| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * x86_64 specific EFI support functions |
| * Based on Extensible Firmware Interface Specification version 1.0 |
| * |
| * Copyright (C) 2005-2008 Intel Co. |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Bibo Mao <bibo.mao@intel.com> |
| * Chandramouli Narayanan <mouli@linux.intel.com> |
| * Huang Ying <ying.huang@intel.com> |
| * |
| * Code to convert EFI to E820 map has been implemented in elilo bootloader |
| * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table |
| * is setup appropriately for EFI runtime code. |
| * - mouli 06/14/2007. |
| * |
| */ |
| |
| #define pr_fmt(fmt) "efi: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/memblock.h> |
| #include <linux/ioport.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/efi.h> |
| #include <linux/export.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/reboot.h> |
| #include <linux/slab.h> |
| #include <linux/ucs2_string.h> |
| #include <linux/mem_encrypt.h> |
| #include <linux/sched/task.h> |
| |
| #include <asm/setup.h> |
| #include <asm/page.h> |
| #include <asm/e820/api.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/proto.h> |
| #include <asm/efi.h> |
| #include <asm/cacheflush.h> |
| #include <asm/fixmap.h> |
| #include <asm/realmode.h> |
| #include <asm/time.h> |
| #include <asm/pgalloc.h> |
| |
| /* |
| * We allocate runtime services regions top-down, starting from -4G, i.e. |
| * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. |
| */ |
| static u64 efi_va = EFI_VA_START; |
| |
| struct efi_scratch efi_scratch; |
| |
| EXPORT_SYMBOL_GPL(efi_mm); |
| |
| /* |
| * We need our own copy of the higher levels of the page tables |
| * because we want to avoid inserting EFI region mappings (EFI_VA_END |
| * to EFI_VA_START) into the standard kernel page tables. Everything |
| * else can be shared, see efi_sync_low_kernel_mappings(). |
| * |
| * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the |
| * allocation. |
| */ |
| int __init efi_alloc_page_tables(void) |
| { |
| pgd_t *pgd, *efi_pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| gfp_t gfp_mask; |
| |
| if (efi_have_uv1_memmap()) |
| return 0; |
| |
| gfp_mask = GFP_KERNEL | __GFP_ZERO; |
| efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); |
| if (!efi_pgd) |
| return -ENOMEM; |
| |
| pgd = efi_pgd + pgd_index(EFI_VA_END); |
| p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); |
| if (!p4d) { |
| free_page((unsigned long)efi_pgd); |
| return -ENOMEM; |
| } |
| |
| pud = pud_alloc(&init_mm, p4d, EFI_VA_END); |
| if (!pud) { |
| if (pgtable_l5_enabled()) |
| free_page((unsigned long) pgd_page_vaddr(*pgd)); |
| free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); |
| return -ENOMEM; |
| } |
| |
| efi_mm.pgd = efi_pgd; |
| mm_init_cpumask(&efi_mm); |
| init_new_context(NULL, &efi_mm); |
| |
| return 0; |
| } |
| |
| /* |
| * Add low kernel mappings for passing arguments to EFI functions. |
| */ |
| void efi_sync_low_kernel_mappings(void) |
| { |
| unsigned num_entries; |
| pgd_t *pgd_k, *pgd_efi; |
| p4d_t *p4d_k, *p4d_efi; |
| pud_t *pud_k, *pud_efi; |
| pgd_t *efi_pgd = efi_mm.pgd; |
| |
| if (efi_have_uv1_memmap()) |
| return; |
| |
| /* |
| * We can share all PGD entries apart from the one entry that |
| * covers the EFI runtime mapping space. |
| * |
| * Make sure the EFI runtime region mappings are guaranteed to |
| * only span a single PGD entry and that the entry also maps |
| * other important kernel regions. |
| */ |
| MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); |
| MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != |
| (EFI_VA_END & PGDIR_MASK)); |
| |
| pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); |
| pgd_k = pgd_offset_k(PAGE_OFFSET); |
| |
| num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); |
| memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); |
| |
| /* |
| * As with PGDs, we share all P4D entries apart from the one entry |
| * that covers the EFI runtime mapping space. |
| */ |
| BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); |
| BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); |
| |
| pgd_efi = efi_pgd + pgd_index(EFI_VA_END); |
