| // SPDX-License-Identifier: (GPL-2.0+ OR MIT) |
| /* |
| * Amlogic Meson Nand Flash Controller Driver |
| * |
| * Copyright (c) 2018 Amlogic, inc. |
| * Author: Liang Yang <liang.yang@amlogic.com> |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/iopoll.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/sched/task_stack.h> |
| |
| #define NFC_REG_CMD 0x00 |
| #define NFC_CMD_IDLE (0xc << 14) |
| #define NFC_CMD_CLE (0x5 << 14) |
| #define NFC_CMD_ALE (0x6 << 14) |
| #define NFC_CMD_ADL ((0 << 16) | (3 << 20)) |
| #define NFC_CMD_ADH ((1 << 16) | (3 << 20)) |
| #define NFC_CMD_AIL ((2 << 16) | (3 << 20)) |
| #define NFC_CMD_AIH ((3 << 16) | (3 << 20)) |
| #define NFC_CMD_SEED ((8 << 16) | (3 << 20)) |
| #define NFC_CMD_M2N ((0 << 17) | (2 << 20)) |
| #define NFC_CMD_N2M ((1 << 17) | (2 << 20)) |
| #define NFC_CMD_RB BIT(20) |
| #define NFC_CMD_SCRAMBLER_ENABLE BIT(19) |
| #define NFC_CMD_SCRAMBLER_DISABLE 0 |
| #define NFC_CMD_SHORTMODE_DISABLE 0 |
| #define NFC_CMD_RB_INT BIT(14) |
| #define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16)) |
| |
| #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) |
| |
| #define NFC_REG_CFG 0x04 |
| #define NFC_REG_DADR 0x08 |
| #define NFC_REG_IADR 0x0c |
| #define NFC_REG_BUF 0x10 |
| #define NFC_REG_INFO 0x14 |
| #define NFC_REG_DC 0x18 |
| #define NFC_REG_ADR 0x1c |
| #define NFC_REG_DL 0x20 |
| #define NFC_REG_DH 0x24 |
| #define NFC_REG_CADR 0x28 |
| #define NFC_REG_SADR 0x2c |
| #define NFC_REG_PINS 0x30 |
| #define NFC_REG_VER 0x38 |
| |
| #define NFC_RB_IRQ_EN BIT(21) |
| |
| #define CLK_DIV_SHIFT 0 |
| #define CLK_DIV_WIDTH 6 |
| |
| #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ |
| ( \ |
| (cmd_dir) | \ |
| ((ran) << 19) | \ |
| ((bch) << 14) | \ |
| ((short_mode) << 13) | \ |
| (((page_size) & 0x7f) << 6) | \ |
| ((pages) & 0x3f) \ |
| ) |
| |
| #define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) |
| #define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) |
| #define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) |
| #define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) |
| |
| #define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) |
| #define DMA_ADDR_ALIGN 8 |
| |
| #define ECC_CHECK_RETURN_FF (-1) |
| |
| #define NAND_CE0 (0xe << 10) |
| #define NAND_CE1 (0xd << 10) |
| |
| #define DMA_BUSY_TIMEOUT 0x100000 |
| #define CMD_FIFO_EMPTY_TIMEOUT 1000 |
| |
| #define MAX_CE_NUM 2 |
| |
| /* eMMC clock register, misc control */ |
| #define CLK_SELECT_NAND BIT(31) |
| |
| #define NFC_CLK_CYCLE 6 |
| |
| /* nand flash controller delay 3 ns */ |
| #define NFC_DEFAULT_DELAY 3000 |
| |
| #define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) |
| #define MAX_CYCLE_ADDRS 5 |
| #define DIRREAD 1 |
| #define DIRWRITE 0 |
| |
| #define ECC_PARITY_BCH8_512B 14 |
| #define ECC_COMPLETE BIT(31) |
| #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) |
| #define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0)) |
| #define ECC_UNCORRECTABLE 0x3f |
| |
| #define PER_INFO_BYTE 8 |
| |
| #define NFC_CMD_RAW_LEN GENMASK(13, 0) |
| |
| #define NFC_COLUMN_ADDR_0 0 |
| #define NFC_COLUMN_ADDR_1 0 |
| |
| struct meson_nfc_nand_chip { |
| struct list_head node; |
| struct nand_chip nand; |
| unsigned long clk_rate; |
| unsigned long level1_divider; |
| u32 bus_timing; |
| u32 twb; |
| u32 tadl; |
| u32 tbers_max; |
| |
| u32 bch_mode; |
| u8 *data_buf; |
| __le64 *info_buf; |
| u32 nsels; |
| u8 sels[]; |
| }; |
| |
| struct meson_nand_ecc { |
| u32 bch; |
| u32 strength; |
| }; |
| |
| struct meson_nfc_data { |
| const struct nand_ecc_caps *ecc_caps; |
| }; |
| |
| struct meson_nfc_param { |
| u32 chip_select; |
| u32 rb_select; |
| }; |
| |
| struct nand_rw_cmd { |
| u32 cmd0; |
| u32 addrs[MAX_CYCLE_ADDRS]; |
| u32 cmd1; |
| }; |
| |
| struct nand_timing { |
| u32 twb; |
| u32 tadl; |
| u32 tbers_max; |
| }; |
| |
| struct meson_nfc { |
| struct nand_controller controller; |
| struct clk *core_clk; |
| struct clk *device_clk; |
| struct clk *nand_clk; |
| struct clk_divider nand_divider; |
| |
| unsigned long clk_rate; |
| u32 bus_timing; |
| |
| struct device *dev; |
| void __iomem *reg_base; |
| void __iomem *reg_clk; |
| struct completion completion; |
| struct list_head chips; |
| const struct meson_nfc_data *data; |
| struct meson_nfc_param param; |
| struct nand_timing timing; |
| union { |
| int cmd[32]; |
| struct nand_rw_cmd rw; |
| } cmdfifo; |
| |
| dma_addr_t daddr; |
| dma_addr_t iaddr; |
| u32 info_bytes; |
| |
| unsigned long assigned_cs; |
| bool no_rb_pin; |
| }; |
| |
| enum { |
| NFC_ECC_BCH8_1K = 2, |
| NFC_ECC_BCH24_1K, |
| NFC_ECC_BCH30_1K, |
| NFC_ECC_BCH40_1K, |
| NFC_ECC_BCH50_1K, |
| NFC_ECC_BCH60_1K, |
| }; |
| |
| #define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)} |
| |
| static struct meson_nand_ecc meson_ecc[] = { |
| MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8), |
| MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24), |
| MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30), |
| MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40), |
| MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50), |
| MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60), |
| }; |
| |
| static int meson_nand_calc_ecc_bytes(int step_size, int strength) |
| { |
| int ecc_bytes; |
| |
| if (step_size == 512 && strength == 8) |
| return ECC_PARITY_BCH8_512B; |
| |
| ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); |
| ecc_bytes = ALIGN(ecc_bytes, 2); |
| |
| return ecc_bytes; |
| } |
| |
| NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, |
| meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); |
| NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps, |
| meson_nand_calc_ecc_bytes, 1024, 8); |
| |
| static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) |
| { |
| return container_of(nand, struct meson_nfc_nand_chip, nand); |
| } |
| |
| static void meson_nfc_select_chip(struct nand_chip *nand, int chip) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| int ret, value; |
| |
| if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels)) |
| return; |
| |
| nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; |
| nfc->param.rb_select = nfc->param.chip_select; |
| nfc->timing.twb = meson_chip->twb; |
| nfc->timing.tadl = meson_chip->tadl; |
| nfc->timing.tbers_max = meson_chip->tbers_max; |
| |
| if (nfc->clk_rate != meson_chip->clk_rate) { |
| ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate); |
| if (ret) { |
| dev_err(nfc->dev, "failed to set clock rate\n"); |
| return; |
| } |
| nfc->clk_rate = meson_chip->clk_rate; |
| } |
| if (nfc->bus_timing != meson_chip->bus_timing) { |
| value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5); |
| writel(value, nfc->reg_base + NFC_REG_CFG); |
| writel((1 << 31), nfc->reg_base + NFC_REG_CMD); |
| nfc->bus_timing = meson_chip->bus_timing; |
| } |
| } |
| |
| static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) |
| { |
| writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), |
| nfc->reg_base + NFC_REG_CMD); |
| } |
| |
| static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) |
| { |
| writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), |
| nfc->reg_base + NFC_REG_CMD); |
| } |
| |
| static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir, |
| int scrambler) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| u32 bch = meson_chip->bch_mode, cmd; |
| int len = mtd->writesize, pagesize, pages; |
| |
| pagesize = nand->ecc.size; |
| |
| if (raw) { |
| len = mtd->writesize + mtd->oobsize; |
| cmd = len | scrambler | DMA_DIR(dir); |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| return; |
| } |
| |
| pages = len / nand->ecc.size; |
| |
| cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch, |
| NFC_CMD_SHORTMODE_DISABLE, pagesize, pages); |
| |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| } |
| |
| static void meson_nfc_drain_cmd(struct meson_nfc *nfc) |
| { |
| /* |
| * Insert two commands to make sure all valid commands are finished. |
| * |
| * The Nand flash controller is designed as two stages pipleline - |
| * a) fetch and b) excute. |
| * There might be cases when the driver see command queue is empty, |
| * but the Nand flash controller still has two commands buffered, |
| * one is fetched into NFC request queue (ready to run), and another |
| * is actively executing. So pushing 2 "IDLE" commands guarantees that |
| * the pipeline is emptied. |
| */ |
| meson_nfc_cmd_idle(nfc, 0); |
| meson_nfc_cmd_idle(nfc, 0); |
| } |
| |
| static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, |
| unsigned int timeout_ms) |
| { |
| u32 cmd_size = 0; |
| int ret; |
| |
| /* wait cmd fifo is empty */ |
| ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, |
| !NFC_CMD_GET_SIZE(cmd_size), |
| 10, timeout_ms * 1000); |
| if (ret) |
| dev_err(nfc->dev, "wait for empty CMD FIFO time out\n"); |
| |
| return ret; |
| } |
| |
| static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) |
| { |
| meson_nfc_drain_cmd(nfc); |
| |
| return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); |
| } |
| |
| static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| int len; |
| |
| len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; |
| |
| return meson_chip->data_buf + len; |
| } |
| |
| static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| int len, temp; |
| |
| temp = nand->ecc.size + nand->ecc.bytes; |
| len = (temp + 2) * i; |
| |
| return meson_chip->data_buf + len; |
| } |
| |
| static void meson_nfc_get_data_oob(struct nand_chip *nand, |
| u8 *buf, u8 *oobbuf) |
| { |
| int i, oob_len = 0; |
| u8 *dsrc, *osrc; |
| |
| oob_len = nand->ecc.bytes + 2; |
| for (i = 0; i < nand->ecc.steps; i++) { |
| if (buf) { |
| dsrc = meson_nfc_data_ptr(nand, i); |
| memcpy(buf, dsrc, nand->ecc.size); |
| buf += nand->ecc.size; |
| } |
| osrc = meson_nfc_oob_ptr(nand, i); |
| memcpy(oobbuf, osrc, oob_len); |
| oobbuf += oob_len; |
| } |
| } |
| |
| static void meson_nfc_set_data_oob(struct nand_chip *nand, |
| const u8 *buf, u8 *oobbuf) |
| { |
| int i, oob_len = 0; |
| u8 *dsrc, *osrc; |
| |
| oob_len = nand->ecc.bytes + 2; |
| for (i = 0; i < nand->ecc.steps; i++) { |
