| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/hwmon.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/jiffies.h> |
| #include <linux/mdio/mdio-i2c.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/phy.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| |
| #include "sfp.h" |
| #include "swphy.h" |
| |
| enum { |
| GPIO_MODDEF0, |
| GPIO_LOS, |
| GPIO_TX_FAULT, |
| GPIO_TX_DISABLE, |
| GPIO_RS0, |
| GPIO_RS1, |
| GPIO_MAX, |
| |
| SFP_F_PRESENT = BIT(GPIO_MODDEF0), |
| SFP_F_LOS = BIT(GPIO_LOS), |
| SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), |
| SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), |
| SFP_F_RS0 = BIT(GPIO_RS0), |
| SFP_F_RS1 = BIT(GPIO_RS1), |
| |
| SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, |
| |
| SFP_E_INSERT = 0, |
| SFP_E_REMOVE, |
| SFP_E_DEV_ATTACH, |
| SFP_E_DEV_DETACH, |
| SFP_E_DEV_DOWN, |
| SFP_E_DEV_UP, |
| SFP_E_TX_FAULT, |
| SFP_E_TX_CLEAR, |
| SFP_E_LOS_HIGH, |
| SFP_E_LOS_LOW, |
| SFP_E_TIMEOUT, |
| |
| SFP_MOD_EMPTY = 0, |
| SFP_MOD_ERROR, |
| SFP_MOD_PROBE, |
| SFP_MOD_WAITDEV, |
| SFP_MOD_HPOWER, |
| SFP_MOD_WAITPWR, |
| SFP_MOD_PRESENT, |
| |
| SFP_DEV_DETACHED = 0, |
| SFP_DEV_DOWN, |
| SFP_DEV_UP, |
| |
| SFP_S_DOWN = 0, |
| SFP_S_FAIL, |
| SFP_S_WAIT, |
| SFP_S_INIT, |
| SFP_S_INIT_PHY, |
| SFP_S_INIT_TX_FAULT, |
| SFP_S_WAIT_LOS, |
| SFP_S_LINK_UP, |
| SFP_S_TX_FAULT, |
| SFP_S_REINIT, |
| SFP_S_TX_DISABLE, |
| }; |
| |
| static const char * const mod_state_strings[] = { |
| [SFP_MOD_EMPTY] = "empty", |
| [SFP_MOD_ERROR] = "error", |
| [SFP_MOD_PROBE] = "probe", |
| [SFP_MOD_WAITDEV] = "waitdev", |
| [SFP_MOD_HPOWER] = "hpower", |
| [SFP_MOD_WAITPWR] = "waitpwr", |
| [SFP_MOD_PRESENT] = "present", |
| }; |
| |
| static const char *mod_state_to_str(unsigned short mod_state) |
| { |
| if (mod_state >= ARRAY_SIZE(mod_state_strings)) |
| return "Unknown module state"; |
| return mod_state_strings[mod_state]; |
| } |
| |
| static const char * const dev_state_strings[] = { |
| [SFP_DEV_DETACHED] = "detached", |
| [SFP_DEV_DOWN] = "down", |
| [SFP_DEV_UP] = "up", |
| }; |
| |
| static const char *dev_state_to_str(unsigned short dev_state) |
| { |
| if (dev_state >= ARRAY_SIZE(dev_state_strings)) |
| return "Unknown device state"; |
| return dev_state_strings[dev_state]; |
| } |
| |
| static const char * const event_strings[] = { |
| [SFP_E_INSERT] = "insert", |
| [SFP_E_REMOVE] = "remove", |
| [SFP_E_DEV_ATTACH] = "dev_attach", |
| [SFP_E_DEV_DETACH] = "dev_detach", |
| [SFP_E_DEV_DOWN] = "dev_down", |
| [SFP_E_DEV_UP] = "dev_up", |
| [SFP_E_TX_FAULT] = "tx_fault", |
| [SFP_E_TX_CLEAR] = "tx_clear", |
| [SFP_E_LOS_HIGH] = "los_high", |
| [SFP_E_LOS_LOW] = "los_low", |
| [SFP_E_TIMEOUT] = "timeout", |
| }; |
| |
| static const char *event_to_str(unsigned short event) |
| { |
| if (event >= ARRAY_SIZE(event_strings)) |
| return "Unknown event"; |
| return event_strings[event]; |
| } |
| |
| static const char * const sm_state_strings[] = { |
| [SFP_S_DOWN] = "down", |
| [SFP_S_FAIL] = "fail", |
| [SFP_S_WAIT] = "wait", |
| [SFP_S_INIT] = "init", |
| [SFP_S_INIT_PHY] = "init_phy", |
| [SFP_S_INIT_TX_FAULT] = "init_tx_fault", |
| [SFP_S_WAIT_LOS] = "wait_los", |
| [SFP_S_LINK_UP] = "link_up", |
| [SFP_S_TX_FAULT] = "tx_fault", |
| [SFP_S_REINIT] = "reinit", |
| [SFP_S_TX_DISABLE] = "tx_disable", |
| }; |
| |
| static const char *sm_state_to_str(unsigned short sm_state) |
| { |
| if (sm_state >= ARRAY_SIZE(sm_state_strings)) |
| return "Unknown state"; |
| return sm_state_strings[sm_state]; |
| } |
| |
| static const char *gpio_names[] = { |
| "mod-def0", |
| "los", |
| "tx-fault", |
| "tx-disable", |
| "rate-select0", |
| "rate-select1", |
| }; |
| |
| static const enum gpiod_flags gpio_flags[] = { |
| GPIOD_IN, |
| GPIOD_IN, |
| GPIOD_IN, |
| GPIOD_ASIS, |
| GPIOD_ASIS, |
| GPIOD_ASIS, |
| }; |
| |
| /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a |
| * non-cooled module to initialise its laser safety circuitry. We wait |
| * an initial T_WAIT period before we check the tx fault to give any PHY |
| * on board (for a copper SFP) time to initialise. |
| */ |
| #define T_WAIT msecs_to_jiffies(50) |
| #define T_START_UP msecs_to_jiffies(300) |
| #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) |
| |
| /* t_reset is the time required to assert the TX_DISABLE signal to reset |
| * an indicated TX_FAULT. |
| */ |
| #define T_RESET_US 10 |
| #define T_FAULT_RECOVER msecs_to_jiffies(1000) |
| |
| /* N_FAULT_INIT is the number of recovery attempts at module initialisation |
| * time. If the TX_FAULT signal is not deasserted after this number of |
| * attempts at clearing it, we decide that the module is faulty. |
| * N_FAULT is the same but after the module has initialised. |
| */ |
| #define N_FAULT_INIT 5 |
| #define N_FAULT 5 |
| |
| /* T_PHY_RETRY is the time interval between attempts to probe the PHY. |
| * R_PHY_RETRY is the number of attempts. |
| */ |
| #define T_PHY_RETRY msecs_to_jiffies(50) |
| #define R_PHY_RETRY 25 |
| |
| /* SFP module presence detection is poor: the three MOD DEF signals are |
| * the same length on the PCB, which means it's possible for MOD DEF 0 to |
| * connect before the I2C bus on MOD DEF 1/2. |
| * |
| * The SFF-8472 specifies t_serial ("Time from power on until module is |
| * ready for data transmission over the two wire serial bus.") as 300ms. |
| */ |
| #define T_SERIAL msecs_to_jiffies(300) |
| #define T_HPOWER_LEVEL msecs_to_jiffies(300) |
| #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) |
| #define R_PROBE_RETRY_INIT 10 |
| #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) |
| #define R_PROBE_RETRY_SLOW 12 |
| |
| /* SFP modules appear to always have their PHY configured for bus address |
| * 0x56 (which with mdio-i2c, translates to a PHY address of 22). |
| * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface |
| * via address 0x51 (mdio-i2c will use RollBall protocol on this address). |
| */ |
| #define SFP_PHY_ADDR 22 |
| #define SFP_PHY_ADDR_ROLLBALL 17 |
| |
| /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM |
| * at a time. Some SFP modules and also some Linux I2C drivers do not like |
| * reads longer than 16 bytes. |
| */ |
| #define SFP_EEPROM_BLOCK_SIZE 16 |
| |
| struct sff_data { |
| unsigned int gpios; |
| bool (*module_supported)(const struct sfp_eeprom_id *id); |
| }; |
| |
| struct sfp { |
| struct device *dev; |
| struct i2c_adapter *i2c; |
| struct mii_bus *i2c_mii; |
| struct sfp_bus *sfp_bus; |
| enum mdio_i2c_proto mdio_protocol; |
| struct phy_device *mod_phy; |
| const struct sff_data *type; |
| size_t i2c_block_size; |
| u32 max_power_mW; |
| |
| unsigned int (*get_state)(struct sfp *); |
| void (*set_state)(struct sfp *, unsigned int); |
| int (*read)(struct sfp *, bool, u8, void *, size_t); |
| int (*write)(struct sfp *, bool, u8, void *, size_t); |
| |
| struct gpio_desc *gpio[GPIO_MAX]; |
| int gpio_irq[GPIO_MAX]; |
| |
| bool need_poll; |
| |
| /* Access rules: |
| * state_hw_drive: st_mutex held |
| * state_hw_mask: st_mutex held |
| * state_soft_mask: st_mutex held |
| * state: st_mutex held unless reading input bits |
| */ |
| struct mutex st_mutex; /* Protects state */ |
| unsigned int state_hw_drive; |
| unsigned int state_hw_mask; |
| unsigned int state_soft_mask; |
| unsigned int state_ignore_mask; |
| unsigned int state; |
| |
| struct delayed_work poll; |
| struct delayed_work timeout; |
| struct mutex sm_mutex; /* Protects state machine */ |
| unsigned char sm_mod_state; |
| unsigned char sm_mod_tries_init; |
| unsigned char sm_mod_tries; |
| unsigned char sm_dev_state; |
| unsigned short sm_state; |
| unsigned char sm_fault_retries; |
| unsigned char sm_phy_retries; |
| |
| struct sfp_eeprom_id id; |
| unsigned int module_power_mW; |
| unsigned int module_t_start_up; |
| unsigned int module_t_wait; |
| unsigned int phy_t_retry; |
| |
| unsigned int rate_kbd; |
| unsigned int rs_threshold_kbd; |
| unsigned int rs_state_mask; |
| |
| bool have_a2; |
| |
| const struct sfp_quirk *quirk; |
| |
| #if IS_ENABLED(CONFIG_HWMON) |
| struct sfp_diag diag; |
| struct delayed_work hwmon_probe; |
| unsigned int hwmon_tries; |
| struct device *hwmon_dev; |
| char *hwmon_name; |
| #endif |
| |
| #if IS_ENABLED(CONFIG_DEBUG_FS) |
| struct dentry *debugfs_dir; |
| #endif |
| }; |
| |
| static bool sff_module_supported(const struct sfp_eeprom_id *id) |
| { |
| return id->base.phys_id == SFF8024_ID_SFF_8472 && |
| id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; |
| } |
| |
| static const struct sff_data sff_data = { |
| .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, |
| .module_supported = sff_module_supported, |
| }; |
| |
| static bool sfp_module_supported(const struct sfp_eeprom_id *id) |
| { |
| if (id->base.phys_id == SFF8024_ID_SFP && |
| id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) |
| return true; |
| |
| /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored |
| * phys id SFF instead of SFP. Therefore mark this module explicitly |
| * as supported based on vendor name and pn match. |
| */ |
| if (id->base.phys_id == SFF8024_ID_SFF_8472 && |
| id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && |
| !memcmp(id->base.vendor_name, "UBNT ", 16) && |
| !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) |
| return true; |
| |
| return false; |
| } |
| |
| static const struct sff_data sfp_data = { |
| .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | |
| SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, |
| .module_supported = sfp_module_supported, |
| }; |
| |
| static const struct of_device_id sfp_of_match[] = { |
| { .compatible = "sff,sff", .data = &sff_data, }, |
| { .compatible = "sff,sfp", .data = &sfp_data, }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, sfp_of_match); |
| |
| static void sfp_fixup_long_startup(struct sfp *sfp) |
| { |
| sfp->module_t_start_up = T_START_UP_BAD_GPON; |
| } |
| |
| static void sfp_fixup_ignore_los(struct sfp *sfp) |
| { |
| /* This forces LOS to zero, so we ignore transitions */ |
| sfp->state_ignore_mask |= SFP_F_LOS; |
| /* Make sure that LOS options are clear */ |
| sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | |
| SFP_OPTIONS_LOS_NORMAL); |
| } |
| |
| static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) |
| { |
| sfp->state_ignore_mask |= SFP_F_TX_FAULT; |
| } |
| |
| static void sfp_fixup_nokia(struct sfp *sfp) |
| { |
| sfp_fixup_long_startup(sfp); |
| sfp_fixup_ignore_los(sfp); |
| } |
| |
| // For 10GBASE-T short-reach modules |
| static void sfp_fixup_10gbaset_30m(struct sfp *sfp) |