| pgd_k = pgd_offset_k(EFI_VA_END); |
| p4d_efi = p4d_offset(pgd_efi, 0); |
| p4d_k = p4d_offset(pgd_k, 0); |
| |
| num_entries = p4d_index(EFI_VA_END); |
| memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); |
| |
| /* |
| * We share all the PUD entries apart from those that map the |
| * EFI regions. Copy around them. |
| */ |
| BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); |
| BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); |
| |
| p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); |
| p4d_k = p4d_offset(pgd_k, EFI_VA_END); |
| pud_efi = pud_offset(p4d_efi, 0); |
| pud_k = pud_offset(p4d_k, 0); |
| |
| num_entries = pud_index(EFI_VA_END); |
| memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); |
| |
| pud_efi = pud_offset(p4d_efi, EFI_VA_START); |
| pud_k = pud_offset(p4d_k, EFI_VA_START); |
| |
| num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); |
| memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); |
| } |
| |
| /* |
| * Wrapper for slow_virt_to_phys() that handles NULL addresses. |
| */ |
| static inline phys_addr_t |
| virt_to_phys_or_null_size(void *va, unsigned long size) |
| { |
| bool bad_size; |
| |
| if (!va) |
| return 0; |
| |
| if (virt_addr_valid(va)) |
| return virt_to_phys(va); |
| |
| /* |
| * A fully aligned variable on the stack is guaranteed not to |
| * cross a page bounary. Try to catch strings on the stack by |
| * checking that 'size' is a power of two. |
| */ |
| bad_size = size > PAGE_SIZE || !is_power_of_2(size); |
| |
| WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size); |
| |
| return slow_virt_to_phys(va); |
| } |
| |
| #define virt_to_phys_or_null(addr) \ |
| virt_to_phys_or_null_size((addr), sizeof(*(addr))) |
| |
| int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) |
| { |
| unsigned long pfn, text, pf; |
| struct page *page; |
| unsigned npages; |
| pgd_t *pgd = efi_mm.pgd; |
| |
| if (efi_have_uv1_memmap()) |
| return 0; |
| |
| /* |
| * It can happen that the physical address of new_memmap lands in memory |
| * which is not mapped in the EFI page table. Therefore we need to go |
| * and ident-map those pages containing the map before calling |
| * phys_efi_set_virtual_address_map(). |
| */ |
| pfn = pa_memmap >> PAGE_SHIFT; |
| pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; |
| if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { |
| pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); |
| return 1; |
| } |
| |
| /* |
| * Certain firmware versions are way too sentimential and still believe |
| * they are exclusive and unquestionable owners of the first physical page, |
| * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY |
| * (but then write-access it later during SetVirtualAddressMap()). |
| * |
| * Create a 1:1 mapping for this page, to avoid triple faults during early |
| * boot with such firmware. We are free to hand this page to the BIOS, |
| * as trim_bios_range() will reserve the first page and isolate it away |
| * from memory allocators anyway. |
| */ |
| if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { |
| pr_err("Failed to create 1:1 mapping for the first page!\n"); |
| return 1; |
| } |
| |
| /* |
| * When making calls to the firmware everything needs to be 1:1 |
| * mapped and addressable with 32-bit pointers. Map the kernel |
| * text and allocate a new stack because we can't rely on the |
| * stack pointer being < 4GB. |
| */ |
| if (!efi_is_mixed()) |
| return 0; |
| |
| page = alloc_page(GFP_KERNEL|__GFP_DMA32); |
| if (!page) { |
| pr_err("Unable to allocate EFI runtime stack < 4GB\n"); |
| return 1; |
| } |
| |
| efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */ |
| |
| npages = (__end_rodata_aligned - _text) >> PAGE_SHIFT; |
| text = __pa(_text); |
| pfn = text >> PAGE_SHIFT; |
| |
| pf = _PAGE_ENC; |
| if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { |
| pr_err("Failed to map kernel text 1:1\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void __init __map_region(efi_memory_desc_t *md, u64 va) |
| { |
| unsigned long flags = _PAGE_RW; |
| unsigned long pfn; |
| pgd_t *pgd = efi_mm.pgd; |
| |
| /* |
| * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF |
