blob: 3225533222024b294173fc673273c96af82f912c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM-SEV support
*
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*/
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/psp-sev.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/misc_cgroup.h>
#include <linux/processor.h>
#include <linux/trace_events.h>
#include <asm/pkru.h>
#include <asm/trapnr.h>
#include <asm/fpu/xcr.h>
#include "x86.h"
#include "svm.h"
#include "svm_ops.h"
#include "cpuid.h"
#include "trace.h"
#ifndef CONFIG_KVM_AMD_SEV
/*
* When this config is not defined, SEV feature is not supported and APIs in
* this file are not used but this file still gets compiled into the KVM AMD
* module.
*
* We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
* misc_res_type {} defined in linux/misc_cgroup.h.
*
* Below macros allow compilation to succeed.
*/
#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
#endif
#ifdef CONFIG_KVM_AMD_SEV
/* enable/disable SEV support */
static bool sev_enabled = true;
module_param_named(sev, sev_enabled, bool, 0444);
/* enable/disable SEV-ES support */
static bool sev_es_enabled = true;
module_param_named(sev_es, sev_es_enabled, bool, 0444);
#else
#define sev_enabled false
#define sev_es_enabled false
#endif /* CONFIG_KVM_AMD_SEV */
static u8 sev_enc_bit;
static DECLARE_RWSEM(sev_deactivate_lock);
static DEFINE_MUTEX(sev_bitmap_lock);
unsigned int max_sev_asid;
static unsigned int min_sev_asid;
static unsigned long sev_me_mask;
static unsigned int nr_asids;
static unsigned long *sev_asid_bitmap;
static unsigned long *sev_reclaim_asid_bitmap;
struct enc_region {
struct list_head list;
unsigned long npages;
struct page **pages;
unsigned long uaddr;
unsigned long size;
};
/* Called with the sev_bitmap_lock held, or on shutdown */
static int sev_flush_asids(int min_asid, int max_asid)
{
int ret, asid, error = 0;
/* Check if there are any ASIDs to reclaim before performing a flush */
asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
if (asid > max_asid)
return -EBUSY;
/*
* DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
* so it must be guarded.
*/
down_write(&sev_deactivate_lock);
wbinvd_on_all_cpus();
ret = sev_guest_df_flush(&error);
up_write(&sev_deactivate_lock);
if (ret)
pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
return ret;
}
static inline bool is_mirroring_enc_context(struct kvm *kvm)
{
return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
}
/* Must be called with the sev_bitmap_lock held */
static bool __sev_recycle_asids(int min_asid, int max_asid)
{
if (sev_flush_asids(min_asid, max_asid))
return false;
/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
nr_asids);
bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
return true;
}
static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
{
enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
return misc_cg_try_charge(type, sev->misc_cg, 1);
}
static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
{
enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
misc_cg_uncharge(type, sev->misc_cg, 1);
}
static int sev_asid_new(struct kvm_sev_info *sev)
{
int asid, min_asid, max_asid, ret;
bool retry = true;
WARN_ON(sev->misc_cg);
sev->misc_cg = get_current_misc_cg();
ret = sev_misc_cg_try_charge(sev);
if (ret) {
put_misc_cg(sev->misc_cg);
sev->misc_cg = NULL;
return ret;
}
mutex_lock(&sev_bitmap_lock);
/*
* SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
* SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
*/
min_asid = sev->es_active ? 1 : min_sev_asid;
max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
again:
asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
if (asid > max_asid) {
if (retry && __sev_recycle_asids(min_asid, max_asid)) {
retry = false;
goto again;
}
mutex_unlock(&sev_bitmap_lock);
ret = -EBUSY;
goto e_uncharge;
}
__set_bit(asid, sev_asid_bitmap);
mutex_unlock(&sev_bitmap_lock);
return asid;
e_uncharge:
sev_misc_cg_uncharge(sev);
put_misc_cg(sev->misc_cg);
sev->misc_cg = NULL;
return ret;
}
static int sev_get_asid(struct kvm *kvm)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
return sev->asid;
}
static void sev_asid_free(struct kvm_sev_info *sev)
{
struct svm_cpu_data *sd;
int cpu;
mutex_lock(&sev_bitmap_lock);
__set_bit(sev->asid, sev_reclaim_asid_bitmap);
for_each_possible_cpu(cpu) {
sd = per_cpu(svm_data, cpu);
sd->sev_vmcbs[sev->asid] = NULL;
}
mutex_unlock(&sev_bitmap_lock);
sev_misc_cg_uncharge(sev);
put_misc_cg(sev->misc_cg);
sev->misc_cg = NULL;
}
static void sev_decommission(unsigned int handle)
{
struct sev_data_decommission decommission;
if (!handle)
return;
decommission.handle = handle;
sev_guest_decommission(&decommission, NULL);
}
static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
{
struct sev_data_deactivate deactivate;
if (!handle)
return;
deactivate.handle = handle;
/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
down_read(&sev_deactivate_lock);
sev_guest_deactivate(&deactivate, NULL);
up_read(&sev_deactivate_lock);
sev_decommission(handle);
}
static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
int asid, ret;
if (kvm->created_vcpus)
return -EINVAL;
ret = -EBUSY;
if (unlikely(sev->active))
return ret;
sev->active = true;
sev->es_active = argp->id == KVM_SEV_ES_INIT;
asid = sev_asid_new(sev);
if (asid < 0)
goto e_no_asid;
sev->asid = asid;
ret = sev_platform_init(&argp->error);
if (ret)
goto e_free;
INIT_LIST_HEAD(&sev->regions_list);
return 0;
e_free:
sev_asid_free(sev);
sev->asid = 0;
e_no_asid:
sev->es_active = false;
sev->active = false;
return ret;
}
static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
{
struct sev_data_activate activate;
int asid = sev_get_asid(kvm);
int ret;
/* activate ASID on the given handle */
activate.handle = handle;
activate.asid = asid;
ret = sev_guest_activate(&activate, error);
return ret;
}
static int __sev_issue_cmd(int fd, int id, void *data, int *error)
{
struct fd f;
int ret;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = sev_issue_cmd_external_user(f.file, id, data, error);
fdput(f);
return ret;
}
static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
return __sev_issue_cmd(sev->fd, id, data, error);
}
static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_start start;
struct kvm_sev_launch_start params;
void *dh_blob, *session_blob;
int *error = &argp->error;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
return -EFAULT;
memset(&start, 0, sizeof(start));
dh_blob = NULL;
if (params.dh_uaddr) {
dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
if (IS_ERR(dh_blob))
return PTR_ERR(dh_blob);
start.dh_cert_address = __sme_set(__pa(dh_blob));
start.dh_cert_len = params.dh_len;
}
session_blob = NULL;
if (params.session_uaddr) {
session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
if (IS_ERR(session_blob)) {
ret = PTR_ERR(session_blob);
goto e_free_dh;
}
start.session_address = __sme_set(__pa(session_blob));
start.session_len = params.session_len;
}
start.handle = params.handle;
start.policy = params.policy;
/* create memory encryption context */
ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
if (ret)
goto e_free_session;
/* Bind ASID to this guest */
ret = sev_bind_asid(kvm, start.handle, error);
if (ret) {
sev_decommission(start.handle);
goto e_free_session;
}
/* return handle to userspace */
params.handle = start.handle;
if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
sev_unbind_asid(kvm, start.handle);
ret = -EFAULT;
goto e_free_session;
}
sev->handle = start.handle;
sev->fd = argp->sev_fd;
e_free_session:
kfree(session_blob);
e_free_dh:
kfree(dh_blob);
return ret;
}
static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
unsigned long ulen, unsigned long *n,
int write)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
unsigned long npages, size;
int npinned;
unsigned long locked, lock_limit;
struct page **pages;
unsigned long first, last;
int ret;
lockdep_assert_held(&kvm->lock);
if (ulen == 0 || uaddr + ulen < uaddr)
return ERR_PTR(-EINVAL);
/* Calculate number of pages. */
first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
npages = (last - first + 1);
locked = sev->pages_locked + npages;
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
return ERR_PTR(-ENOMEM);
}
if (WARN_ON_ONCE(npages > INT_MAX))
return ERR_PTR(-EINVAL);
/* Avoid using vmalloc for smaller buffers. */
size = npages * sizeof(struct page *);
if (size > PAGE_SIZE)
pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
else
pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
if (!pages)
return ERR_PTR(-ENOMEM);
/* Pin the user virtual address. */
npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
if (npinned != npages) {
pr_err("SEV: Failure locking %lu pages.\n", npages);
ret = -ENOMEM;
goto err;
}
*n = npages;
sev->pages_locked = locked;
return pages;
err:
if (npinned > 0)
unpin_user_pages(pages, npinned);
kvfree(pages);
return ERR_PTR(ret);
}
static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
unsigned long npages)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
unpin_user_pages(pages, npages);
kvfree(pages);
sev->pages_locked -= npages;
}
static void sev_clflush_pages(struct page *pages[], unsigned long npages)
{
uint8_t *page_virtual;
unsigned long i;
if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
pages == NULL)
return;
for (i = 0; i < npages; i++) {
page_virtual = kmap_atomic(pages[i]);
clflush_cache_range(page_virtual, PAGE_SIZE);
kunmap_atomic(page_virtual);
}
}
static unsigned long get_num_contig_pages(unsigned long idx,
struct page **inpages, unsigned long npages)
{
unsigned long paddr, next_paddr;
unsigned long i = idx + 1, pages = 1;
/* find the number of contiguous pages starting from idx */
paddr = __sme_page_pa(inpages[idx]);
while (i < npages) {
next_paddr = __sme_page_pa(inpages[i++]);
if ((paddr + PAGE_SIZE) == next_paddr) {
pages++;
paddr = next_paddr;
continue;
}
break;
}
return pages;
}
static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_launch_update_data params;
struct sev_data_launch_update_data data;
struct page **inpages;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
return -EFAULT;
vaddr = params.uaddr;
size = params.len;
vaddr_end = vaddr + size;
/* Lock the user memory. */
inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
if (IS_ERR(inpages))
return PTR_ERR(inpages);
/*
* Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
* place; the cache may contain the data that was written unencrypted.
