(skb->data + 8 + FrameSize);
pdwMIC_R = (PDWORD)(skb->data + 8 + FrameSize + 4);
if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
(pDevice->bRxMICFail == true)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
pDevice->bRxMICFail = false;
//pDevice->s802_11Counter.TKIPLocalMICFailures.QuadPart++;
pDevice->s802_11Counter.TKIPLocalMICFailures++;
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
//send event to wpa_supplicant
//if(pDevice->bWPASuppWextEnabled == true)
{
union iwreq_data wrqu;
struct iw_michaelmicfailure ev;
int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
memset(&ev, 0, sizeof(ev));
ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
ev.flags |= IW_MICFAILURE_PAIRWISE;
} else {
ev.flags |= IW_MICFAILURE_GROUP;
}
ev.src_addr.sa_family = ARPHRD_ETHER;
memcpy(ev.src_addr.sa_data, pMACHeader->abyAddr2, ETH_ALEN);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = sizeof(ev);
PRINT_K("wireless_send_event--->IWEVMICHAELMICFAILURE\n");
wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
}
return false;
}
}
} //---end of SOFT MIC-----------------------------------------------------------------------
// ++++++++++ Reply Counter Check +++++++++++++
if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
(pKey->byCipherSuite == KEY_CTL_CCMP))) {
if (bIsWEP) {
WORD wLocalTSC15_0 = 0;
DWORD dwLocalTSC47_16 = 0;
unsigned long long RSC = 0;
// endian issues
RSC = *((unsigned long long *) &(pKey->KeyRSC));
wLocalTSC15_0 = (WORD) RSC;
dwLocalTSC47_16 = (DWORD) (RSC>>16);
RSC = dwRxTSC47_16;
RSC <<= 16;
RSC += wRxTSC15_0;
memcpy(&(pKey->KeyRSC), &RSC, sizeof(u64));
if (pDevice->vnt_mgmt.eCurrMode == WMAC_MODE_ESS_STA &&
pDevice->vnt_mgmt.eCurrState == WMAC_STATE_ASSOC) {
/* check RSC */
if ( (wRxTSC15_0 < wLocalTSC15_0) &&
(dwRxTSC47_16 <= dwLocalTSC47_16) &&
!((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
if (pKey->byCipherSuite == KEY_CTL_TKIP)
//pDevice->s802_11Counter.TKIPReplays.QuadPart++;
pDevice->s802_11Counter.TKIPReplays++;
else
//pDevice->s802_11Counter.CCMPReplays.QuadPart++;
pDevice->s802_11Counter.CCMPReplays++;
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
}
}
} // ----- End of Reply Counter Check --------------------------
s_vProcessRxMACHeader(pDevice, (PBYTE)(skb->data+8), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
FrameSize -= cbHeaderOffset;
cbHeaderOffset += 8; // 8 is Rcv buffer header
// Null data, framesize = 12
if (FrameSize < 12)
return false;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (s_bAPModeRxData(pDevice,
skb,
FrameSize,
cbHeaderOffset,
iSANodeIndex,
iDANodeIndex
) == false) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
}
skb->data += cbHeaderOffset;
skb->tail += cbHeaderOffset;
skb_put(skb, FrameSize);
skb->protocol=eth_type_trans(skb, skb->dev);
skb->ip_summed=CHECKSUM_NONE;
pStats->rx_bytes +=skb->len;
pStats->rx_packets++;
netif_rx(skb);
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
return false;
}
return true;
}
static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
s32 iSANodeIndex)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PS802_11Header p802_11Header;
CMD_STATUS Status;
if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
p802_11Header = (PS802_11Header) (pbyFrame);
if (!IS_TYPE_MGMT(pbyFrame)) {
// Data & PS-Poll packet
// check frame class
if (iSANodeIndex > 0) {
// frame class 3 fliter & checking
if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_AUTH) {
// send deauth notification
// reason = (6) class 2 received from nonauth sta
vMgrDeAuthenBeginSta(pDevice,
pMgmt,
(PBYTE)(p802_11Header->abyAddr2),
(WLAN_MGMT_REASON_CLASS2_NONAUTH),
&Status
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 1\n");
return true;
}
if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_ASSOC) {
// send deassoc notification
// reason = (7) class 3 received from nonassoc sta
vMgrDisassocBeginSta(pDevice,
pMgmt,
(PBYTE)(p802_11Header->abyAddr2),
(WLAN_MGMT_REASON_CLASS3_NONASSOC),
&Status
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDisassocBeginSta 2\n");
return true;
}
if (pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable) {
// delcare received ps-poll event
if (IS_CTL_PSPOLL(pbyFrame)) {
pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
bScheduleCommand((void *) pDevice,
WLAN_CMD_RX_PSPOLL,
NULL);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 1\n");
}
else {
// check Data PS state
// if PW bit off, send out all PS bufferring packets.