| * executable images in memory that consist of both R-X and |
| * RW- sections, so we cannot apply read-only or non-exec |
| * permissions just yet. However, modern EFI systems provide |
| * a memory attributes table that describes those sections |
| * with the appropriate restricted permissions, which are |
| * applied in efi_runtime_update_mappings() below. All other |
| * regions can be mapped non-executable at this point, with |
| * the exception of boot services code regions, but those will |
| * be unmapped again entirely in efi_free_boot_services(). |
| */ |
| if (md->type != EFI_BOOT_SERVICES_CODE && |
| md->type != EFI_RUNTIME_SERVICES_CODE) |
| flags |= _PAGE_NX; |
| |
| if (!(md->attribute & EFI_MEMORY_WB)) |
| flags |= _PAGE_PCD; |
| |
| if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) |
| flags |= _PAGE_ENC; |
| |
| pfn = md->phys_addr >> PAGE_SHIFT; |
| if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) |
| pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", |
| md->phys_addr, va); |
| } |
| |
| void __init efi_map_region(efi_memory_desc_t *md) |
| { |
| unsigned long size = md->num_pages << PAGE_SHIFT; |
| u64 pa = md->phys_addr; |
| |
| if (efi_have_uv1_memmap()) |
| return old_map_region(md); |
| |
| /* |
| * Make sure the 1:1 mappings are present as a catch-all for b0rked |
| * firmware which doesn't update all internal pointers after switching |
| * to virtual mode and would otherwise crap on us. |
| */ |
| __map_region(md, md->phys_addr); |
| |
| /* |
| * Enforce the 1:1 mapping as the default virtual address when |
| * booting in EFI mixed mode, because even though we may be |
| * running a 64-bit kernel, the firmware may only be 32-bit. |
| */ |
| if (efi_is_mixed()) { |
| md->virt_addr = md->phys_addr; |
| return; |
| } |
| |
| efi_va -= size; |
| |
| /* Is PA 2M-aligned? */ |
| if (!(pa & (PMD_SIZE - 1))) { |
| efi_va &= PMD_MASK; |
| } else { |
| u64 pa_offset = pa & (PMD_SIZE - 1); |
| u64 prev_va = efi_va; |
| |
| /* get us the same offset within this 2M page */ |
| efi_va = (efi_va & PMD_MASK) + pa_offset; |
| |
| if (efi_va > prev_va) |
| efi_va -= PMD_SIZE; |
| } |
| |
| if (efi_va < EFI_VA_END) { |
| pr_warn(FW_WARN "VA address range overflow!\n"); |
| return; |
| } |
| |
| /* Do the VA map */ |
| __map_region(md, efi_va); |
| md->virt_addr = efi_va; |
| } |
| |
| /* |
| * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. |
| * md->virt_addr is the original virtual address which had been mapped in kexec |
| * 1st kernel. |
| */ |
| void __init efi_map_region_fixed(efi_memory_desc_t *md) |
| { |
| __map_region(md, md->phys_addr); |
| __map_region(md, md->virt_addr); |
| } |
| |
| void __init parse_efi_setup(u64 phys_addr, u32 data_len) |
| { |
| efi_setup = phys_addr + sizeof(struct setup_data); |
| } |
| |
| static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) |
| { |
| unsigned long pfn; |
| pgd_t *pgd = efi_mm.pgd; |
| int err1, err2; |
| |
| /* Update the 1:1 mapping */ |
| pfn = md->phys_addr >> PAGE_SHIFT; |
| err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); |
| if (err1) { |
| pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", |
| md->phys_addr, md->virt_addr); |
| } |
| |
| err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); |
| if (err2) { |
| pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", |
| md->phys_addr, md->virt_addr); |
| } |
| |
| return err1 || err2; |
| } |
| |
| static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) |
| { |
| unsigned long pf = 0; |
| |
| if (md->attribute & EFI_MEMORY_XP) |
| pf |= _PAGE_NX; |
| |
| if (!(md->attribute & EFI_MEMORY_RO)) |
| pf |= _PAGE_RW; |
| |
| if (sev_active()) |
| pf |= _PAGE_ENC; |
| |
| return efi_update_mappings(md, pf); |
| } |
| |
| void __init efi_runtime_update_mappings(void) |
| { |
| efi_memory_desc_t *md; |
| |
| if (efi_have_uv1_memmap()) { |
| if (__supported_pte_mask & _PAGE_NX) |
| runtime_code_page_mkexec(); |
| return; |
| } |
| |
| /* |
| * Use the EFI Memory Attribute Table for mapping permissions if it |
| * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. |
| */ |
| if (efi_enabled(EFI_MEM_ATTR)) { |
| efi_memattr_apply_permissions(NULL, efi_update_mem_attr); |