*/
sev_clflush_pages(inpages, npages);
data.reserved = 0;
data.handle = sev->handle;
for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
int offset, len;
/*
* If the user buffer is not page-aligned, calculate the offset
* within the page.
*/
offset = vaddr & (PAGE_SIZE - 1);
/* Calculate the number of pages that can be encrypted in one go. */
pages = get_num_contig_pages(i, inpages, npages);
len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
data.len = len;
data.address = __sme_page_pa(inpages[i]) + offset;
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
if (ret)
goto e_unpin;
size -= len;
next_vaddr = vaddr + len;
}
e_unpin:
/* content of memory is updated, mark pages dirty */
for (i = 0; i < npages; i++) {
set_page_dirty_lock(inpages[i]);
mark_page_accessed(inpages[i]);
}
/* unlock the user pages */
sev_unpin_memory(kvm, inpages, npages);
return ret;
}
static int sev_es_sync_vmsa(struct vcpu_svm *svm)
{
struct vmcb_save_area *save = &svm->vmcb->save;
/* Check some debug related fields before encrypting the VMSA */
if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
return -EINVAL;
/* Sync registgers */
save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
#ifdef CONFIG_X86_64
save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
#endif
save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
/* Sync some non-GPR registers before encrypting */
save->xcr0 = svm->vcpu.arch.xcr0;
save->pkru = svm->vcpu.arch.pkru;
save->xss = svm->vcpu.arch.ia32_xss;
save->dr6 = svm->vcpu.arch.dr6;
/*
* SEV-ES will use a VMSA that is pointed to by the VMCB, not
* the traditional VMSA that is part of the VMCB. Copy the
* traditional VMSA as it has been built so far (in prep
* for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
*/
memcpy(svm->sev_es.vmsa, save, sizeof(*save));
return 0;
}
static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
int *error)
{
struct sev_data_launch_update_vmsa vmsa;
struct vcpu_svm *svm = to_svm(vcpu);
int ret;
/* Perform some pre-encryption checks against the VMSA */
ret = sev_es_sync_vmsa(svm);
if (ret)
return ret;
/*
* The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
* the VMSA memory content (i.e it will write the same memory region
* with the guest's key), so invalidate it first.
*/
clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
vmsa.reserved = 0;
vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
vmsa.address = __sme_pa(svm->sev_es.vmsa);
vmsa.len = PAGE_SIZE;
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
if (ret)
return ret;
vcpu->arch.guest_state_protected = true;
return 0;
}
static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_vcpu *vcpu;
unsigned long i;
int ret;
if (!sev_es_guest(kvm))
return -ENOTTY;
kvm_for_each_vcpu(i, vcpu, kvm) {
ret = mutex_lock_killable(&vcpu->mutex);
if (ret)
return ret;
ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
mutex_unlock(&vcpu->mutex);
if (ret)
return ret;
}
return 0;
}
static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
void __user *measure = (void __user *)(uintptr_t)argp->data;
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_measure data;
struct kvm_sev_launch_measure params;
void __user *p = NULL;
void *blob = NULL;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, measure, sizeof(params)))
return -EFAULT;
memset(&data, 0, sizeof(data));
/* User wants to query the blob length */
if (!params.len)
goto cmd;
p = (void __user *)(uintptr_t)params.uaddr;
if (p) {
if (params.len > SEV_FW_BLOB_MAX_SIZE)
return -EINVAL;
blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
if (!blob)
return -ENOMEM;
data.address = __psp_pa(blob);
data.len = params.len;
}
cmd:
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
/*
* If we query the session length, FW responded with expected data.
*/
if (!params.len)
goto done;
if (ret)
goto e_free_blob;
if (blob) {
if (copy_to_user(p, blob, params.len))
ret = -EFAULT;
}
done:
params.len = data.len;
if (copy_to_user(measure, &params, sizeof(params)))
ret = -EFAULT;
e_free_blob:
kfree(blob);
return ret;
}
static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_finish data;
if (!sev_guest(kvm))
return -ENOTTY;
data.handle = sev->handle;
return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
}
static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_guest_status params;
struct sev_data_guest_status data;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
memset(&data, 0, sizeof(data));
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
if (ret)
return ret;
params.policy = data.policy;
params.state = data.state;
params.handle = data.handle;
if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
ret = -EFAULT;
return ret;
}
static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
unsigned long dst, int size,
int *error, bool enc)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_dbg data;
data.reserved = 0;
data.handle = sev->handle;
data.dst_addr = dst;
data.src_addr = src;
data.len = size;
return sev_issue_cmd(kvm,
enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
&data, error);
}
static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
unsigned long dst_paddr, int sz, int *err)
{
int offset;
/*
* Its safe to read more than we are asked, caller should ensure that
* destination has enough space.
*/
offset = src_paddr & 15;
src_paddr = round_down(src_paddr, 16);
sz = round_up(sz + offset, 16);
return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
}
static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
void __user *dst_uaddr,
unsigned long dst_paddr,
int size, int *err)
{
struct page *tpage = NULL;
int ret, offset;
/* if inputs are not 16-byte then use intermediate buffer */
if (!IS_ALIGNED(dst_paddr, 16) ||
!IS_ALIGNED(paddr, 16) ||
!IS_ALIGNED(size, 16)) {
tpage = (void *)alloc_page(GFP_KERNEL);
if (!tpage)
return -ENOMEM;
dst_paddr = __sme_page_pa(tpage);
}
ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
if (ret)
goto e_free;
if (tpage) {
offset = paddr & 15;
if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
ret = -EFAULT;
}
e_free:
if (tpage)
__free_page(tpage);
return ret;
}
static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
void __user *vaddr,
unsigned long dst_paddr,
void __user *dst_vaddr,
int size, int *error)
{
struct page *src_tpage = NULL;
struct page *dst_tpage = NULL;
int ret, len = size;
/* If source buffer is not aligned then use an intermediate buffer */
if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
src_tpage = alloc_page(GFP_KERNEL);
if (!src_tpage)
return -ENOMEM;
if (copy_from_user(page_address(src_tpage), vaddr, size)) {
__free_page(src_tpage);
return -EFAULT;
}
paddr = __sme_page_pa(src_tpage);
}
/*
* If destination buffer or length is not aligned then do read-modify-write:
* - decrypt destination in an intermediate buffer
* - copy the source buffer in an intermediate buffer
* - use the intermediate buffer as source buffer
*/
if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
int dst_offset;
dst_tpage = alloc_page(GFP_KERNEL);
if (!dst_tpage) {
ret = -ENOMEM;
goto e_free;
}
ret = __sev_dbg_decrypt(kvm, dst_paddr,
__sme_page_pa(dst_tpage), size, error);
if (ret)
goto e_free;
/*
* If source is kernel buffer then use memcpy() otherwise
* copy_from_user().