| if (buf) { |
| dsrc = meson_nfc_data_ptr(nand, i); |
| memcpy(dsrc, buf, nand->ecc.size); |
| buf += nand->ecc.size; |
| } |
| osrc = meson_nfc_oob_ptr(nand, i); |
| memcpy(osrc, oobbuf, oob_len); |
| oobbuf += oob_len; |
| } |
| } |
| |
| static int meson_nfc_wait_no_rb_pin(struct meson_nfc *nfc, int timeout_ms, |
| bool need_cmd_read0) |
| { |
| u32 cmd, cfg; |
| |
| meson_nfc_cmd_idle(nfc, nfc->timing.twb); |
| meson_nfc_drain_cmd(nfc); |
| meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); |
| |
| cfg = readl(nfc->reg_base + NFC_REG_CFG); |
| cfg |= NFC_RB_IRQ_EN; |
| writel(cfg, nfc->reg_base + NFC_REG_CFG); |
| |
| reinit_completion(&nfc->completion); |
| cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_STATUS; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| /* use the max erase time as the maximum clock for waiting R/B */ |
| cmd = NFC_CMD_RB | NFC_CMD_RB_INT_NO_PIN | nfc->timing.tbers_max; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| if (!wait_for_completion_timeout(&nfc->completion, |
| msecs_to_jiffies(timeout_ms))) |
| return -ETIMEDOUT; |
| |
| if (need_cmd_read0) { |
| cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_READ0; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| meson_nfc_drain_cmd(nfc); |
| meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); |
| } |
| |
| return 0; |
| } |
| |
| static int meson_nfc_wait_rb_pin(struct meson_nfc *nfc, int timeout_ms) |
| { |
| u32 cmd, cfg; |
| int ret = 0; |
| |
| meson_nfc_cmd_idle(nfc, nfc->timing.twb); |
| meson_nfc_drain_cmd(nfc); |
| meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); |
| |
| cfg = readl(nfc->reg_base + NFC_REG_CFG); |
| cfg |= NFC_RB_IRQ_EN; |
| writel(cfg, nfc->reg_base + NFC_REG_CFG); |
| |
| reinit_completion(&nfc->completion); |
| |
| /* use the max erase time as the maximum clock for waiting R/B */ |
| cmd = NFC_CMD_RB | NFC_CMD_RB_INT |
| | nfc->param.chip_select | nfc->timing.tbers_max; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| ret = wait_for_completion_timeout(&nfc->completion, |
| msecs_to_jiffies(timeout_ms)); |
| if (ret == 0) |
| ret = -1; |
| |
| return ret; |
| } |
| |
| static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms, |
| bool need_cmd_read0) |
| { |
| if (nfc->no_rb_pin) { |
| /* This mode is used when there is no wired R/B pin. |
| * It works like 'nand_soft_waitrdy()', but instead of |
| * polling NAND_CMD_STATUS bit in the software loop, |
| * it will wait for interrupt - controllers checks IO |
| * bus and when it detects NAND_CMD_STATUS on it, it |
| * raises interrupt. After interrupt, NAND_CMD_READ0 is |
| * sent as terminator of the ready waiting procedure if |
| * needed (for all cases except page programming - this |
| * is reason of 'need_cmd_read0' flag). |
| */ |
| return meson_nfc_wait_no_rb_pin(nfc, timeout_ms, |
| need_cmd_read0); |
| } else { |
| return meson_nfc_wait_rb_pin(nfc, timeout_ms); |
| } |
| } |
| |
| static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| __le64 *info; |
| int i, count; |
| |
| for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) { |
| info = &meson_chip->info_buf[i]; |
| *info |= oob_buf[count]; |
| *info |= oob_buf[count + 1] << 8; |
| } |
| } |
| |
| static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| __le64 *info; |
| int i, count; |
| |
| for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) { |
| info = &meson_chip->info_buf[i]; |
| oob_buf[count] = *info; |
| oob_buf[count + 1] = *info >> 8; |
| } |
| } |
| |
| static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips, |
| u64 *correct_bitmap) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| __le64 *info; |
| int ret = 0, i; |
| |
| for (i = 0; i < nand->ecc.steps; i++) { |
| info = &meson_chip->info_buf[i]; |
| if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) { |
| mtd->ecc_stats.corrected += ECC_ERR_CNT(*info); |
| *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info)); |
| *correct_bitmap |= BIT_ULL(i); |
| continue; |
| } |
| if ((nand->options & NAND_NEED_SCRAMBLING) && |
| ECC_ZERO_CNT(*info) < nand->ecc.strength) { |
| mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info); |
| *bitflips = max_t(u32, *bitflips, |
| ECC_ZERO_CNT(*info)); |
| ret = ECC_CHECK_RETURN_FF; |
| } else { |
| ret = -EBADMSG; |
| } |
| } |
| return ret; |
| } |
| |
| static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf, |
| int datalen, void *infobuf, int infolen, |
| enum dma_data_direction dir) |
| { |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| u32 cmd; |
| int ret = 0; |
| |
| nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir); |
| ret = dma_mapping_error(nfc->dev, nfc->daddr); |
| if (ret) { |
| dev_err(nfc->dev, "DMA mapping error\n"); |
| return ret; |
| } |
| cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr); |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr); |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| if (infobuf) { |
| nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir); |
| ret = dma_mapping_error(nfc->dev, nfc->iaddr); |
| if (ret) { |