| return; |
| } |
| |
| /* |
| * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace |
| * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update |
| * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not |
| * published by the firmware. Even if we find a buggy implementation of |
| * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to |
| * EFI_PROPERTIES_TABLE, because of the same reason. |
| */ |
| |
| if (!efi_enabled(EFI_NX_PE_DATA)) |
| return; |
| |
| for_each_efi_memory_desc(md) { |
| unsigned long pf = 0; |
| |
| if (!(md->attribute & EFI_MEMORY_RUNTIME)) |
| continue; |
| |
| if (!(md->attribute & EFI_MEMORY_WB)) |
| pf |= _PAGE_PCD; |
| |
| if ((md->attribute & EFI_MEMORY_XP) || |
| (md->type == EFI_RUNTIME_SERVICES_DATA)) |
| pf |= _PAGE_NX; |
| |
| if (!(md->attribute & EFI_MEMORY_RO) && |
| (md->type != EFI_RUNTIME_SERVICES_CODE)) |
| pf |= _PAGE_RW; |
| |
| if (sev_active()) |
| pf |= _PAGE_ENC; |
| |
| efi_update_mappings(md, pf); |
| } |
| } |
| |
| void __init efi_dump_pagetable(void) |
| { |
| #ifdef CONFIG_EFI_PGT_DUMP |
| if (efi_have_uv1_memmap()) |
| ptdump_walk_pgd_level(NULL, &init_mm); |
| else |
| ptdump_walk_pgd_level(NULL, &efi_mm); |
| #endif |
| } |
| |
| /* |
| * Makes the calling thread switch to/from efi_mm context. Can be used |
| * in a kernel thread and user context. Preemption needs to remain disabled |
| * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm |
| * can not change under us. |
| * It should be ensured that there are no concurent calls to this function. |
| */ |
| void efi_switch_mm(struct mm_struct *mm) |
| { |
| efi_scratch.prev_mm = current->active_mm; |
| current->active_mm = mm; |
| switch_mm(efi_scratch.prev_mm, mm, NULL); |
| } |
| |
| static DEFINE_SPINLOCK(efi_runtime_lock); |
| |
| /* |
| * DS and ES contain user values. We need to save them. |
| * The 32-bit EFI code needs a valid DS, ES, and SS. There's no |
| * need to save the old SS: __KERNEL_DS is always acceptable. |
| */ |
| #define __efi_thunk(func, ...) \ |
| ({ \ |
| efi_runtime_services_32_t *__rt; \ |
| unsigned short __ds, __es; \ |
| efi_status_t ____s; \ |
| \ |
| __rt = (void *)(unsigned long)efi.systab->mixed_mode.runtime; \ |
| \ |
| savesegment(ds, __ds); \ |
| savesegment(es, __es); \ |
| \ |
| loadsegment(ss, __KERNEL_DS); \ |
| loadsegment(ds, __KERNEL_DS); \ |
| loadsegment(es, __KERNEL_DS); \ |
| \ |
| ____s = efi64_thunk(__rt->func, __VA_ARGS__); \ |
| \ |
| loadsegment(ds, __ds); \ |
| loadsegment(es, __es); \ |
| \ |
| ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ |
| ____s; \ |
| }) |
| |
| /* |
| * Switch to the EFI page tables early so that we can access the 1:1 |
| * runtime services mappings which are not mapped in any other page |
| * tables. |
| * |
| * Also, disable interrupts because the IDT points to 64-bit handlers, |
| * which aren't going to function correctly when we switch to 32-bit. |
| */ |
| #define efi_thunk(func...) \ |
| ({ \ |
| efi_status_t __s; \ |
| \ |
| arch_efi_call_virt_setup(); \ |
| \ |
| __s = __efi_thunk(func); \ |
| \ |
| arch_efi_call_virt_teardown(); \ |
| \ |
| __s; \ |
| }) |
| |
| static efi_status_t __init __no_sanitize_address |
| efi_thunk_set_virtual_address_map(unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map) |
| { |
| efi_status_t status; |
| unsigned long flags; |
| |
| efi_sync_low_kernel_mappings(); |
| local_irq_save(flags); |
| |
| efi_switch_mm(&efi_mm); |
| |
| status = __efi_thunk(set_virtual_address_map, memory_map_size, |
| descriptor_size, descriptor_version, virtual_map); |
| |
| efi_switch_mm(efi_scratch.prev_mm); |
| local_irq_restore(flags); |
| |
| return status; |
| } |
| |
| static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) |
| { |
| efi_status_t status; |
| u32 phys_tm, phys_tc; |
| unsigned long flags; |
| |
| spin_lock(&rtc_lock); |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_tm = virt_to_phys_or_null(tm); |
| phys_tc = virt_to_phys_or_null(tc); |
| |
| status = efi_thunk(get_time, phys_tm, phys_tc); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| spin_unlock(&rtc_lock); |
| |
| return status; |
| } |
| |
| static efi_status_t efi_thunk_set_time(efi_time_t *tm) |
| { |