*/
dst_offset = dst_paddr & 15;
if (src_tpage)
memcpy(page_address(dst_tpage) + dst_offset,
page_address(src_tpage), size);
else {
if (copy_from_user(page_address(dst_tpage) + dst_offset,
vaddr, size)) {
ret = -EFAULT;
goto e_free;
}
}
paddr = __sme_page_pa(dst_tpage);
dst_paddr = round_down(dst_paddr, 16);
len = round_up(size, 16);
}
ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
e_free:
if (src_tpage)
__free_page(src_tpage);
if (dst_tpage)
__free_page(dst_tpage);
return ret;
}
static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
{
unsigned long vaddr, vaddr_end, next_vaddr;
unsigned long dst_vaddr;
struct page **src_p, **dst_p;
struct kvm_sev_dbg debug;
unsigned long n;
unsigned int size;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
return -EFAULT;
if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
return -EINVAL;
if (!debug.dst_uaddr)
return -EINVAL;
vaddr = debug.src_uaddr;
size = debug.len;
vaddr_end = vaddr + size;
dst_vaddr = debug.dst_uaddr;
for (; vaddr < vaddr_end; vaddr = next_vaddr) {
int len, s_off, d_off;
/* lock userspace source and destination page */
src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
if (IS_ERR(src_p))
return PTR_ERR(src_p);
dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
if (IS_ERR(dst_p)) {
sev_unpin_memory(kvm, src_p, n);
return PTR_ERR(dst_p);
}
/*
* Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
* the pages; flush the destination too so that future accesses do not
* see stale data.
*/
sev_clflush_pages(src_p, 1);
sev_clflush_pages(dst_p, 1);
/*
* Since user buffer may not be page aligned, calculate the
* offset within the page.
*/
s_off = vaddr & ~PAGE_MASK;
d_off = dst_vaddr & ~PAGE_MASK;
len = min_t(size_t, (PAGE_SIZE - s_off), size);
if (dec)
ret = __sev_dbg_decrypt_user(kvm,
__sme_page_pa(src_p[0]) + s_off,
(void __user *)dst_vaddr,
__sme_page_pa(dst_p[0]) + d_off,
len, &argp->error);
else
ret = __sev_dbg_encrypt_user(kvm,
__sme_page_pa(src_p[0]) + s_off,
(void __user *)vaddr,
__sme_page_pa(dst_p[0]) + d_off,
(void __user *)dst_vaddr,
len, &argp->error);
sev_unpin_memory(kvm, src_p, n);
sev_unpin_memory(kvm, dst_p, n);
if (ret)
goto err;
next_vaddr = vaddr + len;
dst_vaddr = dst_vaddr + len;
size -= len;
}
err:
return ret;
}
static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_launch_secret data;
struct kvm_sev_launch_secret params;
struct page **pages;
void *blob, *hdr;
unsigned long n, i;
int ret, offset;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
return -EFAULT;
pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
if (IS_ERR(pages))
return PTR_ERR(pages);
/*
* Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
* place; the cache may contain the data that was written unencrypted.
*/
sev_clflush_pages(pages, n);
/*
* The secret must be copied into contiguous memory region, lets verify
* that userspace memory pages are contiguous before we issue command.
*/
if (get_num_contig_pages(0, pages, n) != n) {
ret = -EINVAL;
goto e_unpin_memory;
}
memset(&data, 0, sizeof(data));
offset = params.guest_uaddr & (PAGE_SIZE - 1);
data.guest_address = __sme_page_pa(pages[0]) + offset;
data.guest_len = params.guest_len;
blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
if (IS_ERR(blob)) {
ret = PTR_ERR(blob);
goto e_unpin_memory;
}
data.trans_address = __psp_pa(blob);
data.trans_len = params.trans_len;
hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
if (IS_ERR(hdr)) {
ret = PTR_ERR(hdr);
goto e_free_blob;
}
data.hdr_address = __psp_pa(hdr);
data.hdr_len = params.hdr_len;
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
kfree(hdr);
e_free_blob:
kfree(blob);
e_unpin_memory:
/* content of memory is updated, mark pages dirty */
for (i = 0; i < n; i++) {
set_page_dirty_lock(pages[i]);
mark_page_accessed(pages[i]);
}
sev_unpin_memory(kvm, pages, n);
return ret;
}
static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
void __user *report = (void __user *)(uintptr_t)argp->data;
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_attestation_report data;
struct kvm_sev_attestation_report params;
void __user *p;
void *blob = NULL;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
return -EFAULT;
memset(&data, 0, sizeof(data));
/* User wants to query the blob length */
if (!params.len)
goto cmd;
p = (void __user *)(uintptr_t)params.uaddr;
if (p) {
if (params.len > SEV_FW_BLOB_MAX_SIZE)
return -EINVAL;
blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
if (!blob)
return -ENOMEM;
data.address = __psp_pa(blob);
data.len = params.len;
memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
}
cmd:
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
/*
* If we query the session length, FW responded with expected data.