| { |
| sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; |
| sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; |
| } |
| |
| static void sfp_fixup_rollball(struct sfp *sfp) |
| { |
| sfp->mdio_protocol = MDIO_I2C_ROLLBALL; |
| |
| /* RollBall modules may disallow access to PHY registers for up to 25 |
| * seconds, and the reads return 0xffff before that. Increase the time |
| * between PHY probe retries from 50ms to 1s so that we will wait for |
| * the PHY for a sufficient amount of time. |
| */ |
| sfp->phy_t_retry = msecs_to_jiffies(1000); |
| } |
| |
| static void sfp_fixup_fs_2_5gt(struct sfp *sfp) |
| { |
| sfp_fixup_rollball(sfp); |
| |
| /* The RollBall fixup is not enough for FS modules, the PHY chip inside |
| * them does not return 0xffff for PHY ID registers in all MMDs for the |
| * while initializing. They need a 4 second wait before accessing PHY. |
| */ |
| sfp->module_t_wait = msecs_to_jiffies(4000); |
| } |
| |
| static void sfp_fixup_fs_10gt(struct sfp *sfp) |
| { |
| sfp_fixup_10gbaset_30m(sfp); |
| sfp_fixup_fs_2_5gt(sfp); |
| } |
| |
| static void sfp_fixup_halny_gsfp(struct sfp *sfp) |
| { |
| /* Ignore the TX_FAULT and LOS signals on this module. |
| * these are possibly used for other purposes on this |
| * module, e.g. a serial port. |
| */ |
| sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); |
| } |
| |
| static void sfp_fixup_rollball_cc(struct sfp *sfp) |
| { |
| sfp_fixup_rollball(sfp); |
| |
| /* Some RollBall SFPs may have wrong (zero) extended compliance code |
| * burned in EEPROM. For PHY probing we need the correct one. |
| */ |
| sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; |
| } |
| |
| static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, |
| unsigned long *modes, |
| unsigned long *interfaces) |
| { |
| linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); |
| __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); |
| } |
| |
| static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, |
| unsigned long *modes, |
| unsigned long *interfaces) |
| { |
| linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); |
| } |
| |
| static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, |
| unsigned long *modes, |
| unsigned long *interfaces) |
| { |
| /* Copper 2.5G SFP */ |
| linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); |
| __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); |
| sfp_quirk_disable_autoneg(id, modes, interfaces); |
| } |
| |
| static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, |
| unsigned long *modes, |
| unsigned long *interfaces) |
| { |
| /* Ubiquiti U-Fiber Instant module claims that support all transceiver |
| * types including 10G Ethernet which is not truth. So clear all claimed |
| * modes and set only one mode which module supports: 1000baseX_Full. |
| */ |
| linkmode_zero(modes); |
| linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); |
| } |
| |
| #define SFP_QUIRK(_v, _p, _m, _f) \ |
| { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } |
| #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) |
| #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) |
| |
| static const struct sfp_quirk sfp_quirks[] = { |
| // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly |
| // report 2500MBd NRZ in their EEPROM |
| SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), |
| |
| // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd |
| // NRZ in their EEPROM |
| SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, |
| sfp_fixup_nokia), |
| |
| // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball |
| // protocol to talk to the PHY and needs 4 sec wait before probing the |
| // PHY. |
| SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), |
| |
| // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and |
| // needs 4 sec wait before probing the PHY. |
| SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt), |
| |
| // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd |
| // NRZ in their EEPROM |
| SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, |
| sfp_fixup_ignore_tx_fault), |
| |
| SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), |
| |
| // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports |
| // 2600MBd in their EERPOM |
| SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), |
| |
| // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in |
| // their EEPROM |
| SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, |
| sfp_fixup_ignore_tx_fault), |
| |
| // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report |
| // 2500MBd NRZ in their EEPROM |
| SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), |
| |
| SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), |
| |
| // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the |
| // Rollball protocol to talk to the PHY. |
| SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), |
| SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), |
| |
| // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator |
| SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), |
| |
| SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), |
| SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), |
| SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), |
| SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), |
| SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), |
| SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), |
| SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), |
| }; |
| |
| static size_t sfp_strlen(const char *str, size_t maxlen) |
| { |
| size_t size, i; |
| |
| /* Trailing characters should be filled with space chars, but |
| * some manufacturers can't read SFF-8472 and use NUL. |
| */ |
| for (i = 0, size = 0; i < maxlen; i++) |
| if (str[i] != ' ' && str[i] != '\0') |
| size = i + 1; |
| |
| return size; |
| } |
| |
| static bool sfp_match(const char *qs, const char *str, size_t len) |
| { |
| if (!qs) |
| return true; |
| if (strlen(qs) != len) |
| return false; |
| return !strncmp(qs, str, len); |
| } |
| |
| static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) |
| { |
| const struct sfp_quirk *q; |
| unsigned int i; |
| size_t vs, ps; |
| |
| vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); |
| ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); |
| |
| for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) |
| if (sfp_match(q->vendor, id->base.vendor_name, vs) && |
| sfp_match(q->part, id->base.vendor_pn, ps)) |
| return q; |
| |
| return NULL; |
| } |
| |
| static unsigned long poll_jiffies; |
| |
| static unsigned int sfp_gpio_get_state(struct sfp *sfp) |
| { |
| unsigned int i, state, v; |
| |
| for (i = state = 0; i < GPIO_MAX; i++) { |
| if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) |
| continue; |
| |
| v = gpiod_get_value_cansleep(sfp->gpio[i]); |
| if (v) |
| state |= BIT(i); |
| } |
| |
| return state; |
| } |
| |
| static unsigned int sff_gpio_get_state(struct sfp *sfp) |
| { |
| return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; |
| } |
| |
| static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) |
| { |
| unsigned int drive; |
| |
| if (state & SFP_F_PRESENT) |
| /* If the module is present, drive the requested signals */ |
| drive = sfp->state_hw_drive; |
| else |
| /* Otherwise, let them float to the pull-ups */ |
| drive = 0; |
| |
| if (sfp->gpio[GPIO_TX_DISABLE]) { |
| if (drive & SFP_F_TX_DISABLE) |
| gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], |
| state & SFP_F_TX_DISABLE); |
| else |
| gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); |
| } |
| |
| if (sfp->gpio[GPIO_RS0]) { |
| if (drive & SFP_F_RS0) |
| gpiod_direction_output(sfp->gpio[GPIO_RS0], |
| state & SFP_F_RS0); |
| else |
| gpiod_direction_input(sfp->gpio[GPIO_RS0]); |
| } |
| |
| if (sfp->gpio[GPIO_RS1]) { |
| if (drive & SFP_F_RS1) |
| gpiod_direction_output(sfp->gpio[GPIO_RS1], |
| state & SFP_F_RS1); |
| else |
| gpiod_direction_input(sfp->gpio[GPIO_RS1]); |
| } |
| } |
| |
| static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, |
| size_t len) |
| { |
| struct i2c_msg msgs[2]; |
| u8 bus_addr = a2 ? 0x51 : 0x50; |
| size_t block_size = sfp->i2c_block_size; |
| size_t this_len; |
| int ret; |
| |
| msgs[0].addr = bus_addr; |
| msgs[0].flags = 0; |
| msgs[0].len = 1; |
| msgs[0].buf = &dev_addr; |
| msgs[1].addr = bus_addr; |
| msgs[1].flags = I2C_M_RD; |
| msgs[1].len = len; |
| msgs[1].buf = buf; |
| |
| while (len) { |
| this_len = len; |
| if (this_len > block_size) |
| this_len = block_size; |
| |
| msgs[1].len = this_len; |
| |
| ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); |
| if (ret < 0) |
| return ret; |
| |
| if (ret != ARRAY_SIZE(msgs)) |
| break; |
| |
| msgs[1].buf += this_len; |
| dev_addr += this_len; |
| len -= this_len; |
| } |
| |
| return msgs[1].buf - (u8 *)buf; |
| } |
| |
| static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, |
| size_t len) |
| { |
| struct i2c_msg msgs[1]; |
| u8 bus_addr = a2 ? 0x51 : 0x50; |
| int ret; |
| |
| msgs[0].addr = bus_addr; |
| msgs[0].flags = 0; |
| msgs[0].len = 1 + len; |
| msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); |
| if (!msgs[0].buf) |
| return -ENOMEM; |
| |
| msgs[0].buf[0] = dev_addr; |
| memcpy(&msgs[0].buf[1], buf, len); |
| |
| ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); |
| |
| kfree(msgs[0].buf); |
| |
| if (ret < 0) |
| return ret; |
| |
| return ret == ARRAY_SIZE(msgs) ? len : 0; |
| } |
| |
| static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) |
| { |
| if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) |
| return -EINVAL; |
| |
| sfp->i2c = i2c; |
| sfp->read = sfp_i2c_read; |
| sfp->write = sfp_i2c_write; |
| |
| return 0; |
| } |
| |
| static int sfp_i2c_mdiobus_create(struct sfp *sfp) |
| { |
| struct mii_bus *i2c_mii; |
| int ret; |
| |
| i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); |
| if (IS_ERR(i2c_mii)) |
| return PTR_ERR(i2c_mii); |
| |
| i2c_mii->name = "SFP I2C Bus"; |
| i2c_mii->phy_mask = ~0; |
| |
| ret = mdiobus_register(i2c_mii); |
| if (ret < 0) { |
| mdiobus_free(i2c_mii); |
| return ret; |
| } |
| |
| sfp->i2c_mii = i2c_mii; |
| |
| return 0; |
| } |
| |
| static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) |
| { |
| mdiobus_unregister(sfp->i2c_mii); |
| sfp->i2c_mii = NULL; |
| } |
| |
| /* Interface */ |
| static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) |
| { |
| return sfp->read(sfp, a2, addr, buf, len); |