| efi_status_t status; |
| u32 phys_tm; |
| unsigned long flags; |
| |
| spin_lock(&rtc_lock); |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_tm = virt_to_phys_or_null(tm); |
| |
| status = efi_thunk(set_time, phys_tm); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| spin_unlock(&rtc_lock); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, |
| efi_time_t *tm) |
| { |
| efi_status_t status; |
| u32 phys_enabled, phys_pending, phys_tm; |
| unsigned long flags; |
| |
| spin_lock(&rtc_lock); |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_enabled = virt_to_phys_or_null(enabled); |
| phys_pending = virt_to_phys_or_null(pending); |
| phys_tm = virt_to_phys_or_null(tm); |
| |
| status = efi_thunk(get_wakeup_time, phys_enabled, |
| phys_pending, phys_tm); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| spin_unlock(&rtc_lock); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) |
| { |
| efi_status_t status; |
| u32 phys_tm; |
| unsigned long flags; |
| |
| spin_lock(&rtc_lock); |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_tm = virt_to_phys_or_null(tm); |
| |
| status = efi_thunk(set_wakeup_time, enabled, phys_tm); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| spin_unlock(&rtc_lock); |
| |
| return status; |
| } |
| |
| static unsigned long efi_name_size(efi_char16_t *name) |
| { |
| return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; |
| } |
| |
| static efi_status_t |
| efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, |
| u32 *attr, unsigned long *data_size, void *data) |
| { |
| efi_status_t status; |
| u32 phys_name, phys_vendor, phys_attr; |
| u32 phys_data_size, phys_data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_data_size = virt_to_phys_or_null(data_size); |
| phys_vendor = virt_to_phys_or_null(vendor); |
| phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); |
| phys_attr = virt_to_phys_or_null(attr); |
| phys_data = virt_to_phys_or_null_size(data, *data_size); |
| |
| status = efi_thunk(get_variable, phys_name, phys_vendor, |
| phys_attr, phys_data_size, phys_data); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, |
| u32 attr, unsigned long data_size, void *data) |
| { |
| u32 phys_name, phys_vendor, phys_data; |
| efi_status_t status; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); |
| phys_vendor = virt_to_phys_or_null(vendor); |
| phys_data = virt_to_phys_or_null_size(data, data_size); |
| |
| /* If data_size is > sizeof(u32) we've got problems */ |
| status = efi_thunk(set_variable, phys_name, phys_vendor, |
| attr, data_size, phys_data); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, |
| u32 attr, unsigned long data_size, |
| void *data) |
| { |
| u32 phys_name, phys_vendor, phys_data; |
| efi_status_t status; |
| unsigned long flags; |
| |
| if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) |
| return EFI_NOT_READY; |
| |
| phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); |
| phys_vendor = virt_to_phys_or_null(vendor); |
| phys_data = virt_to_phys_or_null_size(data, data_size); |
| |
| /* If data_size is > sizeof(u32) we've got problems */ |
| status = efi_thunk(set_variable, phys_name, phys_vendor, |
| attr, data_size, phys_data); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_get_next_variable(unsigned long *name_size, |
| efi_char16_t *name, |
| efi_guid_t *vendor) |
| { |
| efi_status_t status; |
| u32 phys_name_size, phys_name, phys_vendor; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_name_size = virt_to_phys_or_null(name_size); |
| phys_vendor = virt_to_phys_or_null(vendor); |
| phys_name = virt_to_phys_or_null_size(name, *name_size); |
| |
| status = efi_thunk(get_next_variable, phys_name_size, |
| phys_name, phys_vendor); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_get_next_high_mono_count(u32 *count) |
| { |
| efi_status_t status; |
| u32 phys_count; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_count = virt_to_phys_or_null(count); |
| status = efi_thunk(get_next_high_mono_count, phys_count); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static void |
| efi_thunk_reset_system(int reset_type, efi_status_t status, |
| unsigned long data_size, efi_char16_t *data) |
| { |