if (!IS_FC_POWERMGT(pbyFrame)) {
pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
bScheduleCommand((void *) pDevice,
WLAN_CMD_RX_PSPOLL,
NULL);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 2\n");
}
}
}
else {
if (IS_FC_POWERMGT(pbyFrame)) {
pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = true;
// Once if STA in PS state, enable multicast bufferring
pMgmt->sNodeDBTable[0].bPSEnable = true;
}
else {
// clear all pending PS frame.
if (pMgmt->sNodeDBTable[iSANodeIndex].wEnQueueCnt > 0) {
pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
bScheduleCommand((void *) pDevice,
WLAN_CMD_RX_PSPOLL,
NULL);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 3\n");
}
}
}
}
else {
vMgrDeAuthenBeginSta(pDevice,
pMgmt,
(PBYTE)(p802_11Header->abyAddr2),
(WLAN_MGMT_REASON_CLASS2_NONAUTH),
&Status
);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 3\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSID:%pM\n",
p802_11Header->abyAddr3);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR2:%pM\n",
p802_11Header->abyAddr2);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR1:%pM\n",
p802_11Header->abyAddr1);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: wFrameCtl= %x\n", p802_11Header->wFrameCtl );
return true;
}
}
}
return false;
}
static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u32 PayloadLen = FrameSize;
u8 *pbyIV;
u8 byKeyIdx;
PSKeyItem pKey = NULL;
u8 byDecMode = KEY_CTL_WEP;
*pwRxTSC15_0 = 0;
*pdwRxTSC47_16 = 0;
pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
if ( WLAN_GET_FC_TODS(*(PWORD)pbyFrame) &&
WLAN_GET_FC_FROMDS(*(PWORD)pbyFrame) ) {
pbyIV += 6; // 6 is 802.11 address4
PayloadLen -= 6;
}
byKeyIdx = (*(pbyIV+3) & 0xc0);
byKeyIdx >>= 6;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
(pMgmt->byCSSPK != KEY_CTL_NONE)) {
// unicast pkt use pairwise key
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == true) {
if (pMgmt->byCSSPK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSPK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
} else {
// use group key
KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
if (pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
}
}
// our WEP only support Default Key
if (pKey == NULL) {
// use default group key
KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
if (pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
}
*pKeyOut = pKey;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
if (pKey == NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
if (byDecMode == KEY_CTL_WEP) {
// pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
} else if (pDevice->bLinkPass == true) {
// pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
}
return false;
}
if (byDecMode != pKey->byCipherSuite) {
if (byDecMode == KEY_CTL_WEP) {
// pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
} else if (pDevice->bLinkPass == true) {
// pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
}
*pKeyOut = NULL;
return false;
}
if (byDecMode == KEY_CTL_WEP) {
// handle WEP
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
(((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true)) {
// Software WEP
// 1. 3253A
// 2. WEP 256
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
memcpy(pDevice->abyPRNG, pbyIV, 3);
memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
}
}
} else if ((byDecMode == KEY_CTL_TKIP) ||
(byDecMode == KEY_CTL_CCMP)) {
// TKIP/AES
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
*pdwRxTSC47_16 = cpu_to_le32(*(PDWORD)(pbyIV + 4));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
if (byDecMode == KEY_CTL_TKIP) {
*pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
} else {
*pwRxTSC15_0 = cpu_to_le16(*(PWORD)pbyIV);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
if ((byDecMode == KEY_CTL_TKIP) &&
(pDevice->byLocalID <= REV_ID_VT3253_A1)) {
// Software TKIP
// 1. 3253 A
PS802_11Header pMACHeader = (PS802_11Header) (pbyFrame);