| dev_err(nfc->dev, "DMA mapping error\n"); |
| dma_unmap_single(nfc->dev, |
| nfc->daddr, datalen, dir); |
| return ret; |
| } |
| nfc->info_bytes = infolen; |
| cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr); |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr); |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| } |
| |
| return ret; |
| } |
| |
| static void meson_nfc_dma_buffer_release(struct nand_chip *nand, |
| int datalen, int infolen, |
| enum dma_data_direction dir) |
| { |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| |
| dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir); |
| if (infolen) { |
| dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir); |
| nfc->info_bytes = 0; |
| } |
| } |
| |
| static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len) |
| { |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| int ret = 0; |
| u32 cmd; |
| u8 *info; |
| |
| info = kzalloc(PER_INFO_BYTE, GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| ret = meson_nfc_dma_buffer_setup(nand, buf, len, info, |
| PER_INFO_BYTE, DMA_FROM_DEVICE); |
| if (ret) |
| goto out; |
| |
| cmd = NFC_CMD_N2M | len; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| meson_nfc_drain_cmd(nfc); |
| meson_nfc_wait_cmd_finish(nfc, 1000); |
| meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE); |
| |
| out: |
| kfree(info); |
| |
| return ret; |
| } |
| |
| static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len) |
| { |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| int ret = 0; |
| u32 cmd; |
| |
| ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL, |
| 0, DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| cmd = NFC_CMD_M2N | len; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| |
| meson_nfc_drain_cmd(nfc); |
| meson_nfc_wait_cmd_finish(nfc, 1000); |
| meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand, |
| int page, bool in) |
| { |
| const struct nand_sdr_timings *sdr = |
| nand_get_sdr_timings(nand_get_interface_config(nand)); |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| u32 *addrs = nfc->cmdfifo.rw.addrs; |
| u32 cs = nfc->param.chip_select; |
| u32 cmd0, cmd_num, row_start; |
| int i; |
| |
| cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int); |
| |
| cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN; |
| nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0; |
| |
| addrs[0] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_0; |
| if (mtd->writesize <= 512) { |
| cmd_num--; |
| row_start = 1; |
| } else { |
| addrs[1] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_1; |
| row_start = 2; |
| } |
| |
| addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0); |
| addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1); |
| |
| if (nand->options & NAND_ROW_ADDR_3) |
| addrs[row_start + 2] = |
| cs | NFC_CMD_ALE | ROW_ADDER(page, 2); |
| else |
| cmd_num--; |
| |
| /* subtract cmd1 */ |
| cmd_num--; |
| |
| for (i = 0; i < cmd_num; i++) |
| writel_relaxed(nfc->cmdfifo.cmd[i], |
| nfc->reg_base + NFC_REG_CMD); |
| |
| if (in) { |
| nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART; |
| writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD); |
| meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max), true); |
| } else { |
| meson_nfc_cmd_idle(nfc, nfc->timing.tadl); |
| } |
| |
| return 0; |
| } |
| |
| static int meson_nfc_write_page_sub(struct nand_chip *nand, |
| int page, int raw) |
| { |
| const struct nand_sdr_timings *sdr = |
| nand_get_sdr_timings(nand_get_interface_config(nand)); |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| int data_len, info_len; |
| u32 cmd; |
| int ret; |
| |
| meson_nfc_select_chip(nand, nand->cur_cs); |
| |
| data_len = mtd->writesize + mtd->oobsize; |
| info_len = nand->ecc.steps * PER_INFO_BYTE; |
| |
| ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE); |
| if (ret) |
| return ret; |
| |
| ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, |
| data_len, meson_chip->info_buf, |
| info_len, DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| if (nand->options & NAND_NEED_SCRAMBLING) { |
| meson_nfc_cmd_seed(nfc, page); |
| meson_nfc_cmd_access(nand, raw, DIRWRITE, |
| NFC_CMD_SCRAMBLER_ENABLE); |
| } else { |
| meson_nfc_cmd_access(nand, raw, DIRWRITE, |
| NFC_CMD_SCRAMBLER_DISABLE); |
| } |
| |
| cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max), false); |
| |
| meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf, |
| int oob_required, int page) |
| { |
| u8 *oob_buf = nand->oob_poi; |
| |
| meson_nfc_set_data_oob(nand, buf, oob_buf); |
| |
| return meson_nfc_write_page_sub(nand, page, 1); |
| } |
| |
| static int meson_nfc_write_page_hwecc(struct nand_chip *nand, |
| const u8 *buf, int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| u8 *oob_buf = nand->oob_poi; |
| |
| memcpy(meson_chip->data_buf, buf, mtd->writesize); |
| memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE); |
| meson_nfc_set_user_byte(nand, oob_buf); |
| |
| return meson_nfc_write_page_sub(nand, page, 0); |
| } |
| |