*/
if (!params.len)
goto done;
if (ret)
goto e_free_blob;
if (blob) {
if (copy_to_user(p, blob, params.len))
ret = -EFAULT;
}
done:
params.len = data.len;
if (copy_to_user(report, &params, sizeof(params)))
ret = -EFAULT;
e_free_blob:
kfree(blob);
return ret;
}
/* Userspace wants to query session length. */
static int
__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
struct kvm_sev_send_start *params)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_start data;
int ret;
memset(&data, 0, sizeof(data));
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
params->session_len = data.session_len;
if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
sizeof(struct kvm_sev_send_start)))
ret = -EFAULT;
return ret;
}
static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_start data;
struct kvm_sev_send_start params;
void *amd_certs, *session_data;
void *pdh_cert, *plat_certs;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
sizeof(struct kvm_sev_send_start)))
return -EFAULT;
/* if session_len is zero, userspace wants to query the session length */
if (!params.session_len)
return __sev_send_start_query_session_length(kvm, argp,
&params);
/* some sanity checks */
if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
!params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
return -EINVAL;
/* allocate the memory to hold the session data blob */
session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
if (!session_data)
return -ENOMEM;
/* copy the certificate blobs from userspace */
pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
params.pdh_cert_len);
if (IS_ERR(pdh_cert)) {
ret = PTR_ERR(pdh_cert);
goto e_free_session;
}
plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
params.plat_certs_len);
if (IS_ERR(plat_certs)) {
ret = PTR_ERR(plat_certs);
goto e_free_pdh;
}
amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
params.amd_certs_len);
if (IS_ERR(amd_certs)) {
ret = PTR_ERR(amd_certs);
goto e_free_plat_cert;
}
/* populate the FW SEND_START field with system physical address */
memset(&data, 0, sizeof(data));
data.pdh_cert_address = __psp_pa(pdh_cert);
data.pdh_cert_len = params.pdh_cert_len;
data.plat_certs_address = __psp_pa(plat_certs);
data.plat_certs_len = params.plat_certs_len;
data.amd_certs_address = __psp_pa(amd_certs);
data.amd_certs_len = params.amd_certs_len;
data.session_address = __psp_pa(session_data);
data.session_len = params.session_len;
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
session_data, params.session_len)) {
ret = -EFAULT;
goto e_free_amd_cert;
}
params.policy = data.policy;
params.session_len = data.session_len;
if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
sizeof(struct kvm_sev_send_start)))
ret = -EFAULT;
e_free_amd_cert:
kfree(amd_certs);
e_free_plat_cert:
kfree(plat_certs);
e_free_pdh:
kfree(pdh_cert);
e_free_session:
kfree(session_data);
return ret;
}
/* Userspace wants to query either header or trans length. */
static int
__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
struct kvm_sev_send_update_data *params)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_update_data data;
int ret;
memset(&data, 0, sizeof(data));
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
params->hdr_len = data.hdr_len;
params->trans_len = data.trans_len;
if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
sizeof(struct kvm_sev_send_update_data)))
ret = -EFAULT;
return ret;
}
static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_update_data data;
struct kvm_sev_send_update_data params;
void *hdr, *trans_data;
struct page **guest_page;
unsigned long n;
int ret, offset;
if (!sev_guest(kvm))
return -ENOTTY;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
sizeof(struct kvm_sev_send_update_data)))
return -EFAULT;
/* userspace wants to query either header or trans length */
if (!params.trans_len || !params.hdr_len)
return __sev_send_update_data_query_lengths(kvm, argp, &params);
if (!params.trans_uaddr || !params.guest_uaddr ||
!params.guest_len || !params.hdr_uaddr)
return -EINVAL;
/* Check if we are crossing the page boundary */
offset = params.guest_uaddr & (PAGE_SIZE - 1);
if ((params.guest_len + offset > PAGE_SIZE))
return -EINVAL;
/* Pin guest memory */
guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
PAGE_SIZE, &n, 0);
if (IS_ERR(guest_page))
return PTR_ERR(guest_page);
/* allocate memory for header and transport buffer */
ret = -ENOMEM;
hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
if (!hdr)
goto e_unpin;
trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
if (!trans_data)
goto e_free_hdr;
memset(&data, 0, sizeof(data));
data.hdr_address = __psp_pa(hdr);
data.hdr_len = params.hdr_len;
data.trans_address = __psp_pa(trans_data);
data.trans_len = params.trans_len;
/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
data.guest_address |= sev_me_mask;
data.guest_len = params.guest_len;
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
if (ret)
goto e_free_trans_data;
/* copy transport buffer to user space */
if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
trans_data, params.trans_len)) {
ret = -EFAULT;
goto e_free_trans_data;
}
/* Copy packet header to userspace. */
if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
params.hdr_len))
ret = -EFAULT;
e_free_trans_data:
kfree(trans_data);
e_free_hdr:
kfree(hdr);
e_unpin:
sev_unpin_memory(kvm, guest_page, n);
return ret;
}
static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_finish data;
if (!sev_guest(kvm))
return -ENOTTY;
data.handle = sev->handle;
return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
}
static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_send_cancel data;
if (!sev_guest(kvm))
return -ENOTTY;
data.handle = sev->handle;
return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
}
static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_receive_start start;
struct kvm_sev_receive_start params;
int *error = &argp->error;
void *session_data;
void *pdh_data;
int ret;
if (!sev_guest(kvm))
return -ENOTTY;
/* Get parameter from the userspace */
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
sizeof(struct kvm_sev_receive_start)))
return -EFAULT;
/* some sanity checks */
if (!params.pdh_uaddr || !params.pdh_len ||
!params.session_uaddr || !params.session_len)
return -EINVAL;
pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
if (IS_ERR(pdh_data))
return PTR_ERR(pdh_data);
session_data = psp_copy_user_blob(params.session_uaddr,
params.session_len);
if (IS_ERR(session_data)) {
ret = PTR_ERR(session_data);
goto e_free_pdh;
}
memset(&start, 0, sizeof(start));
start.handle = params.handle;
start.policy = params.policy;
start.pdh_cert_address = __psp_pa(pdh_data);
start.pdh_cert_len = params.pdh_len;
start.session_address = __psp_pa(session_data);
start.session_len = params.session_len;
/* create memory encryption context */
ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
error);
if (ret)
goto e_free_session;
/* Bind ASID to this guest */
ret = sev_bind_asid(kvm, start.handle, error);
if (ret) {
sev_decommission(start.handle);
goto e_free_session;
}
params.handle = start.handle;
if (copy_to_user((void __user *)(uintptr_t)argp->data,
&params, sizeof(struct kvm_sev_receive_start))) {
ret = -EFAULT;
sev_unbind_asid(kvm, start.handle);
goto e_free_session;
}
sev->handle = start.handle;
sev->fd = argp->sev_fd;
e_free_session:
kfree(session_data);
e_free_pdh:
kfree(pdh_data);
return ret;
}
static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_receive_update_data params;
struct sev_data_receive_update_data data;
void *hdr = NULL, *trans = NULL;
struct page **guest_page;
unsigned long n;
int ret, offset;
if (!sev_guest(kvm))
return -EINVAL;
if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
sizeof(struct kvm_sev_receive_update_data)))
return -EFAULT;
if (!params.hdr_uaddr || !params.hdr_len ||
!params.guest_uaddr || !params.guest_len ||
!params.trans_uaddr || !params.trans_len)
return -EINVAL;
/* Check if we are crossing the page boundary */
offset = params.guest_uaddr & (PAGE_SIZE - 1);
if ((params.guest_len + offset > PAGE_SIZE))
return -EINVAL;
hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
if (IS_ERR(hdr))
return PTR_ERR(hdr);
trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto e_free_hdr;
}
memset(&data, 0, sizeof(data));
data.hdr_address = __psp_pa(hdr);
data.hdr_len = params.hdr_len;
data.trans_address = __psp_pa(trans);
data.trans_len = params.trans_len;
/* Pin guest memory */
guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
PAGE_SIZE, &n, 1);
if (IS_ERR(guest_page)) {
ret = PTR_ERR(guest_page);
goto e_free_trans;
}
/*
* Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
* encrypts the written data with the guest's key, and the cache may
* contain dirty, unencrypted data.
*/
sev_clflush_pages(guest_page, n);
/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
data.guest_address |= sev_me_mask;
data.guest_len = params.guest_len;
data.handle = sev->handle;
ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
&argp->error);
sev_unpin_memory(kvm, guest_page, n);
e_free_trans:
kfree(trans);
e_free_hdr:
kfree(hdr);
return ret;
}
static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct sev_data_receive_finish data;
if (!sev_guest(kvm))
return -ENOTTY;
data.handle = sev->handle;
return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
}
static bool is_cmd_allowed_from_mirror(u32 cmd_id)
{
/*
* Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
* active mirror VMs. Also allow the debugging and status commands.
*/
if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
cmd_id == KVM_SEV_DBG_ENCRYPT)
return true;
return false;
}
static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
{
struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
int r = -EBUSY;
if (dst_kvm == src_kvm)
return -EINVAL;
/*
* Bail if these VMs are already involved in a migration to avoid
* deadlock between two VMs trying to migrate to/from each other.
*/
if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
return -EBUSY;
if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
goto release_dst;
r = -EINTR;
if (mutex_lock_killable(&dst_kvm->lock))
goto release_src;
if (mutex_lock_killable(&src_kvm->lock))
goto unlock_dst;
return 0;
unlock_dst:
mutex_unlock(&dst_kvm->lock);
release_src:
atomic_set_release(&src_sev->migration_in_progress, 0);
release_dst:
atomic_set_release(&dst_sev->migration_in_progress, 0);
return r;
}
static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
{
struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
mutex_unlock(&dst_kvm->lock);
mutex_unlock(&src_kvm->lock);
atomic_set_release(&dst_sev->migration_in_progress, 0);
atomic_set_release(&src_sev->migration_in_progress, 0);
}
static int sev_lock_vcpus_for_migration(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i, j;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (mutex_lock_killable(&vcpu->mutex))
goto out_unlock;
}
return 0;
out_unlock:
kvm_for_each_vcpu(j, vcpu, kvm) {
if (i == j)
break;
mutex_unlock(&vcpu->mutex);
}
return -EINTR;
}
static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i;
kvm_for_each_vcpu(i, vcpu, kvm) {
mutex_unlock(&vcpu->mutex);
}
}
static void sev_migrate_from(struct kvm_sev_info *dst,
struct kvm_sev_info *src)
{
dst->active = true;
dst->asid = src->asid;
dst->handle = src->handle;
dst->pages_locked = src->pages_locked;
dst->enc_context_owner = src->enc_context_owner;
src->asid = 0;
src->active = false;
src->handle = 0;
src->pages_locked = 0;
src->enc_context_owner = NULL;
list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
}
static int sev_es_migrate_from(struct kvm *dst, struct kvm *src)
{
unsigned long i;
struct kvm_vcpu *dst_vcpu, *src_vcpu;
struct vcpu_svm *dst_svm, *src_svm;
if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
return -EINVAL;
kvm_for_each_vcpu(i, src_vcpu, src) {
if (!src_vcpu->arch.guest_state_protected)
return -EINVAL;
}
kvm_for_each_vcpu(i, src_vcpu, src) {
src_svm = to_svm(src_vcpu);
dst_vcpu = kvm_get_vcpu(dst, i);
dst_svm = to_svm(dst_vcpu);
/*
* Transfer VMSA and GHCB state to the destination. Nullify and
* clear source fields as appropriate, the state now belongs to
* the destination.