| u32 phys_data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_data = virt_to_phys_or_null_size(data, data_size); |
| |
| efi_thunk(reset_system, reset_type, status, data_size, phys_data); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| } |
| |
| static efi_status_t |
| efi_thunk_update_capsule(efi_capsule_header_t **capsules, |
| unsigned long count, unsigned long sg_list) |
| { |
| /* |
| * To properly support this function we would need to repackage |
| * 'capsules' because the firmware doesn't understand 64-bit |
| * pointers. |
| */ |
| return EFI_UNSUPPORTED; |
| } |
| |
| static efi_status_t |
| efi_thunk_query_variable_info(u32 attr, u64 *storage_space, |
| u64 *remaining_space, |
| u64 *max_variable_size) |
| { |
| efi_status_t status; |
| u32 phys_storage, phys_remaining, phys_max; |
| unsigned long flags; |
| |
| if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) |
| return EFI_UNSUPPORTED; |
| |
| spin_lock_irqsave(&efi_runtime_lock, flags); |
| |
| phys_storage = virt_to_phys_or_null(storage_space); |
| phys_remaining = virt_to_phys_or_null(remaining_space); |
| phys_max = virt_to_phys_or_null(max_variable_size); |
| |
| status = efi_thunk(query_variable_info, attr, phys_storage, |
| phys_remaining, phys_max); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, |
| u64 *remaining_space, |
| u64 *max_variable_size) |
| { |
| efi_status_t status; |
| u32 phys_storage, phys_remaining, phys_max; |
| unsigned long flags; |
| |
| if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) |
| return EFI_UNSUPPORTED; |
| |
| if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) |
| return EFI_NOT_READY; |
| |
| phys_storage = virt_to_phys_or_null(storage_space); |
| phys_remaining = virt_to_phys_or_null(remaining_space); |
| phys_max = virt_to_phys_or_null(max_variable_size); |
| |
| status = efi_thunk(query_variable_info, attr, phys_storage, |
| phys_remaining, phys_max); |
| |
| spin_unlock_irqrestore(&efi_runtime_lock, flags); |
| |
| return status; |
| } |
| |
| static efi_status_t |
| efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, |
| unsigned long count, u64 *max_size, |
| int *reset_type) |
| { |
| /* |
| * To properly support this function we would need to repackage |
| * 'capsules' because the firmware doesn't understand 64-bit |
| * pointers. |
| */ |
| return EFI_UNSUPPORTED; |
| } |
| |
| void __init efi_thunk_runtime_setup(void) |
| { |
| if (!IS_ENABLED(CONFIG_EFI_MIXED)) |
| return; |
| |
| efi.get_time = efi_thunk_get_time; |
| efi.set_time = efi_thunk_set_time; |
| efi.get_wakeup_time = efi_thunk_get_wakeup_time; |
| efi.set_wakeup_time = efi_thunk_set_wakeup_time; |
| efi.get_variable = efi_thunk_get_variable; |
| efi.get_next_variable = efi_thunk_get_next_variable; |
| efi.set_variable = efi_thunk_set_variable; |
| efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; |
| efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; |
| efi.reset_system = efi_thunk_reset_system; |
| efi.query_variable_info = efi_thunk_query_variable_info; |
| efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; |
| efi.update_capsule = efi_thunk_update_capsule; |
| efi.query_capsule_caps = efi_thunk_query_capsule_caps; |
| } |
| |
| efi_status_t __init __no_sanitize_address |
| efi_set_virtual_address_map(unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map) |
| { |
| efi_status_t status; |
| unsigned long flags; |
| pgd_t *save_pgd = NULL; |
| |
| if (efi_is_mixed()) |
| return efi_thunk_set_virtual_address_map(memory_map_size, |
| descriptor_size, |
| descriptor_version, |
| virtual_map); |
| |
| if (efi_have_uv1_memmap()) { |
| save_pgd = efi_uv1_memmap_phys_prolog(); |
| if (!save_pgd) |
| return EFI_ABORTED; |
| } else { |
| efi_switch_mm(&efi_mm); |
| } |
| |
| kernel_fpu_begin(); |
| |
| /* Disable interrupts around EFI calls: */ |
| local_irq_save(flags); |
| status = efi_call(efi.systab->runtime->set_virtual_address_map, |
| memory_map_size, descriptor_size, |
| descriptor_version, virtual_map); |
| local_irq_restore(flags); |
| |
| kernel_fpu_end(); |
| |
| if (save_pgd) |
| efi_uv1_memmap_phys_epilog(save_pgd); |
| else |
| efi_switch_mm(efi_scratch.prev_mm); |
| |
| return status; |
| } |