| /* SPDX-License-Identifier: GPL-2.0 */ |
| |
| /* |
| * Linux-specific definitions for managing interactions with Microsoft's |
| * Hyper-V hypervisor. The definitions in this file are architecture |
| * independent. See arch/<arch>/include/asm/mshyperv.h for definitions |
| * that are specific to architecture <arch>. |
| * |
| * Definitions that are specified in the Hyper-V Top Level Functional |
| * Spec (TLFS) should not go in this file, but should instead go in |
| * hyperv-tlfs.h. |
| * |
| * Copyright (C) 2019, Microsoft, Inc. |
| * |
| * Author : Michael Kelley <mikelley@microsoft.com> |
| */ |
| |
| #ifndef _ASM_GENERIC_MSHYPERV_H |
| #define _ASM_GENERIC_MSHYPERV_H |
| |
| #include <linux/types.h> |
| #include <linux/atomic.h> |
| #include <linux/bitops.h> |
| #include <linux/cpumask.h> |
| #include <asm/ptrace.h> |
| #include <asm/hyperv-tlfs.h> |
| |
| struct ms_hyperv_info { |
| u32 features; |
| u32 misc_features; |
| u32 hints; |
| u32 nested_features; |
| u32 max_vp_index; |
| u32 max_lp_index; |
| }; |
| extern struct ms_hyperv_info ms_hyperv; |
| |
| extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); |
| extern u64 hv_do_fast_hypercall8(u16 control, u64 input8); |
| |
| |
| /* Generate the guest OS identifier as described in the Hyper-V TLFS */ |
| static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, |
| __u64 d_info2) |
| { |
| __u64 guest_id = 0; |
| |
| guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); |
| guest_id |= (d_info1 << 48); |
| guest_id |= (kernel_version << 16); |
| guest_id |= d_info2; |
| |
| return guest_id; |
| } |
| |
| |
| /* Free the message slot and signal end-of-message if required */ |
| static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) |
| { |
| /* |
| * On crash we're reading some other CPU's message page and we need |
| * to be careful: this other CPU may already had cleared the header |
| * and the host may already had delivered some other message there. |
| * In case we blindly write msg->header.message_type we're going |
| * to lose it. We can still lose a message of the same type but |
| * we count on the fact that there can only be one |
| * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages |
| * on crash. |
| */ |
| if (cmpxchg(&msg->header.message_type, old_msg_type, |
| HVMSG_NONE) != old_msg_type) |
| return; |
| |
| /* |
| * The cmxchg() above does an implicit memory barrier to |
| * ensure the write to MessageType (ie set to |
| * HVMSG_NONE) happens before we read the |
| * MessagePending and EOMing. Otherwise, the EOMing |
| * will not deliver any more messages since there is |
| * no empty slot |
| */ |
| if (msg->header.message_flags.msg_pending) { |
| /* |
| * This will cause message queue rescan to |
| * possibly deliver another msg from the |
| * hypervisor |
| */ |
| hv_signal_eom(); |
| } |
| } |
| |
| void hv_setup_vmbus_irq(void (*handler)(void)); |
| void hv_remove_vmbus_irq(void); |
| void hv_enable_vmbus_irq(void); |
| void hv_disable_vmbus_irq(void); |
| |
| void hv_setup_kexec_handler(void (*handler)(void)); |
| void hv_remove_kexec_handler(void); |
| void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); |
| void hv_remove_crash_handler(void); |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| /* |
| * Hypervisor's notion of virtual processor ID is different from |
| * Linux' notion of CPU ID. This information can only be retrieved |
| * in the context of the calling CPU. Setup a map for easy access |
| * to this information. |
| */ |
| extern u32 *hv_vp_index; |
| extern u32 hv_max_vp_index; |
| |
| /* Sentinel value for an uninitialized entry in hv_vp_index array */ |
| #define VP_INVAL U32_MAX |
| |
| /** |
| * hv_cpu_number_to_vp_number() - Map CPU to VP. |
| * @cpu_number: CPU number in Linux terms |
| * |
| * This function returns the mapping between the Linux processor |
| * number and the hypervisor's virtual processor number, useful |
| * in making hypercalls and such that talk about specific |
| * processors. |
| * |
| * Return: Virtual processor number in Hyper-V terms |
| */ |
| static inline int hv_cpu_number_to_vp_number(int cpu_number) |
| { |
| return hv_vp_index[cpu_number]; |
| } |
| |
| static inline int cpumask_to_vpset(struct hv_vpset *vpset, |
| const struct cpumask *cpus) |
| { |
| int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; |
| |
| /* valid_bank_mask can represent up to 64 banks */ |
| if (hv_max_vp_index / 64 >= 64) |
| return 0; |
| |
| /* |
| * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex |
| * structs are not cleared between calls, we risk flushing unneeded |
| * vCPUs otherwise. |
| */ |
| for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) |
| vpset->bank_contents[vcpu_bank] = 0; |
| |
| /* |
| * Some banks may end up being empty but this is acceptable. |
| */ |
| for_each_cpu(cpu, cpus) { |
| vcpu = hv_cpu_number_to_vp_number(cpu); |
| if (vcpu == VP_INVAL) |
| return -1; |
| vcpu_bank = vcpu / 64; |
| vcpu_offset = vcpu % 64; |
| __set_bit(vcpu_offset, (unsigned long *) |
| &vpset->bank_contents[vcpu_bank]); |
| if (vcpu_bank >= nr_bank) |
| nr_bank = vcpu_bank + 1; |
| } |
| vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); |
| return nr_bank; |
| } |
| |
| void hyperv_report_panic(struct pt_regs *regs, long err); |
| void hyperv_report_panic_msg(phys_addr_t pa, size_t size); |
| bool hv_is_hyperv_initialized(void); |
| bool hv_is_hibernation_supported(void); |
| void hyperv_cleanup(void); |
| void hv_setup_sched_clock(void *sched_clock); |
| #else /* CONFIG_HYPERV */ |
| static inline bool hv_is_hyperv_initialized(void) { return false; } |
| static inline bool hv_is_hibernation_supported(void) { return false; } |
| static inline void hyperv_cleanup(void) {} |
| #endif /* CONFIG_HYPERV */ |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| extern int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void)); |
| extern void hv_remove_stimer0_irq(int irq); |
| #endif |
| |
| #endif |