*/
memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
dst_vcpu->arch.guest_state_protected = true;
memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
src_vcpu->arch.guest_state_protected = false;
}
to_kvm_svm(src)->sev_info.es_active = false;
to_kvm_svm(dst)->sev_info.es_active = true;
return 0;
}
int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd)
{
struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
struct kvm_sev_info *src_sev, *cg_cleanup_sev;
struct file *source_kvm_file;
struct kvm *source_kvm;
bool charged = false;
int ret;
source_kvm_file = fget(source_fd);
if (!file_is_kvm(source_kvm_file)) {
ret = -EBADF;
goto out_fput;
}
source_kvm = source_kvm_file->private_data;
ret = sev_lock_two_vms(kvm, source_kvm);
if (ret)
goto out_fput;
if (sev_guest(kvm) || !sev_guest(source_kvm)) {
ret = -EINVAL;
goto out_unlock;
}
src_sev = &to_kvm_svm(source_kvm)->sev_info;
/*
* VMs mirroring src's encryption context rely on it to keep the
* ASID allocated, but below we are clearing src_sev->asid.
*/
if (src_sev->num_mirrored_vms) {
ret = -EBUSY;
goto out_unlock;
}
dst_sev->misc_cg = get_current_misc_cg();
cg_cleanup_sev = dst_sev;
if (dst_sev->misc_cg != src_sev->misc_cg) {
ret = sev_misc_cg_try_charge(dst_sev);
if (ret)
goto out_dst_cgroup;
charged = true;
}
ret = sev_lock_vcpus_for_migration(kvm);
if (ret)
goto out_dst_cgroup;
ret = sev_lock_vcpus_for_migration(source_kvm);
if (ret)
goto out_dst_vcpu;
if (sev_es_guest(source_kvm)) {
ret = sev_es_migrate_from(kvm, source_kvm);
if (ret)
goto out_source_vcpu;
}
sev_migrate_from(dst_sev, src_sev);
kvm_vm_dead(source_kvm);
cg_cleanup_sev = src_sev;
ret = 0;
out_source_vcpu:
sev_unlock_vcpus_for_migration(source_kvm);
out_dst_vcpu:
sev_unlock_vcpus_for_migration(kvm);
out_dst_cgroup:
/* Operates on the source on success, on the destination on failure. */
if (charged)
sev_misc_cg_uncharge(cg_cleanup_sev);
put_misc_cg(cg_cleanup_sev->misc_cg);
cg_cleanup_sev->misc_cg = NULL;
out_unlock:
sev_unlock_two_vms(kvm, source_kvm);
out_fput:
if (source_kvm_file)
fput(source_kvm_file);
return ret;
}
int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
{
struct kvm_sev_cmd sev_cmd;
int r;
if (!sev_enabled)
return -ENOTTY;
if (!argp)
return 0;
if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
return -EFAULT;
mutex_lock(&kvm->lock);
/* Only the enc_context_owner handles some memory enc operations. */
if (is_mirroring_enc_context(kvm) &&
!is_cmd_allowed_from_mirror(sev_cmd.id)) {
r = -EINVAL;
goto out;
}
switch (sev_cmd.id) {
case KVM_SEV_ES_INIT:
if (!sev_es_enabled) {
r = -ENOTTY;
goto out;
}
fallthrough;
case KVM_SEV_INIT:
r = sev_guest_init(kvm, &sev_cmd);
break;
case KVM_SEV_LAUNCH_START:
r = sev_launch_start(kvm, &sev_cmd);
break;
case KVM_SEV_LAUNCH_UPDATE_DATA:
r = sev_launch_update_data(kvm, &sev_cmd);
break;
case KVM_SEV_LAUNCH_UPDATE_VMSA:
r = sev_launch_update_vmsa(kvm, &sev_cmd);
break;
case KVM_SEV_LAUNCH_MEASURE:
r = sev_launch_measure(kvm, &sev_cmd);
break;
case KVM_SEV_LAUNCH_FINISH:
r = sev_launch_finish(kvm, &sev_cmd);
break;
case KVM_SEV_GUEST_STATUS:
r = sev_guest_status(kvm, &sev_cmd);
break;
case KVM_SEV_DBG_DECRYPT:
r = sev_dbg_crypt(kvm, &sev_cmd, true);
break;
case KVM_SEV_DBG_ENCRYPT:
r = sev_dbg_crypt(kvm, &sev_cmd, false);
break;
case KVM_SEV_LAUNCH_SECRET:
r = sev_launch_secret(kvm, &sev_cmd);
break;
case KVM_SEV_GET_ATTESTATION_REPORT:
r = sev_get_attestation_report(kvm, &sev_cmd);
break;
case KVM_SEV_SEND_START:
r = sev_send_start(kvm, &sev_cmd);
break;
case KVM_SEV_SEND_UPDATE_DATA:
r = sev_send_update_data(kvm, &sev_cmd);
break;
case KVM_SEV_SEND_FINISH:
r = sev_send_finish(kvm, &sev_cmd);
break;
case KVM_SEV_SEND_CANCEL:
r = sev_send_cancel(kvm, &sev_cmd);
break;
case KVM_SEV_RECEIVE_START:
r = sev_receive_start(kvm, &sev_cmd);
break;
case KVM_SEV_RECEIVE_UPDATE_DATA:
r = sev_receive_update_data(kvm, &sev_cmd);
break;
case KVM_SEV_RECEIVE_FINISH:
r = sev_receive_finish(kvm, &sev_cmd);
break;
default:
r = -EINVAL;
goto out;
}
if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
r = -EFAULT;
out:
mutex_unlock(&kvm->lock);
return r;
}
int svm_register_enc_region(struct kvm *kvm,
struct kvm_enc_region *range)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct enc_region *region;
int ret = 0;
if (!sev_guest(kvm))
return -ENOTTY;
/* If kvm is mirroring encryption context it isn't responsible for it */
if (is_mirroring_enc_context(kvm))
return -EINVAL;
if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
return -EINVAL;
region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
if (!region)
return -ENOMEM;
mutex_lock(&kvm->lock);
region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
if (IS_ERR(region->pages)) {
ret = PTR_ERR(region->pages);
mutex_unlock(&kvm->lock);
goto e_free;
}
region->uaddr = range->addr;
region->size = range->size;
list_add_tail(&region->list, &sev->regions_list);
mutex_unlock(&kvm->lock);
/*
* The guest may change the memory encryption attribute from C=0 -> C=1
* or vice versa for this memory range. Lets make sure caches are
* flushed to ensure that guest data gets written into memory with
* correct C-bit.