| } |
| |
| static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) |
| { |
| return sfp->write(sfp, a2, addr, buf, len); |
| } |
| |
| static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) |
| { |
| int ret; |
| u8 old, v; |
| |
| ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); |
| if (ret != sizeof(old)) |
| return ret; |
| |
| v = (old & ~mask) | (val & mask); |
| if (v == old) |
| return sizeof(v); |
| |
| return sfp_write(sfp, a2, addr, &v, sizeof(v)); |
| } |
| |
| static unsigned int sfp_soft_get_state(struct sfp *sfp) |
| { |
| unsigned int state = 0; |
| u8 status; |
| int ret; |
| |
| ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); |
| if (ret == sizeof(status)) { |
| if (status & SFP_STATUS_RX_LOS) |
| state |= SFP_F_LOS; |
| if (status & SFP_STATUS_TX_FAULT) |
| state |= SFP_F_TX_FAULT; |
| } else { |
| dev_err_ratelimited(sfp->dev, |
| "failed to read SFP soft status: %pe\n", |
| ERR_PTR(ret)); |
| /* Preserve the current state */ |
| state = sfp->state; |
| } |
| |
| return state & sfp->state_soft_mask; |
| } |
| |
| static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, |
| unsigned int soft) |
| { |
| u8 mask = 0; |
| u8 val = 0; |
| |
| if (soft & SFP_F_TX_DISABLE) |
| mask |= SFP_STATUS_TX_DISABLE_FORCE; |
| if (state & SFP_F_TX_DISABLE) |
| val |= SFP_STATUS_TX_DISABLE_FORCE; |
| |
| if (soft & SFP_F_RS0) |
| mask |= SFP_STATUS_RS0_SELECT; |
| if (state & SFP_F_RS0) |
| val |= SFP_STATUS_RS0_SELECT; |
| |
| if (mask) |
| sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); |
| |
| val = mask = 0; |
| if (soft & SFP_F_RS1) |
| mask |= SFP_EXT_STATUS_RS1_SELECT; |
| if (state & SFP_F_RS1) |
| val |= SFP_EXT_STATUS_RS1_SELECT; |
| |
| if (mask) |
| sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); |
| } |
| |
| static void sfp_soft_start_poll(struct sfp *sfp) |
| { |
| const struct sfp_eeprom_id *id = &sfp->id; |
| unsigned int mask = 0; |
| |
| if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) |
| mask |= SFP_F_TX_DISABLE; |
| if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) |
| mask |= SFP_F_TX_FAULT; |
| if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) |
| mask |= SFP_F_LOS; |
| if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) |
| mask |= sfp->rs_state_mask; |
| |
| mutex_lock(&sfp->st_mutex); |
| // Poll the soft state for hardware pins we want to ignore |
| sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & |
| mask; |
| |
| if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && |
| !sfp->need_poll) |
| mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); |
| mutex_unlock(&sfp->st_mutex); |
| } |
| |
| static void sfp_soft_stop_poll(struct sfp *sfp) |
| { |
| mutex_lock(&sfp->st_mutex); |
| sfp->state_soft_mask = 0; |
| mutex_unlock(&sfp->st_mutex); |
| } |
| |
| /* sfp_get_state() - must be called with st_mutex held, or in the |
| * initialisation path. |
| */ |
| static unsigned int sfp_get_state(struct sfp *sfp) |
| { |
| unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); |
| unsigned int state; |
| |
| state = sfp->get_state(sfp) & sfp->state_hw_mask; |
| if (state & SFP_F_PRESENT && soft) |
| state |= sfp_soft_get_state(sfp); |
| |
| return state; |
| } |
| |
| /* sfp_set_state() - must be called with st_mutex held, or in the |
| * initialisation path. |
| */ |
| static void sfp_set_state(struct sfp *sfp, unsigned int state) |
| { |
| unsigned int soft; |
| |
| sfp->set_state(sfp, state); |
| |
| soft = sfp->state_soft_mask & SFP_F_OUTPUTS; |
| if (state & SFP_F_PRESENT && soft) |
| sfp_soft_set_state(sfp, state, soft); |
| } |
| |
| static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) |
| { |
| mutex_lock(&sfp->st_mutex); |
| sfp->state = (sfp->state & ~mask) | set; |
| sfp_set_state(sfp, sfp->state); |
| mutex_unlock(&sfp->st_mutex); |
| } |
| |
| static unsigned int sfp_check(void *buf, size_t len) |
| { |
| u8 *p, check; |
| |
| for (p = buf, check = 0; len; p++, len--) |
| check += *p; |
| |
| return check; |
| } |
| |
| /* hwmon */ |
| #if IS_ENABLED(CONFIG_HWMON) |
| static umode_t sfp_hwmon_is_visible(const void *data, |
| enum hwmon_sensor_types type, |
| u32 attr, int channel) |
| { |
| const struct sfp *sfp = data; |
| |
| switch (type) { |
| case hwmon_temp: |
| switch (attr) { |
| case hwmon_temp_min_alarm: |
| case hwmon_temp_max_alarm: |
| case hwmon_temp_lcrit_alarm: |
| case hwmon_temp_crit_alarm: |
| case hwmon_temp_min: |
| case hwmon_temp_max: |
| case hwmon_temp_lcrit: |
| case hwmon_temp_crit: |
| if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| return 0; |
| fallthrough; |
| case hwmon_temp_input: |
| case hwmon_temp_label: |
| return 0444; |
| default: |
| return 0; |
| } |
| case hwmon_in: |
| switch (attr) { |
| case hwmon_in_min_alarm: |
| case hwmon_in_max_alarm: |
| case hwmon_in_lcrit_alarm: |
| case hwmon_in_crit_alarm: |
| case hwmon_in_min: |
| case hwmon_in_max: |
| case hwmon_in_lcrit: |
| case hwmon_in_crit: |
| if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| return 0; |
| fallthrough; |
| case hwmon_in_input: |
| case hwmon_in_label: |
| return 0444; |
| default: |
| return 0; |
| } |
| case hwmon_curr: |
| switch (attr) { |
| case hwmon_curr_min_alarm: |
| case hwmon_curr_max_alarm: |
| case hwmon_curr_lcrit_alarm: |
| case hwmon_curr_crit_alarm: |
| case hwmon_curr_min: |
| case hwmon_curr_max: |
| case hwmon_curr_lcrit: |
| case hwmon_curr_crit: |
| if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| return 0; |
| fallthrough; |
| case hwmon_curr_input: |
| case hwmon_curr_label: |
| return 0444; |
| default: |
| return 0; |
| } |
| case hwmon_power: |
| /* External calibration of receive power requires |
| * floating point arithmetic. Doing that in the kernel |
| * is not easy, so just skip it. If the module does |
| * not require external calibration, we can however |
| * show receiver power, since FP is then not needed. |
| */ |
| if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && |
| channel == 1) |
| return 0; |
| switch (attr) { |
| case hwmon_power_min_alarm: |
| case hwmon_power_max_alarm: |
| case hwmon_power_lcrit_alarm: |
| case hwmon_power_crit_alarm: |
| case hwmon_power_min: |
| case hwmon_power_max: |
| case hwmon_power_lcrit: |
| case hwmon_power_crit: |
| if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| return 0; |
| fallthrough; |
| case hwmon_power_input: |
| case hwmon_power_label: |
| return 0444; |
| default: |
| return 0; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) |
| { |
| __be16 val; |
| int err; |
| |
| err = sfp_read(sfp, true, reg, &val, sizeof(val)); |
| if (err < 0) |
| return err; |
| |
| *value = be16_to_cpu(val); |
| |
| return 0; |
| } |
| |
| static void sfp_hwmon_to_rx_power(long *value) |
| { |
| *value = DIV_ROUND_CLOSEST(*value, 10); |
| } |
| |
| static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, |
| long *value) |
| { |
| if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) |
| *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; |
| } |
| |
| static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) |
| { |
| sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), |
| be16_to_cpu(sfp->diag.cal_t_offset), value); |
| |
| if (*value >= 0x8000) |
| *value -= 0x10000; |
| |
| *value = DIV_ROUND_CLOSEST(*value * 1000, 256); |
| } |
| |
| static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) |
| { |
| sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), |
| be16_to_cpu(sfp->diag.cal_v_offset), value); |
| |
| *value = DIV_ROUND_CLOSEST(*value, 10); |
| } |
| |
| static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) |
| { |
| sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), |
| be16_to_cpu(sfp->diag.cal_txi_offset), value); |
| |
| *value = DIV_ROUND_CLOSEST(*value, 500); |
| } |
| |
| static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) |
| { |
| sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), |
| be16_to_cpu(sfp->diag.cal_txpwr_offset), value); |
| |
| *value = DIV_ROUND_CLOSEST(*value, 10); |
| } |
| |
| static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) |
| { |
| int err; |
| |
| err = sfp_hwmon_read_sensor(sfp, reg, value); |
| if (err < 0) |
| return err; |
| |
| sfp_hwmon_calibrate_temp(sfp, value); |
| |
| return 0; |
| } |
| |
| static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) |
| { |
| int err; |
| |
| err = sfp_hwmon_read_sensor(sfp, reg, value); |
| if (err < 0) |
| return err; |
| |
| sfp_hwmon_calibrate_vcc(sfp, value); |
| |
| return 0; |
| } |
| |
| static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) |
| { |
| int err; |
| |
| err = sfp_hwmon_read_sensor(sfp, reg, value); |
| if (err < 0) |
| return err; |
| |
| sfp_hwmon_calibrate_bias(sfp, value); |
| |
| return 0; |
| } |
| |
| static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) |
| { |
| int err; |
| |
| err = sfp_hwmon_read_sensor(sfp, reg, value); |
| if (err < 0) |
| return err; |
| |
| sfp_hwmon_calibrate_tx_power(sfp, value); |
| |
| return 0; |
| } |
| |
| static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) |
| { |
| int err; |
| |
| err = sfp_hwmon_read_sensor(sfp, reg, value); |
| if (err < 0) |
| return err; |
| |
| sfp_hwmon_to_rx_power(value); |
| |
| return 0; |
| } |
| |
| static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) |
| { |
| u8 status; |
| int err; |
| |
| switch (attr) { |
| case hwmon_temp_input: |
| return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); |
| |
| case hwmon_temp_lcrit: |
| *value = be16_to_cpu(sfp->diag.temp_low_alarm); |
| sfp_hwmon_calibrate_temp(sfp, value); |
| return 0; |
| |
| case hwmon_temp_min: |
| *value = be16_to_cpu(sfp->diag.temp_low_warn); |
| sfp_hwmon_calibrate_temp(sfp, value); |
| return 0; |
| case hwmon_temp_max: |
| *value = be16_to_cpu(sfp->diag.temp_high_warn); |
| sfp_hwmon_calibrate_temp(sfp, value); |
| return 0; |
| |
| case hwmon_temp_crit: |
| *value = be16_to_cpu(sfp->diag.temp_high_alarm); |
| sfp_hwmon_calibrate_temp(sfp, value); |
| return 0; |
| |
| case hwmon_temp_lcrit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_TEMP_LOW); |
| return 0; |
| |
| case hwmon_temp_min_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_TEMP_LOW); |
| return 0; |
| |
| case hwmon_temp_max_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_TEMP_HIGH); |
| return 0; |
| |
| case hwmon_temp_crit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_TEMP_HIGH); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) |
| { |
| u8 status; |
| int err; |
| |