| static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, |
| struct nand_chip *nand, int raw) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| __le64 *info; |
| u32 neccpages; |
| int ret; |
| |
| neccpages = raw ? 1 : nand->ecc.steps; |
| info = &meson_chip->info_buf[neccpages - 1]; |
| do { |
| usleep_range(10, 15); |
| /* info is updated by nfc dma engine*/ |
| smp_rmb(); |
| dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes, |
| DMA_FROM_DEVICE); |
| ret = *info & ECC_COMPLETE; |
| } while (!ret); |
| } |
| |
| static int meson_nfc_read_page_sub(struct nand_chip *nand, |
| int page, int raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| int data_len, info_len; |
| int ret; |
| |
| meson_nfc_select_chip(nand, nand->cur_cs); |
| |
| data_len = mtd->writesize + mtd->oobsize; |
| info_len = nand->ecc.steps * PER_INFO_BYTE; |
| |
| ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD); |
| if (ret) |
| return ret; |
| |
| ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, |
| data_len, meson_chip->info_buf, |
| info_len, DMA_FROM_DEVICE); |
| if (ret) |
| return ret; |
| |
| if (nand->options & NAND_NEED_SCRAMBLING) { |
| meson_nfc_cmd_seed(nfc, page); |
| meson_nfc_cmd_access(nand, raw, DIRREAD, |
| NFC_CMD_SCRAMBLER_ENABLE); |
| } else { |
| meson_nfc_cmd_access(nand, raw, DIRREAD, |
| NFC_CMD_SCRAMBLER_DISABLE); |
| } |
| |
| ret = meson_nfc_wait_dma_finish(nfc); |
| meson_nfc_check_ecc_pages_valid(nfc, nand, raw); |
| |
| meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE); |
| |
| return ret; |
| } |
| |
| static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf, |
| int oob_required, int page) |
| { |
| u8 *oob_buf = nand->oob_poi; |
| int ret; |
| |
| ret = meson_nfc_read_page_sub(nand, page, 1); |
| if (ret) |
| return ret; |
| |
| meson_nfc_get_data_oob(nand, buf, oob_buf); |
| |
| return 0; |
| } |
| |
| static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| u64 correct_bitmap = 0; |
| u32 bitflips = 0; |
| u8 *oob_buf = nand->oob_poi; |
| int ret, i; |
| |
| ret = meson_nfc_read_page_sub(nand, page, 0); |
| if (ret) |
| return ret; |
| |
| meson_nfc_get_user_byte(nand, oob_buf); |
| ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap); |
| if (ret == ECC_CHECK_RETURN_FF) { |
| if (buf) |
| memset(buf, 0xff, mtd->writesize); |
| memset(oob_buf, 0xff, mtd->oobsize); |
| } else if (ret < 0) { |
| if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) { |
| mtd->ecc_stats.failed++; |
| return bitflips; |
| } |
| ret = meson_nfc_read_page_raw(nand, buf, 0, page); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < nand->ecc.steps ; i++) { |
| u8 *data = buf + i * ecc->size; |
| u8 *oob = nand->oob_poi + i * (ecc->bytes + 2); |
| |
| if (correct_bitmap & BIT_ULL(i)) |
| continue; |
| ret = nand_check_erased_ecc_chunk(data, ecc->size, |
| oob, ecc->bytes + 2, |
| NULL, 0, |
| ecc->strength); |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += ret; |
| bitflips = max_t(u32, bitflips, ret); |
| } |
| } |
| } else if (buf && buf != meson_chip->data_buf) { |
| memcpy(buf, meson_chip->data_buf, mtd->writesize); |
| } |
| |
| return bitflips; |
| } |
| |
| static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page) |
| { |
| return meson_nfc_read_page_raw(nand, NULL, 1, page); |
| } |
| |
| static int meson_nfc_read_oob(struct nand_chip *nand, int page) |
| { |
| return meson_nfc_read_page_hwecc(nand, NULL, 1, page); |
| } |
| |
| static bool meson_nfc_is_buffer_dma_safe(const void *buffer) |
| { |
| if ((uintptr_t)buffer % DMA_ADDR_ALIGN) |
| return false; |
| |
| if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer))) |
| return true; |
| return false; |
| } |
| |
| static void * |
| meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr) |
| { |
| if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR)) |
| return NULL; |
| |
| if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in)) |
| return instr->ctx.data.buf.in; |
| |
| return kzalloc(instr->ctx.data.len, GFP_KERNEL); |
| } |
| |
| static void |
| meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr, |
| void *buf) |
| { |
| if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) || |
| WARN_ON(!buf)) |
| return; |
| |
| if (buf == instr->ctx.data.buf.in) |
| return; |
| |
| memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len); |
| kfree(buf); |
| } |
| |
| static void * |
| meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr) |
| { |
| if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR)) |
| return NULL; |
| |
| if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out)) |
| return (void *)instr->ctx.data.buf.out; |
| |
| return kmemdup(instr->ctx.data.buf.out, |
| instr->ctx.data.len, GFP_KERNEL); |
| } |
| |
| static void |
| meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr, |
| const void *buf) |
| { |
| if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) || |
| WARN_ON(!buf)) |
| return; |
| |
| if (buf != instr->ctx.data.buf.out) |
| kfree(buf); |
| } |
| |
| static int meson_nfc_check_op(struct nand_chip *chip, |
| const struct nand_operation *op) |
| { |
| int op_id; |