*/
sev_clflush_pages(region->pages, region->npages);
return ret;
e_free:
kfree(region);
return ret;
}
static struct enc_region *
find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct list_head *head = &sev->regions_list;
struct enc_region *i;
list_for_each_entry(i, head, list) {
if (i->uaddr == range->addr &&
i->size == range->size)
return i;
}
return NULL;
}
static void __unregister_enc_region_locked(struct kvm *kvm,
struct enc_region *region)
{
sev_unpin_memory(kvm, region->pages, region->npages);
list_del(&region->list);
kfree(region);
}
int svm_unregister_enc_region(struct kvm *kvm,
struct kvm_enc_region *range)
{
struct enc_region *region;
int ret;
/* If kvm is mirroring encryption context it isn't responsible for it */
if (is_mirroring_enc_context(kvm))
return -EINVAL;
mutex_lock(&kvm->lock);
if (!sev_guest(kvm)) {
ret = -ENOTTY;
goto failed;
}
region = find_enc_region(kvm, range);
if (!region) {
ret = -EINVAL;
goto failed;
}
/*
* Ensure that all guest tagged cache entries are flushed before
* releasing the pages back to the system for use. CLFLUSH will
* not do this, so issue a WBINVD.
*/
wbinvd_on_all_cpus();
__unregister_enc_region_locked(kvm, region);
mutex_unlock(&kvm->lock);
return 0;
failed:
mutex_unlock(&kvm->lock);
return ret;
}
int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
{
struct file *source_kvm_file;
struct kvm *source_kvm;
struct kvm_sev_info *source_sev, *mirror_sev;
int ret;
source_kvm_file = fget(source_fd);
if (!file_is_kvm(source_kvm_file)) {
ret = -EBADF;
goto e_source_fput;
}
source_kvm = source_kvm_file->private_data;
ret = sev_lock_two_vms(kvm, source_kvm);
if (ret)
goto e_source_fput;
/*
* Mirrors of mirrors should work, but let's not get silly. Also
* disallow out-of-band SEV/SEV-ES init if the target is already an
* SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
* created after SEV/SEV-ES initialization, e.g. to init intercepts.
*/
if (sev_guest(kvm) || !sev_guest(source_kvm) ||
is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
ret = -EINVAL;
goto e_unlock;
}
/*
* The mirror kvm holds an enc_context_owner ref so its asid can't
* disappear until we're done with it
*/
source_sev = &to_kvm_svm(source_kvm)->sev_info;
kvm_get_kvm(source_kvm);
source_sev->num_mirrored_vms++;
/* Set enc_context_owner and copy its encryption context over */
mirror_sev = &to_kvm_svm(kvm)->sev_info;
mirror_sev->enc_context_owner = source_kvm;
mirror_sev->active = true;
mirror_sev->asid = source_sev->asid;
mirror_sev->fd = source_sev->fd;
mirror_sev->es_active = source_sev->es_active;
mirror_sev->handle = source_sev->handle;
INIT_LIST_HEAD(&mirror_sev->regions_list);
ret = 0;
/*
* Do not copy ap_jump_table. Since the mirror does not share the same
* KVM contexts as the original, and they may have different
* memory-views.
*/
e_unlock:
sev_unlock_two_vms(kvm, source_kvm);
e_source_fput:
if (source_kvm_file)
fput(source_kvm_file);
return ret;
}
void sev_vm_destroy(struct kvm *kvm)
{
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
struct list_head *head = &sev->regions_list;
struct list_head *pos, *q;
WARN_ON(sev->num_mirrored_vms);
if (!sev_guest(kvm))
return;
/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
if (is_mirroring_enc_context(kvm)) {
struct kvm *owner_kvm = sev->enc_context_owner;
struct kvm_sev_info *owner_sev = &to_kvm_svm(owner_kvm)->sev_info;
mutex_lock(&owner_kvm->lock);
if (!WARN_ON(!owner_sev->num_mirrored_vms))
owner_sev->num_mirrored_vms--;
mutex_unlock(&owner_kvm->lock);
kvm_put_kvm(owner_kvm);
return;
}
/*
* Ensure that all guest tagged cache entries are flushed before
* releasing the pages back to the system for use. CLFLUSH will
* not do this, so issue a WBINVD.
*/
wbinvd_on_all_cpus();
/*
* if userspace was terminated before unregistering the memory regions
* then lets unpin all the registered memory.
*/
if (!list_empty(head)) {
list_for_each_safe(pos, q, head) {
__unregister_enc_region_locked(kvm,
list_entry(pos, struct enc_region, list));
cond_resched();
}
}
sev_unbind_asid(kvm, sev->handle);
sev_asid_free(sev);
}
void __init sev_set_cpu_caps(void)
{
if (!sev_enabled)
kvm_cpu_cap_clear(X86_FEATURE_SEV);
if (!sev_es_enabled)
kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
}
void __init sev_hardware_setup(void)
{
#ifdef CONFIG_KVM_AMD_SEV
unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
bool sev_es_supported = false;
bool sev_supported = false;
if (!sev_enabled || !npt_enabled)
goto out;
/* Does the CPU support SEV? */
if (!boot_cpu_has(X86_FEATURE_SEV))
goto out;
/* Retrieve SEV CPUID information */
cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
/* Set encryption bit location for SEV-ES guests */
sev_enc_bit = ebx & 0x3f;
/* Maximum number of encrypted guests supported simultaneously */
max_sev_asid = ecx;
if (!max_sev_asid)
goto out;
/* Minimum ASID value that should be used for SEV guest */
min_sev_asid = edx;
sev_me_mask = 1UL << (ebx & 0x3f);
/*
* Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
* even though it's never used, so that the bitmap is indexed by the
* actual ASID.
*/
nr_asids = max_sev_asid + 1;
sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
if (!sev_asid_bitmap)
goto out;
sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
if (!sev_reclaim_asid_bitmap) {
bitmap_free(sev_asid_bitmap);
sev_asid_bitmap = NULL;
goto out;
}
sev_asid_count = max_sev_asid - min_sev_asid + 1;
if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
goto out;
pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
sev_supported = true;
/* SEV-ES support requested? */
if (!sev_es_enabled)
goto out;
/* Does the CPU support SEV-ES? */
if (!boot_cpu_has(X86_FEATURE_SEV_ES))
goto out;
/* Has the system been allocated ASIDs for SEV-ES? */
if (min_sev_asid == 1)
goto out;
sev_es_asid_count = min_sev_asid - 1;
if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
goto out;
pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
sev_es_supported = true;
out:
sev_enabled = sev_supported;
sev_es_enabled = sev_es_supported;
#endif
}
void sev_hardware_teardown(void)
{
if (!sev_enabled)
return;
/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
sev_flush_asids(1, max_sev_asid);
bitmap_free(sev_asid_bitmap);
bitmap_free(sev_reclaim_asid_bitmap);
misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
}
int sev_cpu_init(struct svm_cpu_data *sd)
{
if (!sev_enabled)
return 0;
sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
if (!sd->sev_vmcbs)
return -ENOMEM;
return 0;
}
/*
* Pages used by hardware to hold guest encrypted state must be flushed before
* returning them to the system.
*/
static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
unsigned long len)
{
/*
* If hardware enforced cache coherency for encrypted mappings of the
* same physical page is supported, nothing to do.
*/
if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
return;
/*
* If the VM Page Flush MSR is supported, use it to flush the page
* (using the page virtual address and the guest ASID).
*/
if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
struct kvm_sev_info *sev;
unsigned long va_start;
u64 start, stop;
/* Align start and stop to page boundaries. */
va_start = (unsigned long)va;
start = (u64)va_start & PAGE_MASK;
stop = PAGE_ALIGN((u64)va_start + len);
if (start < stop) {
sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
while (start < stop) {
wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
start | sev->asid);
start += PAGE_SIZE;
}
return;
}
WARN(1, "Address overflow, using WBINVD\n");
}
/*
* Hardware should always have one of the above features,
* but if not, use WBINVD and issue a warning.