| switch (attr) { |
| case hwmon_in_input: |
| return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); |
| |
| case hwmon_in_lcrit: |
| *value = be16_to_cpu(sfp->diag.volt_low_alarm); |
| sfp_hwmon_calibrate_vcc(sfp, value); |
| return 0; |
| |
| case hwmon_in_min: |
| *value = be16_to_cpu(sfp->diag.volt_low_warn); |
| sfp_hwmon_calibrate_vcc(sfp, value); |
| return 0; |
| |
| case hwmon_in_max: |
| *value = be16_to_cpu(sfp->diag.volt_high_warn); |
| sfp_hwmon_calibrate_vcc(sfp, value); |
| return 0; |
| |
| case hwmon_in_crit: |
| *value = be16_to_cpu(sfp->diag.volt_high_alarm); |
| sfp_hwmon_calibrate_vcc(sfp, value); |
| return 0; |
| |
| case hwmon_in_lcrit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_VCC_LOW); |
| return 0; |
| |
| case hwmon_in_min_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_VCC_LOW); |
| return 0; |
| |
| case hwmon_in_max_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_VCC_HIGH); |
| return 0; |
| |
| case hwmon_in_crit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_VCC_HIGH); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) |
| { |
| u8 status; |
| int err; |
| |
| switch (attr) { |
| case hwmon_curr_input: |
| return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); |
| |
| case hwmon_curr_lcrit: |
| *value = be16_to_cpu(sfp->diag.bias_low_alarm); |
| sfp_hwmon_calibrate_bias(sfp, value); |
| return 0; |
| |
| case hwmon_curr_min: |
| *value = be16_to_cpu(sfp->diag.bias_low_warn); |
| sfp_hwmon_calibrate_bias(sfp, value); |
| return 0; |
| |
| case hwmon_curr_max: |
| *value = be16_to_cpu(sfp->diag.bias_high_warn); |
| sfp_hwmon_calibrate_bias(sfp, value); |
| return 0; |
| |
| case hwmon_curr_crit: |
| *value = be16_to_cpu(sfp->diag.bias_high_alarm); |
| sfp_hwmon_calibrate_bias(sfp, value); |
| return 0; |
| |
| case hwmon_curr_lcrit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); |
| return 0; |
| |
| case hwmon_curr_min_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_TX_BIAS_LOW); |
| return 0; |
| |
| case hwmon_curr_max_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); |
| return 0; |
| |
| case hwmon_curr_crit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) |
| { |
| u8 status; |
| int err; |
| |
| switch (attr) { |
| case hwmon_power_input: |
| return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); |
| |
| case hwmon_power_lcrit: |
| *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); |
| sfp_hwmon_calibrate_tx_power(sfp, value); |
| return 0; |
| |
| case hwmon_power_min: |
| *value = be16_to_cpu(sfp->diag.txpwr_low_warn); |
| sfp_hwmon_calibrate_tx_power(sfp, value); |
| return 0; |
| |
| case hwmon_power_max: |
| *value = be16_to_cpu(sfp->diag.txpwr_high_warn); |
| sfp_hwmon_calibrate_tx_power(sfp, value); |
| return 0; |
| |
| case hwmon_power_crit: |
| *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); |
| sfp_hwmon_calibrate_tx_power(sfp, value); |
| return 0; |
| |
| case hwmon_power_lcrit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_TXPWR_LOW); |
| return 0; |
| |
| case hwmon_power_min_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_TXPWR_LOW); |
| return 0; |
| |
| case hwmon_power_max_alarm: |
| err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN0_TXPWR_HIGH); |
| return 0; |
| |
| case hwmon_power_crit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM0_TXPWR_HIGH); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) |
| { |
| u8 status; |
| int err; |
| |
| switch (attr) { |
| case hwmon_power_input: |
| return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); |
| |
| case hwmon_power_lcrit: |
| *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); |
| sfp_hwmon_to_rx_power(value); |
| return 0; |
| |
| case hwmon_power_min: |
| *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); |
| sfp_hwmon_to_rx_power(value); |
| return 0; |
| |
| case hwmon_power_max: |
| *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); |
| sfp_hwmon_to_rx_power(value); |
| return 0; |
| |
| case hwmon_power_crit: |
| *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); |
| sfp_hwmon_to_rx_power(value); |
| return 0; |
| |
| case hwmon_power_lcrit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM1_RXPWR_LOW); |
| return 0; |
| |
| case hwmon_power_min_alarm: |
| err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN1_RXPWR_LOW); |
| return 0; |
| |
| case hwmon_power_max_alarm: |
| err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_WARN1_RXPWR_HIGH); |
| return 0; |
| |
| case hwmon_power_crit_alarm: |
| err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); |
| if (err < 0) |
| return err; |
| |
| *value = !!(status & SFP_ALARM1_RXPWR_HIGH); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, |
| u32 attr, int channel, long *value) |
| { |
| struct sfp *sfp = dev_get_drvdata(dev); |
| |
| switch (type) { |
| case hwmon_temp: |
| return sfp_hwmon_temp(sfp, attr, value); |
| case hwmon_in: |
| return sfp_hwmon_vcc(sfp, attr, value); |
| case hwmon_curr: |
| return sfp_hwmon_bias(sfp, attr, value); |
| case hwmon_power: |
| switch (channel) { |
| case 0: |
| return sfp_hwmon_tx_power(sfp, attr, value); |
| case 1: |
| return sfp_hwmon_rx_power(sfp, attr, value); |
| default: |
| return -EOPNOTSUPP; |
| } |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static const char *const sfp_hwmon_power_labels[] = { |
| "TX_power", |
| "RX_power", |
| }; |
| |
| static int sfp_hwmon_read_string(struct device *dev, |
| enum hwmon_sensor_types type, |
| u32 attr, int channel, const char **str) |
| { |
| switch (type) { |
| case hwmon_curr: |
| switch (attr) { |
| case hwmon_curr_label: |
| *str = "bias"; |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| case hwmon_temp: |
| switch (attr) { |
| case hwmon_temp_label: |
| *str = "temperature"; |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| case hwmon_in: |
| switch (attr) { |
| case hwmon_in_label: |
| *str = "VCC"; |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| case hwmon_power: |
| switch (attr) { |
| case hwmon_power_label: |
| *str = sfp_hwmon_power_labels[channel]; |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct hwmon_ops sfp_hwmon_ops = { |
| .is_visible = sfp_hwmon_is_visible, |
| .read = sfp_hwmon_read, |
| .read_string = sfp_hwmon_read_string, |
| }; |
| |
| static const struct hwmon_channel_info * const sfp_hwmon_info[] = { |
| HWMON_CHANNEL_INFO(chip, |
| HWMON_C_REGISTER_TZ), |
| HWMON_CHANNEL_INFO(in, |
| HWMON_I_INPUT | |
| HWMON_I_MAX | HWMON_I_MIN | |
| HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | |
| HWMON_I_CRIT | HWMON_I_LCRIT | |
| HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | |
| HWMON_I_LABEL), |
| HWMON_CHANNEL_INFO(temp, |
| HWMON_T_INPUT | |
| HWMON_T_MAX | HWMON_T_MIN | |
| HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | |
| HWMON_T_CRIT | HWMON_T_LCRIT | |
| HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | |
| HWMON_T_LABEL), |
| HWMON_CHANNEL_INFO(curr, |
| HWMON_C_INPUT | |
| HWMON_C_MAX | HWMON_C_MIN | |
| HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | |
| HWMON_C_CRIT | HWMON_C_LCRIT | |
| HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | |
| HWMON_C_LABEL), |
| HWMON_CHANNEL_INFO(power, |
| /* Transmit power */ |
| HWMON_P_INPUT | |
| HWMON_P_MAX | HWMON_P_MIN | |
| HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | |
| HWMON_P_CRIT | HWMON_P_LCRIT | |
| HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | |
| HWMON_P_LABEL, |
| /* Receive power */ |
| HWMON_P_INPUT | |
| HWMON_P_MAX | HWMON_P_MIN | |
| HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | |
| HWMON_P_CRIT | HWMON_P_LCRIT | |
| HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | |
| HWMON_P_LABEL), |
| NULL, |
| }; |
| |
| static const struct hwmon_chip_info sfp_hwmon_chip_info = { |
| .ops = &sfp_hwmon_ops, |
| .info = sfp_hwmon_info, |
| }; |
| |
| static void sfp_hwmon_probe(struct work_struct *work) |
| { |
| struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); |
| int err; |
| |
| /* hwmon interface needs to access 16bit registers in atomic way to |
| * guarantee coherency of the diagnostic monitoring data. If it is not |
| * possible to guarantee coherency because EEPROM is broken in such way |
| * that does not support atomic 16bit read operation then we have to |
| * skip registration of hwmon device. |
| */ |
| if (sfp->i2c_block_size < 2) { |
| dev_info(sfp->dev, |
| "skipping hwmon device registration due to broken EEPROM\n"); |
| dev_info(sfp->dev, |
| "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); |
| return; |
| } |
| |
| err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); |
| if (err < 0) { |
| if (sfp->hwmon_tries--) { |
| mod_delayed_work(system_wq, &sfp->hwmon_probe, |
| T_PROBE_RETRY_SLOW); |
| } else { |
| dev_warn(sfp->dev, "hwmon probe failed: %pe\n", |
| ERR_PTR(err)); |
| } |
| return; |
| } |
| |
| sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); |
| if (IS_ERR(sfp->hwmon_name)) { |
| dev_err(sfp->dev, "out of memory for hwmon name\n"); |
| return; |
| } |
| |
| sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, |
| sfp->hwmon_name, sfp, |
| &sfp_hwmon_chip_info, |
| NULL); |
| if (IS_ERR(sfp->hwmon_dev)) |
| dev_err(sfp->dev, "failed to register hwmon device: %ld\n", |
| PTR_ERR(sfp->hwmon_dev)); |
| } |
| |
| static int sfp_hwmon_insert(struct sfp *sfp) |
| { |
| if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { |
| mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); |
| sfp->hwmon_tries = R_PROBE_RETRY_SLOW; |
| } |
| |
| return 0; |
| } |
| |
| static void sfp_hwmon_remove(struct sfp *sfp) |
| { |
| cancel_delayed_work_sync(&sfp->hwmon_probe); |
| if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { |
| hwmon_device_unregister(sfp->hwmon_dev); |
| sfp->hwmon_dev = NULL; |
| kfree(sfp->hwmon_name); |
| } |
| } |
| |
| static int sfp_hwmon_init(struct sfp *sfp) |
| { |
| INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); |
| |
| return 0; |
| } |
| |
| static void sfp_hwmon_exit(struct sfp *sfp) |
| { |
| cancel_delayed_work_sync(&sfp->hwmon_probe); |
| } |
| #else |
| static int sfp_hwmon_insert(struct sfp *sfp) |
| { |
| return 0; |
| } |
| |
| static void sfp_hwmon_remove(struct sfp *sfp) |
| { |
| } |
| |
| static int sfp_hwmon_init(struct sfp *sfp) |
| { |
| return 0; |
| } |
| |
| static void sfp_hwmon_exit(struct sfp *sfp) |
| { |
| } |
| #endif |
| |
| /* Helpers */ |
| static void sfp_module_tx_disable(struct sfp *sfp) |
| { |
| dev_dbg(sfp->dev, "tx disable %u -> %u\n", |
| sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); |
| sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); |
| } |
| |
| static void sfp_module_tx_enable(struct sfp *sfp) |
| { |
| dev_dbg(sfp->dev, "tx disable %u -> %u\n", |
| sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); |
| sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); |
| } |
| |
| #if IS_ENABLED(CONFIG_DEBUG_FS) |
| static int sfp_debug_state_show(struct seq_file *s, void *data) |
| { |
| struct sfp *sfp = s->private; |
| |
| seq_printf(s, "Module state: %s\n", |
| mod_state_to_str(sfp->sm_mod_state)); |
| seq_printf(s, "Module probe attempts: %d %d\n", |
| R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, |
| R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); |
| seq_printf(s, "Device state: %s\n", |
| dev_state_to_str(sfp->sm_dev_state)); |
| seq_printf(s, "Main state: %s\n", |
| sm_state_to_str(sfp->sm_state)); |
| seq_printf(s, "Fault recovery remaining retries: %d\n", |
| sfp->sm_fault_retries); |
| seq_printf(s, "PHY probe remaining retries: %d\n", |
| sfp->sm_phy_retries); |
| seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); |
| seq_printf(s, "Rate select threshold: %u kBd\n", |
| sfp->rs_threshold_kbd); |
| seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); |
| seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); |
| seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); |
| seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); |
| seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); |
| seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); |
| |
| static void sfp_debugfs_init(struct sfp *sfp) |
| { |
| sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); |
| |
| debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, |
| &sfp_debug_state_fops); |
| } |
| |
| static void sfp_debugfs_exit(struct sfp *sfp) |
| { |
| debugfs_remove_recursive(sfp->debugfs_dir); |
| } |
| #else |
| static void sfp_debugfs_init(struct sfp *sfp) |
| { |
| } |
| |
| static void sfp_debugfs_exit(struct sfp *sfp) |
| { |
| } |
| #endif |
| |
| static void sfp_module_tx_fault_reset(struct sfp *sfp) |
| { |
| unsigned int state; |
| |
| mutex_lock(&sfp->st_mutex); |
| state = sfp->state; |
| if (!(state & SFP_F_TX_DISABLE)) { |
| sfp_set_state(sfp, state | SFP_F_TX_DISABLE); |
| |
| udelay(T_RESET_US); |
| |
| sfp_set_state(sfp, state); |
| } |
| mutex_unlock(&sfp->st_mutex); |
| } |
| |
| /* SFP state machine */ |
| static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) |
| { |
| if (timeout) |
| mod_delayed_work(system_power_efficient_wq, &sfp->timeout, |
| timeout); |
| else |
| cancel_delayed_work(&sfp->timeout); |
| } |
| |
| static void sfp_sm_next(struct sfp *sfp, unsigned int state, |
| unsigned int timeout) |
| { |
| sfp->sm_state = state; |
| sfp_sm_set_timer(sfp, timeout); |
| } |
| |
| static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, |
| unsigned int timeout) |
| { |
| sfp->sm_mod_state = state; |
| sfp_sm_set_timer(sfp, timeout); |
| } |
| |
| static void sfp_sm_phy_detach(struct sfp *sfp) |
| { |
| sfp_remove_phy(sfp->sfp_bus); |
| phy_device_remove(sfp->mod_phy); |
| phy_device_free(sfp->mod_phy); |
| sfp->mod_phy = NULL; |
| } |
| |
| static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) |
| { |
| struct phy_device *phy; |
| int err; |
| |
| phy = get_phy_device(sfp->i2c_mii, addr, is_c45); |
| if (phy == ERR_PTR(-ENODEV)) |
| return PTR_ERR(phy); |
| if (IS_ERR(phy)) { |
| dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); |
| return PTR_ERR(phy); |
| } |
| |
| /* Mark this PHY as being on a SFP module */ |
| phy->is_on_sfp_module = true; |
| |
| err = phy_device_register(phy); |
| if (err) { |
| phy_device_free(phy); |
| dev_err(sfp->dev, "phy_device_register failed: %pe\n", |
| ERR_PTR(err)); |
| return err; |
| } |
| |
| err = sfp_add_phy(sfp->sfp_bus, phy); |
| if (err) { |
| phy_device_remove(phy); |
| phy_device_free(phy); |
| dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); |
| return err; |
| } |
| |
| sfp->mod_phy = phy; |
| |
| return 0; |
| } |
| |
| static void sfp_sm_link_up(struct sfp *sfp) |
| { |
| sfp_link_up(sfp->sfp_bus); |
| sfp_sm_next(sfp, SFP_S_LINK_UP, 0); |
| } |
| |
| static void sfp_sm_link_down(struct sfp *sfp) |
| { |
| sfp_link_down(sfp->sfp_bus); |
| } |
| |
| static void sfp_sm_link_check_los(struct sfp *sfp) |
| { |
| const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
| const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
| __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
| bool los = false; |
| |
| /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL |
| * are set, we assume that no LOS signal is available. If both are |
| * set, we assume LOS is not implemented (and is meaningless.) |
| */ |
| if (los_options == los_inverted) |
| los = !(sfp->state & SFP_F_LOS); |
| else if (los_options == los_normal) |
| los = !!(sfp->state & SFP_F_LOS); |
| |
| if (los) |
| sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); |
| else |
| sfp_sm_link_up(sfp); |
| } |
| |
| static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) |
| { |
| const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
| const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
| __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
| |
| return (los_options == los_inverted && event == SFP_E_LOS_LOW) || |
| (los_options == los_normal && event == SFP_E_LOS_HIGH); |
| } |
| |
| static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) |
| { |
| const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
| const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
| __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
| |
| return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || |
| (los_options == los_normal && event == SFP_E_LOS_LOW); |
| } |
| |
| static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) |
| { |
| if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { |
| dev_err(sfp->dev, |
| "module persistently indicates fault, disabling\n"); |
| sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); |
| } else { |
| if (warn) |
| dev_err(sfp->dev, "module transmit fault indicated\n"); |
| |
| sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); |
| } |
| } |
| |
| static int sfp_sm_add_mdio_bus(struct sfp *sfp) |
| { |
| if (sfp->mdio_protocol != MDIO_I2C_NONE) |
| return sfp_i2c_mdiobus_create(sfp); |
| |
| return 0; |
| } |
| |
| /* Probe a SFP for a PHY device if the module supports copper - the PHY |
| * normally sits at I2C bus address 0x56, and may either be a clause 22 |
| * or clause 45 PHY. |
| * |
| * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with |
| * negotiation enabled, but some may be in 1000base-X - which is for the |
| * PHY driver to determine. |
| * |
| * Clause 45 copper SFP+ modules (10G) appear to switch their interface |
| * mode according to the negotiated line speed. |
| */ |
| static int sfp_sm_probe_for_phy(struct sfp *sfp) |
| { |
| int err = 0; |
| |
| switch (sfp->mdio_protocol) { |
| case MDIO_I2C_NONE: |
| break; |
| |
| case MDIO_I2C_MARVELL_C22: |
| err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); |
| break; |
| |
| case MDIO_I2C_C45: |
| err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); |
| break; |
| |
| case MDIO_I2C_ROLLBALL: |
| err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); |
| break; |
| } |
| |
| return err; |
| } |
| |
| static int sfp_module_parse_power(struct sfp *sfp) |
| { |
| u32 power_mW = 1000; |
| bool supports_a2; |
| |
| if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && |
| sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) |
| power_mW = 1500; |
| /* Added in Rev 11.9, but there is no compliance code for this */ |
| if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && |
| sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) |
| power_mW = 2000; |
| |
| /* Power level 1 modules (max. 1W) are always supported. */ |
| if (power_mW <= 1000) { |
| sfp->module_power_mW = power_mW; |
| return 0; |
| } |
| |
| supports_a2 = sfp->id.ext.sff8472_compliance != |
| SFP_SFF8472_COMPLIANCE_NONE || |
| sfp->id.ext.diagmon & SFP_DIAGMON_DDM; |
| |
| if (power_mW > sfp->max_power_mW) { |
| /* Module power specification exceeds the allowed maximum. */ |
| if (!supports_a2) { |
| /* The module appears not to implement bus address |
| * 0xa2, so assume that the module powers up in the |
| * indicated mode. |
| */ |
| dev_err(sfp->dev, |
| "Host does not support %u.%uW modules\n", |
| power_mW / 1000, (power_mW / 100) % 10); |
| return -EINVAL; |
| } else { |
| dev_warn(sfp->dev, |
| "Host does not support %u.%uW modules, module left in power mode 1\n", |
| power_mW / 1000, (power_mW / 100) % 10); |
| return 0; |
| } |
| } |
| |
| if (!supports_a2) { |
| /* The module power level is below the host maximum and the |
| * module appears not to implement bus address 0xa2, so assume |
| * that the module powers up in the indicated mode. |
| */ |
| return 0; |
| } |
| |
| /* If the module requires a higher power mode, but also requires |
| * an address change sequence, warn the user that the module may |
| * not be functional. |
| */ |
| if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { |
| dev_warn(sfp->dev, |
| "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", |
| power_mW / 1000, (power_mW / 100) % 10); |
| return 0; |
| } |
| |
| sfp->module_power_mW = power_mW; |
| |
| return 0; |
| } |
| |
| static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) |
| { |
| int err; |
| |
| err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, |
| SFP_EXT_STATUS_PWRLVL_SELECT, |
| enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); |
| if (err != sizeof(u8)) { |
| dev_err(sfp->dev, "failed to %sable high power: %pe\n", |
| enable ? "en" : "dis", ERR_PTR(err)); |
| return -EAGAIN; |
| } |
| |
| if (enable) |
| dev_info(sfp->dev, "Module switched to %u.%uW power level\n", |
| sfp->module_power_mW / 1000, |
| (sfp->module_power_mW / 100) % 10); |
| |
| return 0; |
| } |
| |
| static void sfp_module_parse_rate_select(struct sfp *sfp) |
| { |
| u8 rate_id; |
| |
| sfp->rs_threshold_kbd = 0; |
| sfp->rs_state_mask = 0; |
| |
| if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) |
| /* No support for RateSelect */ |
| return; |
| |
| /* Default to INF-8074 RateSelect operation. The signalling threshold |
| * rate is not well specified, so always select "Full Bandwidth", but |
| * SFF-8079 reveals that it is understood that RS0 will be low for |
| * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. |
| * This method exists prior to SFF-8472. |
| */ |
| sfp->rs_state_mask = SFP_F_RS0; |
| sfp->rs_threshold_kbd = 1594; |
| |
| /* Parse the rate identifier, which is complicated due to history: |
| * SFF-8472 rev 9.5 marks this field as reserved. |
| * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 |
| * compliance is not required. |
| * SFF-8472 rev 10.2 defines this field using values 0..4 |
| * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 |
| * and even values. |
| */ |
| rate_id = sfp->id.base.rate_id; |
| if (rate_id == 0) |
| /* Unspecified */ |
| return; |
| |
| /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, |
| * and allocated value 3 to SFF-8431 independent tx/rx rate select. |
| * Convert this to a SFF-8472 rev 11.0 rate identifier. |
| */ |
| if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && |
| sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && |
| rate_id == 3) |
| rate_id = SFF_RID_8431; |
| |
| if (rate_id & SFF_RID_8079) { |
| /* SFF-8079 RateSelect / Application Select in conjunction with |
| * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield |
| * with only bit 0 used, which takes precedence over SFF-8472. |
| */ |
| if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { |
| /* SFF-8079 Part 1 - rate selection between Fibre |
| * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 |
| * is high for 2125, so we have to subtract 1 to |
| * include it. |
| */ |
| sfp->rs_threshold_kbd = 2125 - 1; |
| sfp->rs_state_mask = SFP_F_RS0; |
| } |
| return; |
| } |
| |
| /* SFF-8472 rev 9.5 does not define the rate identifier */ |
| if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) |
| return; |
| |
| /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will |
| * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. |
| */ |
| switch (rate_id) { |
| case SFF_RID_8431_RX_ONLY: |
| sfp->rs_threshold_kbd = 4250; |
| sfp->rs_state_mask = SFP_F_RS0; |
| break; |
| |
| case SFF_RID_8431_TX_ONLY: |
| sfp->rs_threshold_kbd = 4250; |
| sfp->rs_state_mask = SFP_F_RS1; |
| break; |
| |
| case SFF_RID_8431: |
| sfp->rs_threshold_kbd = 4250; |
| sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; |
| break; |
| |
| case SFF_RID_10G8G: |
| sfp->rs_threshold_kbd = 9000; |
| sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; |
| break; |
| } |
| } |
| |
| /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL |
| * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do |
| * not support multibyte reads from the EEPROM. Each multi-byte read |
| * operation returns just one byte of EEPROM followed by zeros. There is |
| * no way to identify which modules are using Realtek RTL8672 and RTL9601C |
| * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor |
| * name and vendor id into EEPROM, so there is even no way to detect if |
| * module is V-SOL V2801F. Therefore check for those zeros in the read |
| * data and then based on check switch to reading EEPROM to one byte |
| * at a time. |
| */ |
| static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) |
| { |
| size_t i, block_size = sfp->i2c_block_size; |
| |
| /* Already using byte IO */ |
| if (block_size == 1) |
| return false; |
| |
| for (i = 1; i < len; i += block_size) { |
| if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) |
| return false; |
| } |
| return true; |
| } |
| |
| static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) |
| { |
| u8 check; |
| int err; |
| |
| if (id->base.phys_id != SFF8024_ID_SFF_8472 || |
| id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || |
| id->base.connector != SFF8024_CONNECTOR_LC) { |
| dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); |
| id->base.phys_id = SFF8024_ID_SFF_8472; |
| id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; |
| id->base.connector = SFF8024_CONNECTOR_LC; |
| err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); |
| if (err != 3) { |
| dev_err(sfp->dev, |
| "Failed to rewrite module EEPROM: %pe\n", |
| ERR_PTR(err)); |
| return err; |
| } |
| |
| /* Cotsworks modules have been found to require a delay between write operations. */ |
| mdelay(50); |
| |
| /* Update base structure checksum */ |
| check = sfp_check(&id->base, sizeof(id->base) - 1); |
| err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); |
| if (err != 1) { |
| dev_err(sfp->dev, |
| "Failed to update base structure checksum in fiber module EEPROM: %pe\n", |
| ERR_PTR(err)); |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static int sfp_module_parse_sff8472(struct sfp *sfp) |
| { |
| /* If the module requires address swap mode, warn about it */ |
| if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) |
| dev_warn(sfp->dev, |
| "module address swap to access page 0xA2 is not supported.\n"); |
| else |
| sfp->have_a2 = true; |
| |
| return 0; |
| } |
| |
| static int sfp_sm_mod_probe(struct sfp *sfp, bool report) |
| { |
| /* SFP module inserted - read I2C data */ |
| struct sfp_eeprom_id id; |
| bool cotsworks_sfbg; |
| unsigned int mask; |
| bool cotsworks; |
| u8 check; |
| int ret; |
| |
| sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; |
| |
| ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); |
| if (ret < 0) { |
| if (report) |
| dev_err(sfp->dev, "failed to read EEPROM: %pe\n", |
| ERR_PTR(ret)); |
| return -EAGAIN; |
| } |
| |
| if (ret != sizeof(id.base)) { |
| dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); |
| return -EAGAIN; |
| } |
| |
| /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from |
| * address 0x51 is just one byte at a time. Also SFF-8472 requires |
| * that EEPROM supports atomic 16bit read operation for diagnostic |
| * fields, so do not switch to one byte reading at a time unless it |
| * is really required and we have no other option. |
| */ |
| if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { |
| dev_info(sfp->dev, |
| "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); |
| dev_info(sfp->dev, |
| "Switching to reading EEPROM to one byte at a time\n"); |
| sfp->i2c_block_size = 1; |
| |
| ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); |
| if (ret < 0) { |
| if (report) |
| dev_err(sfp->dev, |
| "failed to read EEPROM: %pe\n", |
| ERR_PTR(ret)); |
| return -EAGAIN; |
| } |
| |
| if (ret != sizeof(id.base)) { |
| dev_err(sfp->dev, "EEPROM short read: %pe\n", |
| ERR_PTR(ret)); |
| return -EAGAIN; |
| } |
| } |
| |
| /* Cotsworks do not seem to update the checksums when they |
| * do the final programming with the final module part number, |
| * serial number and date code. |
| */ |
| cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); |
| cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); |
| |
| /* Cotsworks SFF module EEPROM do not always have valid phys_id, |
| * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if |
| * Cotsworks PN matches and bytes are not correct. |
| */ |
| if (cotsworks && cotsworks_sfbg) { |
| ret = sfp_cotsworks_fixup_check(sfp, &id); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Validate the checksum over the base structure */ |
| check = sfp_check(&id.base, sizeof(id.base) - 1); |
| if (check != id.base.cc_base) { |
| if (cotsworks) { |
| dev_warn(sfp->dev, |
| "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", |
| check, id.base.cc_base); |
| } else { |
| dev_err(sfp->dev, |
| "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", |
| check, id.base.cc_base); |
| print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, |
| 16, 1, &id, sizeof(id), true); |
| return -EINVAL; |
| } |
| } |
| |
| ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); |
| if (ret < 0) { |
| if (report) |
| dev_err(sfp->dev, "failed to read EEPROM: %pe\n", |
| ERR_PTR(ret)); |
| return -EAGAIN; |
| } |
| |
| if (ret != sizeof(id.ext)) { |
| dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); |
| return -EAGAIN; |
| } |
| |
| check = sfp_check(&id.ext, sizeof(id.ext) - 1); |
| if (check != id.ext.cc_ext) { |
| if (cotsworks) { |
| dev_warn(sfp->dev, |
| "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", |
| check, id.ext.cc_ext); |
| } else { |
| dev_err(sfp->dev, |
| "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", |
| check, id.ext.cc_ext); |
| print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, |
| 16, 1, &id, sizeof(id), true); |
| memset(&id.ext, 0, sizeof(id.ext)); |
| } |
| } |
| |
| sfp->id = id; |
| |
| dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", |
| (int)sizeof(id.base.vendor_name), id.base.vendor_name, |
| (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, |
| (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, |
| (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, |
| (int)sizeof(id.ext.datecode), id.ext.datecode); |
| |
| /* Check whether we support this module */ |
| if (!sfp->type->module_supported(&id)) { |
| dev_err(sfp->dev, |
| "module is not supported - phys id 0x%02x 0x%02x\n", |
| sfp->id.base.phys_id, sfp->id.base.phys_ext_id); |
| return -EINVAL; |
| } |
| |
| if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { |
| ret = sfp_module_parse_sff8472(sfp); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Parse the module power requirement */ |
| ret = sfp_module_parse_power(sfp); |
| if (ret < 0) |
| return ret; |
| |
| sfp_module_parse_rate_select(sfp); |
| |
| mask = SFP_F_PRESENT; |
| if (sfp->gpio[GPIO_TX_DISABLE]) |
| mask |= SFP_F_TX_DISABLE; |
| if (sfp->gpio[GPIO_TX_FAULT]) |
| mask |= SFP_F_TX_FAULT; |
| if (sfp->gpio[GPIO_LOS]) |
| mask |= SFP_F_LOS; |
| if (sfp->gpio[GPIO_RS0]) |
| mask |= SFP_F_RS0; |
| if (sfp->gpio[GPIO_RS1]) |
| mask |= SFP_F_RS1; |
| |
| sfp->module_t_start_up = T_START_UP; |
| sfp->module_t_wait = T_WAIT; |
| sfp->phy_t_retry = T_PHY_RETRY; |
| |
| sfp->state_ignore_mask = 0; |
| |
| if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || |
| sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || |
| sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || |
| sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) |
| sfp->mdio_protocol = MDIO_I2C_C45; |
| else if (sfp->id.base.e1000_base_t) |
| sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; |
| else |
| sfp->mdio_protocol = MDIO_I2C_NONE; |
| |
| sfp->quirk = sfp_lookup_quirk(&id); |
| |
| mutex_lock(&sfp->st_mutex); |
| /* Initialise state bits to use from hardware */ |
| sfp->state_hw_mask = mask; |
| |
| /* We want to drive the rate select pins that the module is using */ |
| sfp->state_hw_drive |= sfp->rs_state_mask; |