TKIPvMixKey(pKey->abyKey, pMACHeader->abyAddr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
}
}
}// end of TKIP/AES
if ((*(pbyIV+3) & 0x20) != 0)
*pbExtIV = true;
return true;
}
static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PS802_11Header pMACHeader;
u32 PayloadLen = FrameSize;
u8 *pbyIV;
u8 byKeyIdx;
u8 byDecMode = KEY_CTL_WEP;
*pwRxTSC15_0 = 0;
*pdwRxTSC47_16 = 0;
pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
if ( WLAN_GET_FC_TODS(*(PWORD)pbyFrame) &&
WLAN_GET_FC_FROMDS(*(PWORD)pbyFrame) ) {
pbyIV += 6; // 6 is 802.11 address4
PayloadLen -= 6;
}
byKeyIdx = (*(pbyIV+3) & 0xc0);
byKeyIdx >>= 6;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
if (pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
if (byDecMode != pKey->byCipherSuite) {
if (byDecMode == KEY_CTL_WEP) {
// pDevice->s802_11Counter.WEPUndecryptableCount.QuadPart++;
} else if (pDevice->bLinkPass == true) {
// pDevice->s802_11Counter.DecryptFailureCount.QuadPart++;
}
return false;
}
if (byDecMode == KEY_CTL_WEP) {
// handle WEP
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"byDecMode == KEY_CTL_WEP\n");
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
(((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true) ||
(bOnFly == false)) {
// Software WEP
// 1. 3253A
// 2. WEP 256
// 3. NotOnFly
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
memcpy(pDevice->abyPRNG, pbyIV, 3);
memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
}
}
} else if ((byDecMode == KEY_CTL_TKIP) ||
(byDecMode == KEY_CTL_CCMP)) {
// TKIP/AES
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
*pdwRxTSC47_16 = cpu_to_le32(*(PDWORD)(pbyIV + 4));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
if (byDecMode == KEY_CTL_TKIP) {
*pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
} else {
*pwRxTSC15_0 = cpu_to_le16(*(PWORD)pbyIV);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
if (byDecMode == KEY_CTL_TKIP) {
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) || (bOnFly == false)) {
// Software TKIP
// 1. 3253 A
// 2. NotOnFly
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_TKIP \n");
pMACHeader = (PS802_11Header) (pbyFrame);
TKIPvMixKey(pKey->abyKey, pMACHeader->abyAddr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
}
}
}
if (byDecMode == KEY_CTL_CCMP) {
if (bOnFly == false) {
// Software CCMP
// NotOnFly
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_CCMP\n");
if (AESbGenCCMP(pKey->abyKey, pbyFrame, FrameSize)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC compare OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC fail!\n");
}
}
}
}// end of TKIP/AES
if ((*(pbyIV+3) & 0x20) != 0)
*pbExtIV = true;
return true;
}
static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex)
{
struct sk_buff *skbcpy;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int bRelayAndForward = false;
int bRelayOnly = false;
u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
u16 wAID;
if (FrameSize > CB_MAX_BUF_SIZE)
return false;
// check DA
if (is_multicast_ether_addr((PBYTE)(skb->data+cbHeaderOffset))) {
if (pMgmt->sNodeDBTable[0].bPSEnable) {
skbcpy = dev_alloc_skb((int)pDevice->rx_buf_sz);
// if any node in PS mode, buffer packet until DTIM.
if (skbcpy == NULL) {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "relay multicast no skb available \n");
}
else {
skbcpy->dev = pDevice->dev;
skbcpy->len = FrameSize;
memcpy(skbcpy->data, skb->data+cbHeaderOffset, FrameSize);
skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skbcpy);
pMgmt->sNodeDBTable[0].wEnQueueCnt++;
// set tx map
pMgmt->abyPSTxMap[0] |= byMask[0];
}
}
else {
bRelayAndForward = true;
}
}
else {
// check if relay
if (BSSbIsSTAInNodeDB(pDevice, (PBYTE)(skb->data+cbHeaderOffset), &iDANodeIndex)) {
if (pMgmt->sNodeDBTable[iDANodeIndex].eNodeState >= NODE_ASSOC) {
if (pMgmt->sNodeDBTable[iDANodeIndex].bPSEnable) {
// queue this skb until next PS tx, and then release.