*/
WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
wbinvd_on_all_cpus();
}
void sev_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm;
if (!sev_es_guest(vcpu->kvm))
return;
svm = to_svm(vcpu);
if (vcpu->arch.guest_state_protected)
sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE);
__free_page(virt_to_page(svm->sev_es.vmsa));
if (svm->sev_es.ghcb_sa_free)
kvfree(svm->sev_es.ghcb_sa);
}
static void dump_ghcb(struct vcpu_svm *svm)
{
struct ghcb *ghcb = svm->sev_es.ghcb;
unsigned int nbits;
/* Re-use the dump_invalid_vmcb module parameter */
if (!dump_invalid_vmcb) {
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
return;
}
nbits = sizeof(ghcb->save.valid_bitmap) * 8;
pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
}
static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
struct ghcb *ghcb = svm->sev_es.ghcb;
/*
* The GHCB protocol so far allows for the following data
* to be returned:
* GPRs RAX, RBX, RCX, RDX
*
* Copy their values, even if they may not have been written during the
* VM-Exit. It's the guest's responsibility to not consume random data.
*/
ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
}
static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct kvm_vcpu *vcpu = &svm->vcpu;
struct ghcb *ghcb = svm->sev_es.ghcb;
u64 exit_code;
/*
* The GHCB protocol so far allows for the following data
* to be supplied:
* GPRs RAX, RBX, RCX, RDX
* XCR0
* CPL
*
* VMMCALL allows the guest to provide extra registers. KVM also
* expects RSI for hypercalls, so include that, too.
*
* Copy their values to the appropriate location if supplied.
*/
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
if (ghcb_xcr0_is_valid(ghcb)) {
vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
kvm_update_cpuid_runtime(vcpu);
}
/* Copy the GHCB exit information into the VMCB fields */
exit_code = ghcb_get_sw_exit_code(ghcb);
control->exit_code = lower_32_bits(exit_code);
control->exit_code_hi = upper_32_bits(exit_code);
control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
/* Clear the valid entries fields */
memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
}
static bool sev_es_validate_vmgexit(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu;
struct ghcb *ghcb;
u64 exit_code;
u64 reason;
ghcb = svm->sev_es.ghcb;
/*
* Retrieve the exit code now even though it may not be marked valid
* as it could help with debugging.
*/
exit_code = ghcb_get_sw_exit_code(ghcb);
/* Only GHCB Usage code 0 is supported */
if (ghcb->ghcb_usage) {
reason = GHCB_ERR_INVALID_USAGE;
goto vmgexit_err;
}
reason = GHCB_ERR_MISSING_INPUT;
if (!ghcb_sw_exit_code_is_valid(ghcb) ||
!ghcb_sw_exit_info_1_is_valid(ghcb) ||
!ghcb_sw_exit_info_2_is_valid(ghcb))
goto vmgexit_err;
switch (ghcb_get_sw_exit_code(ghcb)) {
case SVM_EXIT_READ_DR7:
break;
case SVM_EXIT_WRITE_DR7:
if (!ghcb_rax_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_EXIT_RDTSC:
break;
case SVM_EXIT_RDPMC:
if (!ghcb_rcx_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_EXIT_CPUID:
if (!ghcb_rax_is_valid(ghcb) ||
!ghcb_rcx_is_valid(ghcb))
goto vmgexit_err;
if (ghcb_get_rax(ghcb) == 0xd)
if (!ghcb_xcr0_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_EXIT_INVD:
break;
case SVM_EXIT_IOIO:
if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
if (!ghcb_sw_scratch_is_valid(ghcb))
goto vmgexit_err;
} else {
if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
if (!ghcb_rax_is_valid(ghcb))
goto vmgexit_err;
}
break;
case SVM_EXIT_MSR:
if (!ghcb_rcx_is_valid(ghcb))
goto vmgexit_err;
if (ghcb_get_sw_exit_info_1(ghcb)) {
if (!ghcb_rax_is_valid(ghcb) ||
!ghcb_rdx_is_valid(ghcb))
goto vmgexit_err;
}
break;
case SVM_EXIT_VMMCALL:
if (!ghcb_rax_is_valid(ghcb) ||
!ghcb_cpl_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_EXIT_RDTSCP:
break;
case SVM_EXIT_WBINVD:
break;
case SVM_EXIT_MONITOR:
if (!ghcb_rax_is_valid(ghcb) ||
!ghcb_rcx_is_valid(ghcb) ||
!ghcb_rdx_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_EXIT_MWAIT:
if (!ghcb_rax_is_valid(ghcb) ||
!ghcb_rcx_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_VMGEXIT_MMIO_READ:
case SVM_VMGEXIT_MMIO_WRITE:
if (!ghcb_sw_scratch_is_valid(ghcb))
goto vmgexit_err;
break;
case SVM_VMGEXIT_NMI_COMPLETE:
case SVM_VMGEXIT_AP_HLT_LOOP:
case SVM_VMGEXIT_AP_JUMP_TABLE:
case SVM_VMGEXIT_UNSUPPORTED_EVENT:
break;
default:
reason = GHCB_ERR_INVALID_EVENT;
goto vmgexit_err;
}
return true;
vmgexit_err:
vcpu = &svm->vcpu;
if (reason == GHCB_ERR_INVALID_USAGE) {
vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
ghcb->ghcb_usage);
} else if (reason == GHCB_ERR_INVALID_EVENT) {
vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
exit_code);
} else {
vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
exit_code);
dump_ghcb(svm);
}
/* Clear the valid entries fields */
memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
ghcb_set_sw_exit_info_1(ghcb, 2);
ghcb_set_sw_exit_info_2(ghcb, reason);
return false;
}
void sev_es_unmap_ghcb(struct vcpu_svm *svm)
{
if (!svm->sev_es.ghcb)
return;
if (svm->sev_es.ghcb_sa_free) {
/*
* The scratch area lives outside the GHCB, so there is a
* buffer that, depending on the operation performed, may
* need to be synced, then freed.
*/
if (svm->sev_es.ghcb_sa_sync) {
kvm_write_guest(svm->vcpu.kvm,
ghcb_get_sw_scratch(svm->sev_es.ghcb),
svm->sev_es.ghcb_sa,
svm->sev_es.ghcb_sa_len);
svm->sev_es.ghcb_sa_sync = false;
}
kvfree(svm->sev_es.ghcb_sa);
svm->sev_es.ghcb_sa = NULL;
svm->sev_es.ghcb_sa_free = false;
}
trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
sev_es_sync_to_ghcb(svm);
kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
svm->sev_es.ghcb = NULL;
}
void pre_sev_run(struct vcpu_svm *svm, int cpu)
{
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
int asid = sev_get_asid(svm->vcpu.kvm);
/* Assign the asid allocated with this SEV guest */
svm->asid = asid;
/*
* Flush guest TLB:
*
* 1) when different VMCB for the same ASID is to be run on the same host CPU.
* 2) or this VMCB was executed on different host CPU in previous VMRUNs.
*/
if (sd->sev_vmcbs[asid] == svm->vmcb &&
svm->vcpu.arch.last_vmentry_cpu == cpu)
return;
sd->sev_vmcbs[asid] = svm->vmcb;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
}
#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct ghcb *ghcb = svm->sev_es.ghcb;
u64 ghcb_scratch_beg, ghcb_scratch_end;
u64 scratch_gpa_beg, scratch_gpa_end;
void *scratch_va;
scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
if (!scratch_gpa_beg) {
pr_err("vmgexit: scratch gpa not provided\n");
goto e_scratch;
}
scratch_gpa_end = scratch_gpa_beg + len;
if (scratch_gpa_end < scratch_gpa_beg) {
pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
len, scratch_gpa_beg);
goto e_scratch;
}
if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
/* Scratch area begins within GHCB */
ghcb_scratch_beg = control->ghcb_gpa +
offsetof(struct ghcb, shared_buffer);
ghcb_scratch_end = control->ghcb_gpa +
offsetof(struct ghcb, reserved_1);
/*
* If the scratch area begins within the GHCB, it must be
* completely contained in the GHCB shared buffer area.