| |
| if (sfp->quirk && sfp->quirk->fixup) |
| sfp->quirk->fixup(sfp); |
| |
| sfp->state_hw_mask &= ~sfp->state_ignore_mask; |
| mutex_unlock(&sfp->st_mutex); |
| |
| return 0; |
| } |
| |
| static void sfp_sm_mod_remove(struct sfp *sfp) |
| { |
| if (sfp->sm_mod_state > SFP_MOD_WAITDEV) |
| sfp_module_remove(sfp->sfp_bus); |
| |
| sfp_hwmon_remove(sfp); |
| |
| memset(&sfp->id, 0, sizeof(sfp->id)); |
| sfp->module_power_mW = 0; |
| sfp->state_hw_drive = SFP_F_TX_DISABLE; |
| sfp->have_a2 = false; |
| |
| dev_info(sfp->dev, "module removed\n"); |
| } |
| |
| /* This state machine tracks the upstream's state */ |
| static void sfp_sm_device(struct sfp *sfp, unsigned int event) |
| { |
| switch (sfp->sm_dev_state) { |
| default: |
| if (event == SFP_E_DEV_ATTACH) |
| sfp->sm_dev_state = SFP_DEV_DOWN; |
| break; |
| |
| case SFP_DEV_DOWN: |
| if (event == SFP_E_DEV_DETACH) |
| sfp->sm_dev_state = SFP_DEV_DETACHED; |
| else if (event == SFP_E_DEV_UP) |
| sfp->sm_dev_state = SFP_DEV_UP; |
| break; |
| |
| case SFP_DEV_UP: |
| if (event == SFP_E_DEV_DETACH) |
| sfp->sm_dev_state = SFP_DEV_DETACHED; |
| else if (event == SFP_E_DEV_DOWN) |
| sfp->sm_dev_state = SFP_DEV_DOWN; |
| break; |
| } |
| } |
| |
| /* This state machine tracks the insert/remove state of the module, probes |
| * the on-board EEPROM, and sets up the power level. |
| */ |
| static void sfp_sm_module(struct sfp *sfp, unsigned int event) |
| { |
| int err; |
| |
| /* Handle remove event globally, it resets this state machine */ |
| if (event == SFP_E_REMOVE) { |
| sfp_sm_mod_remove(sfp); |
| sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); |
| return; |
| } |
| |
| /* Handle device detach globally */ |
| if (sfp->sm_dev_state < SFP_DEV_DOWN && |
| sfp->sm_mod_state > SFP_MOD_WAITDEV) { |
| if (sfp->module_power_mW > 1000 && |
| sfp->sm_mod_state > SFP_MOD_HPOWER) |
| sfp_sm_mod_hpower(sfp, false); |
| sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); |
| return; |
| } |
| |
| switch (sfp->sm_mod_state) { |
| default: |
| if (event == SFP_E_INSERT) { |
| sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); |
| sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; |
| sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; |
| } |
| break; |
| |
| case SFP_MOD_PROBE: |
| /* Wait for T_PROBE_INIT to time out */ |
| if (event != SFP_E_TIMEOUT) |
| break; |
| |
| err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); |
| if (err == -EAGAIN) { |
| if (sfp->sm_mod_tries_init && |
| --sfp->sm_mod_tries_init) { |
| sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); |
| break; |
| } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { |
| if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) |
| dev_warn(sfp->dev, |
| "please wait, module slow to respond\n"); |
| sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); |
| break; |
| } |
| } |
| if (err < 0) { |
| sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); |
| break; |
| } |
| |
| /* Force a poll to re-read the hardware signal state after |
| * sfp_sm_mod_probe() changed state_hw_mask. |
| */ |
| mod_delayed_work(system_wq, &sfp->poll, 1); |
| |
| err = sfp_hwmon_insert(sfp); |
| if (err) |
| dev_warn(sfp->dev, "hwmon probe failed: %pe\n", |
| ERR_PTR(err)); |
| |
| sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); |
| fallthrough; |
| case SFP_MOD_WAITDEV: |
| /* Ensure that the device is attached before proceeding */ |
| if (sfp->sm_dev_state < SFP_DEV_DOWN) |
| break; |
| |
| /* Report the module insertion to the upstream device */ |
| err = sfp_module_insert(sfp->sfp_bus, &sfp->id, |
| sfp->quirk); |
| if (err < 0) { |
| sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); |
| break; |
| } |
| |
| /* If this is a power level 1 module, we are done */ |
| if (sfp->module_power_mW <= 1000) |
| goto insert; |
| |
| sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); |
| fallthrough; |
| case SFP_MOD_HPOWER: |
| /* Enable high power mode */ |
| err = sfp_sm_mod_hpower(sfp, true); |
| if (err < 0) { |
| if (err != -EAGAIN) { |
| sfp_module_remove(sfp->sfp_bus); |
| sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); |
| } else { |
| sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); |
| } |
| break; |
| } |
| |
| sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); |
| break; |
| |
| case SFP_MOD_WAITPWR: |
| /* Wait for T_HPOWER_LEVEL to time out */ |
| if (event != SFP_E_TIMEOUT) |
| break; |
| |
| insert: |
| sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); |
| break; |
| |
| case SFP_MOD_PRESENT: |
| case SFP_MOD_ERROR: |
| break; |
| } |
| } |
| |
| static void sfp_sm_main(struct sfp *sfp, unsigned int event) |
| { |
| unsigned long timeout; |
| int ret; |
| |
| /* Some events are global */ |
| if (sfp->sm_state != SFP_S_DOWN && |
| (sfp->sm_mod_state != SFP_MOD_PRESENT || |
| sfp->sm_dev_state != SFP_DEV_UP)) { |
| if (sfp->sm_state == SFP_S_LINK_UP && |
| sfp->sm_dev_state == SFP_DEV_UP) |
| sfp_sm_link_down(sfp); |
| if (sfp->sm_state > SFP_S_INIT) |
| sfp_module_stop(sfp->sfp_bus); |
| if (sfp->mod_phy) |
| sfp_sm_phy_detach(sfp); |
| if (sfp->i2c_mii) |
| sfp_i2c_mdiobus_destroy(sfp); |
| sfp_module_tx_disable(sfp); |
| sfp_soft_stop_poll(sfp); |
| sfp_sm_next(sfp, SFP_S_DOWN, 0); |
| return; |
| } |
| |
| /* The main state machine */ |
| switch (sfp->sm_state) { |
| case SFP_S_DOWN: |
| if (sfp->sm_mod_state != SFP_MOD_PRESENT || |
| sfp->sm_dev_state != SFP_DEV_UP) |
| break; |
| |
| /* Only use the soft state bits if we have access to the A2h |
| * memory, which implies that we have some level of SFF-8472 |
| * compliance. |
| */ |
| if (sfp->have_a2) |
| sfp_soft_start_poll(sfp); |
| |
| sfp_module_tx_enable(sfp); |
| |
| /* Initialise the fault clearance retries */ |
| sfp->sm_fault_retries = N_FAULT_INIT; |
| |
| /* We need to check the TX_FAULT state, which is not defined |
| * while TX_DISABLE is asserted. The earliest we want to do |
| * anything (such as probe for a PHY) is 50ms (or more on |
| * specific modules). |
| */ |
| sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); |
| break; |
| |
| case SFP_S_WAIT: |
| if (event != SFP_E_TIMEOUT) |
| break; |
| |
| if (sfp->state & SFP_F_TX_FAULT) { |
| /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) |
| * from the TX_DISABLE deassertion for the module to |
| * initialise, which is indicated by TX_FAULT |
| * deasserting. |
| */ |
| timeout = sfp->module_t_start_up; |
| if (timeout > sfp->module_t_wait) |
| timeout -= sfp->module_t_wait; |
| else |
| timeout = 1; |
| |
| sfp_sm_next(sfp, SFP_S_INIT, timeout); |
| } else { |
| /* TX_FAULT is not asserted, assume the module has |
| * finished initialising. |
| */ |
| goto init_done; |
| } |
| break; |
| |
| case SFP_S_INIT: |
| if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { |
| /* TX_FAULT is still asserted after t_init |
| * or t_start_up, so assume there is a fault. |
| */ |
| sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, |
| sfp->sm_fault_retries == N_FAULT_INIT); |
| } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { |
| init_done: |
| /* Create mdiobus and start trying for PHY */ |
| ret = sfp_sm_add_mdio_bus(sfp); |
| if (ret < 0) { |
| sfp_sm_next(sfp, SFP_S_FAIL, 0); |
| break; |
| } |
| sfp->sm_phy_retries = R_PHY_RETRY; |
| goto phy_probe; |
| } |
| break; |
| |
| case SFP_S_INIT_PHY: |
| if (event != SFP_E_TIMEOUT) |
| break; |
| phy_probe: |
| /* TX_FAULT deasserted or we timed out with TX_FAULT |
| * clear. Probe for the PHY and check the LOS state. |
| */ |
| ret = sfp_sm_probe_for_phy(sfp); |
| if (ret == -ENODEV) { |
| if (--sfp->sm_phy_retries) { |
| sfp_sm_next(sfp, SFP_S_INIT_PHY, |
| sfp->phy_t_retry); |
| dev_dbg(sfp->dev, |
| "no PHY detected, %u tries left\n", |
| sfp->sm_phy_retries); |
| break; |
| } else { |
| dev_info(sfp->dev, "no PHY detected\n"); |
| } |
| } else if (ret) { |
| sfp_sm_next(sfp, SFP_S_FAIL, 0); |
| break; |
| } |
| if (sfp_module_start(sfp->sfp_bus)) { |
| sfp_sm_next(sfp, SFP_S_FAIL, 0); |
| break; |
| } |
| sfp_sm_link_check_los(sfp); |
| |
| /* Reset the fault retry count */ |
| sfp->sm_fault_retries = N_FAULT; |
| break; |
| |
| case SFP_S_INIT_TX_FAULT: |
| if (event == SFP_E_TIMEOUT) { |
| sfp_module_tx_fault_reset(sfp); |
| sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); |
| } |
| break; |
| |
| case SFP_S_WAIT_LOS: |
| if (event == SFP_E_TX_FAULT) |
| sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); |
| else if (sfp_los_event_inactive(sfp, event)) |
| sfp_sm_link_up(sfp); |
| break; |
| |
| case SFP_S_LINK_UP: |
| if (event == SFP_E_TX_FAULT) { |
| sfp_sm_link_down(sfp); |
| sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); |
| } else if (sfp_los_event_active(sfp, event)) { |
| sfp_sm_link_down(sfp); |
| sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); |
| } |
| break; |
| |
| case SFP_S_TX_FAULT: |
| if (event == SFP_E_TIMEOUT) { |
| sfp_module_tx_fault_reset(sfp); |
| sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); |
| } |
| break; |
| |
| case SFP_S_REINIT: |
| if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { |
| sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); |
| } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { |
| dev_info(sfp->dev, "module transmit fault recovered\n"); |
| sfp_sm_link_check_los(sfp); |
| } |
| break; |
| |
| case SFP_S_TX_DISABLE: |
| break; |
| } |
| } |
| |
| static void __sfp_sm_event(struct sfp *sfp, unsigned int event) |
| { |
| dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", |
| mod_state_to_str(sfp->sm_mod_state), |
| dev_state_to_str(sfp->sm_dev_state), |
| sm_state_to_str(sfp->sm_state), |
| event_to_str(event)); |
| |
| sfp_sm_device(sfp, event); |
| sfp_sm_module(sfp, event); |
| sfp_sm_main(sfp, event); |
| |
| dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", |
| mod_state_to_str(sfp->sm_mod_state), |
| dev_state_to_str(sfp->sm_dev_state), |
| sm_state_to_str(sfp->sm_state)); |
| } |
| |
| static void sfp_sm_event(struct sfp *sfp, unsigned int event) |
| { |
| mutex_lock(&sfp->sm_mutex); |
| __sfp_sm_event(sfp, event); |
| mutex_unlock(&sfp->sm_mutex); |
| } |
| |
| static void sfp_attach(struct sfp *sfp) |
| { |
| sfp_sm_event(sfp, SFP_E_DEV_ATTACH); |
| } |
| |
| static void sfp_detach(struct sfp *sfp) |
| { |
| sfp_sm_event(sfp, SFP_E_DEV_DETACH); |
| } |
| |
| static void sfp_start(struct sfp *sfp) |
| { |
| sfp_sm_event(sfp, SFP_E_DEV_UP); |
| } |
| |
| static void sfp_stop(struct sfp *sfp) |
| { |
| sfp_sm_event(sfp, SFP_E_DEV_DOWN); |
| } |
| |