| |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| const struct nand_op_instr *instr; |
| |
| instr = &op->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_DATA_IN_INSTR: |
| case NAND_OP_DATA_OUT_INSTR: |
| if (instr->ctx.data.len > NFC_CMD_RAW_LEN) |
| return -ENOTSUPP; |
| |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int meson_nfc_exec_op(struct nand_chip *nand, |
| const struct nand_operation *op, bool check_only) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| const struct nand_op_instr *instr = NULL; |
| void *buf; |
| u32 op_id, delay_idle, cmd; |
| int err; |
| int i; |
| |
| err = meson_nfc_check_op(nand, op); |
| if (err) |
| return err; |
| |
| if (check_only) |
| return 0; |
| |
| meson_nfc_select_chip(nand, op->cs); |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns), |
| meson_chip->level1_divider * |
| NFC_CLK_CYCLE); |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| cmd = nfc->param.chip_select | NFC_CMD_CLE; |
| cmd |= instr->ctx.cmd.opcode & 0xff; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| meson_nfc_cmd_idle(nfc, delay_idle); |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) { |
| cmd = nfc->param.chip_select | NFC_CMD_ALE; |
| cmd |= instr->ctx.addr.addrs[i] & 0xff; |
| writel(cmd, nfc->reg_base + NFC_REG_CMD); |
| } |
| meson_nfc_cmd_idle(nfc, delay_idle); |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| buf = meson_nand_op_get_dma_safe_input_buf(instr); |
| if (!buf) |
| return -ENOMEM; |
| meson_nfc_read_buf(nand, buf, instr->ctx.data.len); |
| meson_nand_op_put_dma_safe_input_buf(instr, buf); |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| buf = meson_nand_op_get_dma_safe_output_buf(instr); |
| if (!buf) |
| return -ENOMEM; |
| meson_nfc_write_buf(nand, buf, instr->ctx.data.len); |
| meson_nand_op_put_dma_safe_output_buf(instr, buf); |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms, |
| true); |
| if (instr->delay_ns) |
| meson_nfc_cmd_idle(nfc, delay_idle); |
| break; |
| } |
| } |
| meson_nfc_wait_cmd_finish(nfc, 1000); |
| return 0; |
| } |
| |
| static int meson_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| |
| if (section >= nand->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = 2 + (section * (2 + nand->ecc.bytes)); |
| oobregion->length = nand->ecc.bytes; |
| |
| return 0; |
| } |
| |
| static int meson_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| |
| if (section >= nand->ecc.steps) |
| return -ERANGE; |
| |
| oobregion->offset = section * (2 + nand->ecc.bytes); |
| oobregion->length = 2; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops meson_ooblayout_ops = { |
| .ecc = meson_ooblayout_ecc, |
| .free = meson_ooblayout_free, |
| }; |
| |
| static int meson_nfc_clk_init(struct meson_nfc *nfc) |
| { |
| struct clk_parent_data nfc_divider_parent_data[1] = {0}; |
| struct clk_init_data init = {0}; |
| int ret; |
| |
| /* request core clock */ |
| nfc->core_clk = devm_clk_get(nfc->dev, "core"); |
| if (IS_ERR(nfc->core_clk)) { |
| dev_err(nfc->dev, "failed to get core clock\n"); |
| return PTR_ERR(nfc->core_clk); |
| } |
| |
| nfc->device_clk = devm_clk_get(nfc->dev, "device"); |
| if (IS_ERR(nfc->device_clk)) { |
| dev_err(nfc->dev, "failed to get device clock\n"); |
| return PTR_ERR(nfc->device_clk); |
| } |
| |
| init.name = devm_kasprintf(nfc->dev, |
| GFP_KERNEL, "%s#div", |
| dev_name(nfc->dev)); |
| init.ops = &clk_divider_ops; |
| nfc_divider_parent_data[0].fw_name = "device"; |
| init.parent_data = nfc_divider_parent_data; |
| init.num_parents = 1; |
| nfc->nand_divider.reg = nfc->reg_clk; |
| nfc->nand_divider.shift = CLK_DIV_SHIFT; |
| nfc->nand_divider.width = CLK_DIV_WIDTH; |
| nfc->nand_divider.hw.init = &init; |
| nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED | |
| CLK_DIVIDER_ROUND_CLOSEST | |
| CLK_DIVIDER_ALLOW_ZERO; |
| |
| nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw); |
| if (IS_ERR(nfc->nand_clk)) |
| return PTR_ERR(nfc->nand_clk); |
| |
| /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ |
| writel(CLK_SELECT_NAND | readl(nfc->reg_clk), |
| nfc->reg_clk); |
| |
| ret = clk_prepare_enable(nfc->core_clk); |
| if (ret) { |
| dev_err(nfc->dev, "failed to enable core clock\n"); |
| return ret; |
| } |
| |
| ret = clk_prepare_enable(nfc->device_clk); |
| if (ret) { |
| dev_err(nfc->dev, "failed to enable device clock\n"); |
| goto err_device_clk; |
| } |
| |
| ret = clk_prepare_enable(nfc->nand_clk); |
| if (ret) { |
| dev_err(nfc->dev, "pre enable NFC divider fail\n"); |
| goto err_nand_clk; |
| } |
| |
| ret = clk_set_rate(nfc->nand_clk, 24000000); |
| if (ret) |
| goto err_disable_clk; |
| |
| return 0; |
| |
| err_disable_clk: |
| clk_disable_unprepare(nfc->nand_clk); |
| err_nand_clk: |
| clk_disable_unprepare(nfc->device_clk); |
| err_device_clk: |
| clk_disable_unprepare(nfc->core_clk); |
| return ret; |
| } |
| |
| static void meson_nfc_disable_clk(struct meson_nfc *nfc) |
| { |
| clk_disable_unprepare(nfc->nand_clk); |
| clk_disable_unprepare(nfc->device_clk); |
| clk_disable_unprepare(nfc->core_clk); |
| } |
| |