*/
if (scratch_gpa_beg < ghcb_scratch_beg ||
scratch_gpa_end > ghcb_scratch_end) {
pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
scratch_gpa_beg, scratch_gpa_end);
goto e_scratch;
}
scratch_va = (void *)svm->sev_es.ghcb;
scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
} else {
/*
* The guest memory must be read into a kernel buffer, so
* limit the size
*/
if (len > GHCB_SCRATCH_AREA_LIMIT) {
pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
len, GHCB_SCRATCH_AREA_LIMIT);
goto e_scratch;
}
scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
if (!scratch_va)
goto e_scratch;
if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
/* Unable to copy scratch area from guest */
pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
kvfree(scratch_va);
goto e_scratch;
}
/*
* The scratch area is outside the GHCB. The operation will
* dictate whether the buffer needs to be synced before running
* the vCPU next time (i.e. a read was requested so the data
* must be written back to the guest memory).
*/
svm->sev_es.ghcb_sa_sync = sync;
svm->sev_es.ghcb_sa_free = true;
}
svm->sev_es.ghcb_sa = scratch_va;
svm->sev_es.ghcb_sa_len = len;
return true;
e_scratch:
ghcb_set_sw_exit_info_1(ghcb, 2);
ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
return false;
}
static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
unsigned int pos)
{
svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
}
static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
{
return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
}
static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
{
svm->vmcb->control.ghcb_gpa = value;
}
static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
{
struct vmcb_control_area *control = &svm->vmcb->control;
struct kvm_vcpu *vcpu = &svm->vcpu;
u64 ghcb_info;
int ret = 1;
ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
control->ghcb_gpa);
switch (ghcb_info) {
case GHCB_MSR_SEV_INFO_REQ:
set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
GHCB_VERSION_MIN,
sev_enc_bit));
break;
case GHCB_MSR_CPUID_REQ: {
u64 cpuid_fn, cpuid_reg, cpuid_value;
cpuid_fn = get_ghcb_msr_bits(svm,
GHCB_MSR_CPUID_FUNC_MASK,
GHCB_MSR_CPUID_FUNC_POS);
/* Initialize the registers needed by the CPUID intercept */
vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
vcpu->arch.regs[VCPU_REGS_RCX] = 0;
ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
if (!ret) {
/* Error, keep GHCB MSR value as-is */
break;
}
cpuid_reg = get_ghcb_msr_bits(svm,
GHCB_MSR_CPUID_REG_MASK,
GHCB_MSR_CPUID_REG_POS);
if (cpuid_reg == 0)
cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
else if (cpuid_reg == 1)
cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
else if (cpuid_reg == 2)
cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
else
cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
set_ghcb_msr_bits(svm, cpuid_value,
GHCB_MSR_CPUID_VALUE_MASK,
GHCB_MSR_CPUID_VALUE_POS);
set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
GHCB_MSR_INFO_MASK,
GHCB_MSR_INFO_POS);
break;
}
case GHCB_MSR_TERM_REQ: {
u64 reason_set, reason_code;
reason_set = get_ghcb_msr_bits(svm,
GHCB_MSR_TERM_REASON_SET_MASK,
GHCB_MSR_TERM_REASON_SET_POS);
reason_code = get_ghcb_msr_bits(svm,
GHCB_MSR_TERM_REASON_MASK,
GHCB_MSR_TERM_REASON_POS);
pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
reason_set, reason_code);
ret = -EINVAL;
break;
}
default:
/* Error, keep GHCB MSR value as-is */
break;
}
trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
control->ghcb_gpa, ret);
return ret;
}
int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
u64 ghcb_gpa, exit_code;
struct ghcb *ghcb;
int ret;
/* Validate the GHCB */
ghcb_gpa = control->ghcb_gpa;
if (ghcb_gpa & GHCB_MSR_INFO_MASK)
return sev_handle_vmgexit_msr_protocol(svm);
if (!ghcb_gpa) {
vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
/* Without a GHCB, just return right back to the guest */
return 1;
}
if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
/* Unable to map GHCB from guest */
vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
ghcb_gpa);
/* Without a GHCB, just return right back to the guest */
return 1;
}
svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
ghcb = svm->sev_es.ghcb_map.hva;
trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
exit_code = ghcb_get_sw_exit_code(ghcb);
if (!sev_es_validate_vmgexit(svm))
return 1;
sev_es_sync_from_ghcb(svm);
ghcb_set_sw_exit_info_1(ghcb, 0);
ghcb_set_sw_exit_info_2(ghcb, 0);
ret = 1;
switch (exit_code) {
case SVM_VMGEXIT_MMIO_READ:
if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
break;
ret = kvm_sev_es_mmio_read(vcpu,
control->exit_info_1,
control->exit_info_2,
svm->sev_es.ghcb_sa);
break;
case SVM_VMGEXIT_MMIO_WRITE:
if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
break;
ret = kvm_sev_es_mmio_write(vcpu,
control->exit_info_1,
control->exit_info_2,
svm->sev_es.ghcb_sa);
break;
case SVM_VMGEXIT_NMI_COMPLETE:
ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
break;
case SVM_VMGEXIT_AP_HLT_LOOP:
ret = kvm_emulate_ap_reset_hold(vcpu);
break;
case SVM_VMGEXIT_AP_JUMP_TABLE: {
struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
switch (control->exit_info_1) {
case 0:
/* Set AP jump table address */
sev->ap_jump_table = control->exit_info_2;
break;
case 1:
/* Get AP jump table address */
ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
break;
default:
pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
control->exit_info_1);
ghcb_set_sw_exit_info_1(ghcb, 2);
ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
}
break;
}
case SVM_VMGEXIT_UNSUPPORTED_EVENT:
vcpu_unimpl(vcpu,
"vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
control->exit_info_1, control->exit_info_2);
ret = -EINVAL;
break;
default:
ret = svm_invoke_exit_handler(vcpu, exit_code);
}
return ret;
}
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
{
int count;
int bytes;
if (svm->vmcb->control.exit_info_2 > INT_MAX)
return -EINVAL;
count = svm->vmcb->control.exit_info_2;
if (unlikely(check_mul_overflow(count, size, &bytes)))
return -EINVAL;
if (!setup_vmgexit_scratch(svm, in, bytes))
return 1;
return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
count, in);
}
void sev_es_init_vmcb(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
/*
* An SEV-ES guest requires a VMSA area that is a separate from the
* VMCB page. Do not include the encryption mask on the VMSA physical
* address since hardware will access it using the guest key.
*/
svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
/* Can't intercept CR register access, HV can't modify CR registers */
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
svm_clr_intercept(svm, INTERCEPT_CR4_READ);
svm_clr_intercept(svm, INTERCEPT_CR8_READ);
svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
/* Track EFER/CR register changes */
svm_set_intercept(svm, TRAP_EFER_WRITE);
svm_set_intercept(svm, TRAP_CR0_WRITE);
svm_set_intercept(svm, TRAP_CR4_WRITE);
svm_set_intercept(svm, TRAP_CR8_WRITE);
/* No support for enable_vmware_backdoor */
clr_exception_intercept(svm, GP_VECTOR);
/* Can't intercept XSETBV, HV can't modify XCR0 directly */
svm_clr_intercept(svm, INTERCEPT_XSETBV);
/* Clear intercepts on selected MSRs */
set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}
void sev_es_vcpu_reset(struct vcpu_svm *svm)
{
/*
* Set the GHCB MSR value as per the GHCB specification when emulating
* vCPU RESET for an SEV-ES guest.
*/
set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
GHCB_VERSION_MIN,
sev_enc_bit));
}
void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
{
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
struct vmcb_save_area *hostsa;
/*
* As an SEV-ES guest, hardware will restore the host state on VMEXIT,
* of which one step is to perform a VMLOAD. Since hardware does not
* perform a VMSAVE on VMRUN, the host savearea must be updated.
*/
vmsave(__sme_page_pa(sd->save_area));
/* XCR0 is restored on VMEXIT, save the current host value */
hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
/* PKRU is restored on VMEXIT, save the current host value */
hostsa->pkru = read_pkru();
/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
hostsa->xss = host_xss;
}
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
{
struct vcpu_svm *svm = to_svm(vcpu);
/* First SIPI: Use the values as initially set by the VMM */
if (!svm->sev_es.received_first_sipi) {
svm->sev_es.received_first_sipi = true;
return;
}
/*
* Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
* the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
* non-zero value.
*/
if (!svm->sev_es.ghcb)
return;
ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
}