skb->data += cbHeaderOffset;
skb->tail += cbHeaderOffset;
skb_put(skb, FrameSize);
skb_queue_tail(&pMgmt->sNodeDBTable[iDANodeIndex].sTxPSQueue, skb);
pMgmt->sNodeDBTable[iDANodeIndex].wEnQueueCnt++;
wAID = pMgmt->sNodeDBTable[iDANodeIndex].wAID;
pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "relay: index= %d, pMgmt->abyPSTxMap[%d]= %d\n",
iDANodeIndex, (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
return true;
}
else {
bRelayOnly = true;
}
}
}
}
if (bRelayOnly || bRelayAndForward) {
// relay this packet right now
if (bRelayAndForward)
iDANodeIndex = 0;
if ((pDevice->uAssocCount > 1) && (iDANodeIndex >= 0)) {
bRelayPacketSend(pDevice, (PBYTE) (skb->data + cbHeaderOffset),
FrameSize, (unsigned int) iDANodeIndex);
}
if (bRelayOnly)
return false;
}
// none associate, don't forward
if (pDevice->uAssocCount == 0)
return false;
return true;
}
void RXvWorkItem(struct vnt_private *pDevice)
{
int ntStatus;
PRCB pRCB = NULL;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Polling Thread\n");
spin_lock_irq(&pDevice->lock);
while ((pDevice->Flags & fMP_POST_READS) &&
MP_IS_READY(pDevice) &&
(pDevice->NumRecvFreeList != 0) ) {
pRCB = pDevice->FirstRecvFreeList;
pDevice->NumRecvFreeList--;
ASSERT(pRCB);// cannot be NULL
DequeueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList);
ntStatus = PIPEnsBulkInUsbRead(pDevice, pRCB);
}
pDevice->bIsRxWorkItemQueued = false;
spin_unlock_irq(&pDevice->lock);
}
void RXvFreeRCB(PRCB pRCB, int bReAllocSkb)
{
struct vnt_private *pDevice = pRCB->pDevice;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->RXvFreeRCB\n");
ASSERT(!pRCB->Ref); // should be 0
ASSERT(pRCB->pDevice); // shouldn't be NULL
if (bReAllocSkb == false) {
kfree_skb(pRCB->skb);
bReAllocSkb = true;
}
if (bReAllocSkb == true) {
pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
// todo error handling
if (pRCB->skb == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to re-alloc rx skb\n");
}else {
pRCB->skb->dev = pDevice->dev;
}
}
//
// Insert the RCB back in the Recv free list
//
EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB);
pDevice->NumRecvFreeList++;
if ((pDevice->Flags & fMP_POST_READS) && MP_IS_READY(pDevice) &&
(pDevice->bIsRxWorkItemQueued == false) ) {
pDevice->bIsRxWorkItemQueued = true;
tasklet_schedule(&pDevice->ReadWorkItem);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----RXFreeRCB %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
}
void RXvMngWorkItem(struct vnt_private *pDevice)
{
PRCB pRCB = NULL;
struct vnt_rx_mgmt *pRxPacket;
int bReAllocSkb = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Mng Thread\n");
spin_lock_irq(&pDevice->lock);
while (pDevice->NumRecvMngList!=0)
{
pRCB = pDevice->FirstRecvMngList;
pDevice->NumRecvMngList--;
DequeueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList);
if(!pRCB){
break;
}
ASSERT(pRCB);// cannot be NULL
pRxPacket = &(pRCB->sMngPacket);
vMgrRxManagePacket(pDevice, &pDevice->vnt_mgmt, pRxPacket);
pRCB->Ref--;
if(pRCB->Ref == 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"RxvFreeMng %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
RXvFreeRCB(pRCB, bReAllocSkb);
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Rx Mng Only we have the right to free RCB\n");
}
}
pDevice->bIsRxMngWorkItemQueued = false;
spin_unlock_irq(&pDevice->lock);
}