| static void meson_nfc_free_buffer(struct nand_chip *nand) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| |
| kfree(meson_chip->info_buf); |
| kfree(meson_chip->data_buf); |
| } |
| |
| static int meson_chip_buffer_init(struct nand_chip *nand) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| u32 page_bytes, info_bytes, nsectors; |
| |
| nsectors = mtd->writesize / nand->ecc.size; |
| |
| page_bytes = mtd->writesize + mtd->oobsize; |
| info_bytes = nsectors * PER_INFO_BYTE; |
| |
| meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL); |
| if (!meson_chip->data_buf) |
| return -ENOMEM; |
| |
| meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL); |
| if (!meson_chip->info_buf) { |
| kfree(meson_chip->data_buf); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static |
| int meson_nfc_setup_interface(struct nand_chip *nand, int csline, |
| const struct nand_interface_config *conf) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| const struct nand_sdr_timings *timings; |
| u32 div, bt_min, bt_max, tbers_clocks; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return -ENOTSUPP; |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); |
| bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; |
| bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min + |
| timings->tRC_min / 2) / div; |
| |
| meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), |
| div * NFC_CLK_CYCLE); |
| meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), |
| div * NFC_CLK_CYCLE); |
| tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max), |
| div * NFC_CLK_CYCLE); |
| meson_chip->tbers_max = ilog2(tbers_clocks); |
| if (!is_power_of_2(tbers_clocks)) |
| meson_chip->tbers_max++; |
| |
| bt_min = DIV_ROUND_UP(bt_min, 1000); |
| bt_max = DIV_ROUND_UP(bt_max, 1000); |
| |
| if (bt_max < bt_min) |
| return -EINVAL; |
| |
| meson_chip->level1_divider = div; |
| meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider; |
| meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1; |
| |
| return 0; |
| } |
| |
| static int meson_nand_bch_mode(struct nand_chip *nand) |
| { |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| int i; |
| |
| if (nand->ecc.strength > 60 || nand->ecc.strength < 8) |
| return -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) { |
| if (meson_ecc[i].strength == nand->ecc.strength) { |
| meson_chip->bch_mode = meson_ecc[i].bch; |
| return 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void meson_nand_detach_chip(struct nand_chip *nand) |
| { |
| meson_nfc_free_buffer(nand); |
| } |
| |
| static int meson_nand_attach_chip(struct nand_chip *nand) |
| { |
| struct meson_nfc *nfc = nand_get_controller_data(nand); |
| struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| int nsectors = mtd->writesize / 1024; |
| int raw_writesize; |
| int ret; |
| |
| if (!mtd->name) { |
| mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, |
| "%s:nand%d", |
| dev_name(nfc->dev), |
| meson_chip->sels[0]); |
| if (!mtd->name) |
| return -ENOMEM; |
| } |
| |
| raw_writesize = mtd->writesize + mtd->oobsize; |
| if (raw_writesize > NFC_CMD_RAW_LEN) { |
| dev_err(nfc->dev, "too big write size in raw mode: %d > %ld\n", |
| raw_writesize, NFC_CMD_RAW_LEN); |
| return -EINVAL; |
| } |
| |
| if (nand->bbt_options & NAND_BBT_USE_FLASH) |
| nand->bbt_options |= NAND_BBT_NO_OOB; |
| |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps, |
| mtd->oobsize - 2 * nsectors); |
| if (ret) { |
| dev_err(nfc->dev, "failed to ECC init\n"); |
| return -EINVAL; |
| } |
| |
| mtd_set_ooblayout(mtd, &meson_ooblayout_ops); |
| |
| ret = meson_nand_bch_mode(nand); |
| if (ret) |
| return -EINVAL; |
| |
| nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| nand->ecc.write_page_raw = meson_nfc_write_page_raw; |
| nand->ecc.write_page = meson_nfc_write_page_hwecc; |
| nand->ecc.write_oob_raw = nand_write_oob_std; |
| nand->ecc.write_oob = nand_write_oob_std; |
| |
| nand->ecc.read_page_raw = meson_nfc_read_page_raw; |
| nand->ecc.read_page = meson_nfc_read_page_hwecc; |
| nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; |
| nand->ecc.read_oob = meson_nfc_read_oob; |
| |
| if (nand->options & NAND_BUSWIDTH_16) { |
| dev_err(nfc->dev, "16bits bus width not supported"); |
| return -EINVAL; |
| } |
| ret = meson_chip_buffer_init(nand); |
| if (ret) |
| return -ENOMEM; |
| |
| return ret; |
| } |
| |
| static const struct nand_controller_ops meson_nand_controller_ops = { |
| .attach_chip = meson_nand_attach_chip, |
| .detach_chip = meson_nand_detach_chip, |
| .setup_interface = meson_nfc_setup_interface, |
| .exec_op = meson_nfc_exec_op, |
| }; |
| |
| static int |
| meson_nfc_nand_chip_init(struct device *dev, |
| struct meson_nfc *nfc, struct device_node *np) |
| { |
| struct meson_nfc_nand_chip *meson_chip; |
| struct nand_chip *nand; |
| struct mtd_info *mtd; |
| int ret, i; |
| u32 tmp, nsels; |
| u32 nand_rb_val = 0; |
| |
| nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); |
| if (!nsels || nsels > MAX_CE_NUM) { |
| dev_err(dev, "invalid register property size\n"); |
| return -EINVAL; |
| } |
| |
| meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels), |
| GFP_KERNEL); |
| if (!meson_chip) |
| return -ENOMEM; |
| |
| meson_chip->nsels = nsels; |
| |
| for (i = 0; i < nsels; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, &tmp); |
| if (ret) { |
| dev_err(dev, "could not retrieve register property: %d\n", |
| ret); |
| return ret; |
| } |
| |
| if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %d already assigned\n", tmp); |
| return -EINVAL; |
| } |
| } |
| |
| nand = &meson_chip->nand; |
| nand->controller = &nfc->controller; |
| nand->controller->ops = &meson_nand_controller_ops; |
| nand_set_flash_node(nand, np); |
| nand_set_controller_data(nand, nfc); |
| |
| nand->options |= NAND_USES_DMA; |
| mtd = nand_to_mtd(nand); |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = dev; |
| |
| ret = of_property_read_u32(np, "nand-rb", &nand_rb_val); |
| if (ret == -EINVAL) |
| nfc->no_rb_pin = true; |
| else if (ret) |
| return ret; |
| |
| if (nand_rb_val) |
| return -EINVAL; |
| |
| ret = nand_scan(nand, nsels); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(dev, "failed to register MTD device: %d\n", ret); |
| nand_cleanup(nand); |
| return ret; |
| } |
| |
| list_add_tail(&meson_chip->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static void meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc) |
| { |
| struct meson_nfc_nand_chip *meson_chip; |
| struct mtd_info *mtd; |
| |
| while (!list_empty(&nfc->chips)) { |
| meson_chip = list_first_entry(&nfc->chips, |
| struct meson_nfc_nand_chip, node); |
| mtd = nand_to_mtd(&meson_chip->nand); |
| WARN_ON(mtd_device_unregister(mtd)); |
| |
| nand_cleanup(&meson_chip->nand); |
| list_del(&meson_chip->node); |
| } |
| } |
| |
| static int meson_nfc_nand_chips_init(struct device *dev, |
| struct meson_nfc *nfc) |
| { |
| struct device_node *np = dev->of_node; |
| struct device_node *nand_np; |
| int ret; |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = meson_nfc_nand_chip_init(dev, nfc, nand_np); |
| if (ret) { |
| meson_nfc_nand_chip_cleanup(nfc); |
| of_node_put(nand_np); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t meson_nfc_irq(int irq, void *id) |
| { |
| struct meson_nfc *nfc = id; |
| u32 cfg; |
| |
| cfg = readl(nfc->reg_base + NFC_REG_CFG); |
| if (!(cfg & NFC_RB_IRQ_EN)) |
| return IRQ_NONE; |
| |
| cfg &= ~(NFC_RB_IRQ_EN); |
| writel(cfg, nfc->reg_base + NFC_REG_CFG); |
| |
| complete(&nfc->completion); |
| return IRQ_HANDLED; |
| } |
| |
| static const struct meson_nfc_data meson_gxl_data = { |
| .ecc_caps = &meson_gxl_ecc_caps, |
| }; |
| |
| static const struct meson_nfc_data meson_axg_data = { |
| .ecc_caps = &meson_axg_ecc_caps, |
| }; |
| |
| static const struct of_device_id meson_nfc_id_table[] = { |
| { |
| .compatible = "amlogic,meson-gxl-nfc", |
| .data = &meson_gxl_data, |
| }, { |
| .compatible = "amlogic,meson-axg-nfc", |
| .data = &meson_axg_data, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, meson_nfc_id_table); |
| |
| static int meson_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct meson_nfc *nfc; |
| int ret, irq; |
| |
| nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->data = of_device_get_match_data(&pdev->dev); |
| if (!nfc->data) |
| return -ENODEV; |
| |
| nand_controller_init(&nfc->controller); |
| INIT_LIST_HEAD(&nfc->chips); |
| init_completion(&nfc->completion); |
| |
| nfc->dev = dev; |
| |
| nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc"); |
| if (IS_ERR(nfc->reg_base)) |
| return PTR_ERR(nfc->reg_base); |
| |
| nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc"); |
| if (IS_ERR(nfc->reg_clk)) |
| return PTR_ERR(nfc->reg_clk); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return -EINVAL; |
| |
| ret = meson_nfc_clk_init(nfc); |
| if (ret) { |
| dev_err(dev, "failed to initialize NAND clock\n"); |
| return ret; |
| } |
| |
| writel(0, nfc->reg_base + NFC_REG_CFG); |
| ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc); |
| if (ret) { |
| dev_err(dev, "failed to request NFC IRQ\n"); |
| ret = -EINVAL; |
| goto err_clk; |
| } |
| |
| ret = dma_set_mask(dev, DMA_BIT_MASK(32)); |
| if (ret) { |
| dev_err(dev, "failed to set DMA mask\n"); |
| goto err_clk; |
| } |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| ret = meson_nfc_nand_chips_init(dev, nfc); |
| if (ret) { |
| dev_err(dev, "failed to init NAND chips\n"); |
| goto err_clk; |
| } |
| |
| return 0; |
| err_clk: |
| meson_nfc_disable_clk(nfc); |
| return ret; |
| } |
| |
| static void meson_nfc_remove(struct platform_device *pdev) |
| { |
| struct meson_nfc *nfc = platform_get_drvdata(pdev); |
| |
| meson_nfc_nand_chip_cleanup(nfc); |
| |
| meson_nfc_disable_clk(nfc); |
| } |
| |
| static struct platform_driver meson_nfc_driver = { |
| .probe = meson_nfc_probe, |
| .remove_new = meson_nfc_remove, |
| .driver = { |
| .name = "meson-nand", |
| .of_match_table = meson_nfc_id_table, |
| }, |
| }; |
| module_platform_driver(meson_nfc_driver); |
| |
| MODULE_LICENSE("Dual MIT/GPL"); |
| MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>"); |
| MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver"); |