| static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) |
| { |
| unsigned int set; |
| |
| sfp->rate_kbd = rate_kbd; |
| |
| if (rate_kbd > sfp->rs_threshold_kbd) |
| set = sfp->rs_state_mask; |
| else |
| set = 0; |
| |
| sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); |
| } |
| |
| static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) |
| { |
| /* locking... and check module is present */ |
| |
| if (sfp->id.ext.sff8472_compliance && |
| !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { |
| modinfo->type = ETH_MODULE_SFF_8472; |
| modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; |
| } else { |
| modinfo->type = ETH_MODULE_SFF_8079; |
| modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; |
| } |
| return 0; |
| } |
| |
| static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, |
| u8 *data) |
| { |
| unsigned int first, last, len; |
| int ret; |
| |
| if (!(sfp->state & SFP_F_PRESENT)) |
| return -ENODEV; |
| |
| if (ee->len == 0) |
| return -EINVAL; |
| |
| first = ee->offset; |
| last = ee->offset + ee->len; |
| if (first < ETH_MODULE_SFF_8079_LEN) { |
| len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); |
| len -= first; |
| |
| ret = sfp_read(sfp, false, first, data, len); |
| if (ret < 0) |
| return ret; |
| |
| first += len; |
| data += len; |
| } |
| if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { |
| len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); |
| len -= first; |
| first -= ETH_MODULE_SFF_8079_LEN; |
| |
| ret = sfp_read(sfp, true, first, data, len); |
| if (ret < 0) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int sfp_module_eeprom_by_page(struct sfp *sfp, |
| const struct ethtool_module_eeprom *page, |
| struct netlink_ext_ack *extack) |
| { |
| if (!(sfp->state & SFP_F_PRESENT)) |
| return -ENODEV; |
| |
| if (page->bank) { |
| NL_SET_ERR_MSG(extack, "Banks not supported"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (page->page) { |
| NL_SET_ERR_MSG(extack, "Only page 0 supported"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (page->i2c_address != 0x50 && |
| page->i2c_address != 0x51) { |
| NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); |
| return -EOPNOTSUPP; |
| } |
| |
| return sfp_read(sfp, page->i2c_address == 0x51, page->offset, |
| page->data, page->length); |
| }; |
| |
| static const struct sfp_socket_ops sfp_module_ops = { |
| .attach = sfp_attach, |
| .detach = sfp_detach, |
| .start = sfp_start, |
| .stop = sfp_stop, |
| .set_signal_rate = sfp_set_signal_rate, |
| .module_info = sfp_module_info, |
| .module_eeprom = sfp_module_eeprom, |
| .module_eeprom_by_page = sfp_module_eeprom_by_page, |
| }; |
| |
| static void sfp_timeout(struct work_struct *work) |
| { |
| struct sfp *sfp = container_of(work, struct sfp, timeout.work); |
| |
| rtnl_lock(); |
| sfp_sm_event(sfp, SFP_E_TIMEOUT); |
| rtnl_unlock(); |
| } |
| |
| static void sfp_check_state(struct sfp *sfp) |
| { |
| unsigned int state, i, changed; |
| |
| rtnl_lock(); |
| mutex_lock(&sfp->st_mutex); |
| state = sfp_get_state(sfp); |
| changed = state ^ sfp->state; |
| changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; |
| |
| for (i = 0; i < GPIO_MAX; i++) |
| if (changed & BIT(i)) |
| dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], |
| !!(sfp->state & BIT(i)), !!(state & BIT(i))); |
| |
| state |= sfp->state & SFP_F_OUTPUTS; |
| sfp->state = state; |
| mutex_unlock(&sfp->st_mutex); |
| |
| mutex_lock(&sfp->sm_mutex); |
| if (changed & SFP_F_PRESENT) |
| __sfp_sm_event(sfp, state & SFP_F_PRESENT ? |
| SFP_E_INSERT : SFP_E_REMOVE); |
| |
| if (changed & SFP_F_TX_FAULT) |
| __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? |
| SFP_E_TX_FAULT : SFP_E_TX_CLEAR); |
| |
| if (changed & SFP_F_LOS) |
| __sfp_sm_event(sfp, state & SFP_F_LOS ? |
| SFP_E_LOS_HIGH : SFP_E_LOS_LOW); |
| mutex_unlock(&sfp->sm_mutex); |
| rtnl_unlock(); |
| } |
| |
| static irqreturn_t sfp_irq(int irq, void *data) |
| { |
| struct sfp *sfp = data; |
| |
| sfp_check_state(sfp); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void sfp_poll(struct work_struct *work) |
| { |
| struct sfp *sfp = container_of(work, struct sfp, poll.work); |
| |
| sfp_check_state(sfp); |
| |
| // st_mutex doesn't need to be held here for state_soft_mask, |
| // it's unimportant if we race while reading this. |
| if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || |
| sfp->need_poll) |
| mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); |
| } |
| |
| static struct sfp *sfp_alloc(struct device *dev) |
| { |
| struct sfp *sfp; |
| |
| sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); |
| if (!sfp) |
| return ERR_PTR(-ENOMEM); |
| |
| sfp->dev = dev; |
| sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; |
| |
| mutex_init(&sfp->sm_mutex); |
| mutex_init(&sfp->st_mutex); |
| INIT_DELAYED_WORK(&sfp->poll, sfp_poll); |
| INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); |
| |
| sfp_hwmon_init(sfp); |
| |
| return sfp; |
| } |
| |
| static void sfp_cleanup(void *data) |
| { |
| struct sfp *sfp = data; |
| |
| sfp_hwmon_exit(sfp); |
| |
| cancel_delayed_work_sync(&sfp->poll); |
| cancel_delayed_work_sync(&sfp->timeout); |
| if (sfp->i2c_mii) { |
| mdiobus_unregister(sfp->i2c_mii); |
| mdiobus_free(sfp->i2c_mii); |
| } |
| if (sfp->i2c) |
| i2c_put_adapter(sfp->i2c); |
| kfree(sfp); |
| } |
| |
| static int sfp_i2c_get(struct sfp *sfp) |
| { |
| struct fwnode_handle *h; |
| struct i2c_adapter *i2c; |
| int err; |
| |
| h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); |
| if (IS_ERR(h)) { |
| dev_err(sfp->dev, "missing 'i2c-bus' property\n"); |
| return -ENODEV; |
| } |
| |
| i2c = i2c_get_adapter_by_fwnode(h); |
| if (!i2c) { |
| err = -EPROBE_DEFER; |
| goto put; |
| } |
| |
| err = sfp_i2c_configure(sfp, i2c); |
| if (err) |
| i2c_put_adapter(i2c); |
| put: |
| fwnode_handle_put(h); |
| return err; |
| } |
| |
| static int sfp_probe(struct platform_device *pdev) |
| { |
| const struct sff_data *sff; |
| char *sfp_irq_name; |
| struct sfp *sfp; |
| int err, i; |
| |
| sfp = sfp_alloc(&pdev->dev); |
| if (IS_ERR(sfp)) |
| return PTR_ERR(sfp); |
| |
| platform_set_drvdata(pdev, sfp); |
| |
| err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); |
| if (err < 0) |
| return err; |
| |
| sff = device_get_match_data(sfp->dev); |
| if (!sff) |
| sff = &sfp_data; |
| |
| sfp->type = sff; |
| |
| err = sfp_i2c_get(sfp); |
| if (err) |
| return err; |
| |
| for (i = 0; i < GPIO_MAX; i++) |
| if (sff->gpios & BIT(i)) { |
| sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, |
| gpio_names[i], gpio_flags[i]); |
| if (IS_ERR(sfp->gpio[i])) |
| return PTR_ERR(sfp->gpio[i]); |
| } |
| |
| sfp->state_hw_mask = SFP_F_PRESENT; |
| sfp->state_hw_drive = SFP_F_TX_DISABLE; |
| |
| sfp->get_state = sfp_gpio_get_state; |
| sfp->set_state = sfp_gpio_set_state; |
| |
| /* Modules that have no detect signal are always present */ |
| if (!(sfp->gpio[GPIO_MODDEF0])) |
| sfp->get_state = sff_gpio_get_state; |
| |
| device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", |
| &sfp->max_power_mW); |
| if (sfp->max_power_mW < 1000) { |
| if (sfp->max_power_mW) |
| dev_warn(sfp->dev, |
| "Firmware bug: host maximum power should be at least 1W\n"); |
| sfp->max_power_mW = 1000; |
| } |
| |
| dev_info(sfp->dev, "Host maximum power %u.%uW\n", |
| sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); |
| |
| /* Get the initial state, and always signal TX disable, |
| * since the network interface will not be up. |
| */ |
| sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; |
| |
| if (sfp->gpio[GPIO_RS0] && |
| gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) |
| sfp->state |= SFP_F_RS0; |
| sfp_set_state(sfp, sfp->state); |
| sfp_module_tx_disable(sfp); |
| if (sfp->state & SFP_F_PRESENT) { |
| rtnl_lock(); |
| sfp_sm_event(sfp, SFP_E_INSERT); |
| rtnl_unlock(); |
| } |
| |
| for (i = 0; i < GPIO_MAX; i++) { |
| if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) |
| continue; |
| |
| sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); |
| if (sfp->gpio_irq[i] < 0) { |
| sfp->gpio_irq[i] = 0; |
| sfp->need_poll = true; |
| continue; |
| } |
| |
| sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, |
| "%s-%s", dev_name(sfp->dev), |
| gpio_names[i]); |
| |
| if (!sfp_irq_name) |
| return -ENOMEM; |
| |
| err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], |
| NULL, sfp_irq, |
| IRQF_ONESHOT | |
| IRQF_TRIGGER_RISING | |
| IRQF_TRIGGER_FALLING, |
| sfp_irq_name, sfp); |
| if (err) { |
| sfp->gpio_irq[i] = 0; |
| sfp->need_poll = true; |
| } |
| } |
| |
| if (sfp->need_poll) |
| mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); |
| |
| /* We could have an issue in cases no Tx disable pin is available or |
| * wired as modules using a laser as their light source will continue to |
| * be active when the fiber is removed. This could be a safety issue and |
| * we should at least warn the user about that. |
| */ |
| if (!sfp->gpio[GPIO_TX_DISABLE]) |
| dev_warn(sfp->dev, |
| "No tx_disable pin: SFP modules will always be emitting.\n"); |
| |
| sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); |
| if (!sfp->sfp_bus) |
| return -ENOMEM; |
| |
| sfp_debugfs_init(sfp); |
| |
| return 0; |
| } |
| |
| static void sfp_remove(struct platform_device *pdev) |
| { |
| struct sfp *sfp = platform_get_drvdata(pdev); |
| |
| sfp_debugfs_exit(sfp); |
| sfp_unregister_socket(sfp->sfp_bus); |
| |
| rtnl_lock(); |
| sfp_sm_event(sfp, SFP_E_REMOVE); |
| rtnl_unlock(); |
| } |
| |
| static void sfp_shutdown(struct platform_device *pdev) |
| { |
| struct sfp *sfp = platform_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < GPIO_MAX; i++) { |
| if (!sfp->gpio_irq[i]) |
| continue; |
| |
| devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); |
| } |
| |
| cancel_delayed_work_sync(&sfp->poll); |
| cancel_delayed_work_sync(&sfp->timeout); |
| } |
| |
| static struct platform_driver sfp_driver = { |
| .probe = sfp_probe, |
| .remove = sfp_remove, |
| .shutdown = sfp_shutdown, |
| .driver = { |
| .name = "sfp", |
| .of_match_table = sfp_of_match, |
| }, |
| }; |
| |
| static int sfp_init(void) |
| { |
| poll_jiffies = msecs_to_jiffies(100); |
| |
| return platform_driver_register(&sfp_driver); |
| } |
| module_init(sfp_init); |
| |
| static void sfp_exit(void) |
| { |
| platform_driver_unregister(&sfp_driver); |
| } |
| module_exit(sfp_exit); |
| |
| MODULE_ALIAS("platform:sfp"); |
| MODULE_AUTHOR("Russell King"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("SFP cage support"); |