| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (C) 2005-2014, 2018-2019, 2021 Intel Corporation |
| */ |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| |
| #include "iwl-drv.h" |
| #include "iwl-debug.h" |
| #include "iwl-eeprom-read.h" |
| #include "iwl-io.h" |
| #include "iwl-prph.h" |
| #include "iwl-csr.h" |
| |
| /* |
| * EEPROM access time values: |
| * |
| * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG. |
| * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1). |
| * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec. |
| * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG. |
| */ |
| #define IWL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */ |
| |
| #define IWL_EEPROM_SEM_TIMEOUT 10 /* microseconds */ |
| #define IWL_EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */ |
| |
| |
| /* |
| * The device's EEPROM semaphore prevents conflicts between driver and uCode |
| * when accessing the EEPROM; each access is a series of pulses to/from the |
| * EEPROM chip, not a single event, so even reads could conflict if they |
| * weren't arbitrated by the semaphore. |
| */ |
| |
| #define EEPROM_SEM_TIMEOUT 10 /* milliseconds */ |
| #define EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */ |
| |
| static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans) |
| { |
| u16 count; |
| int ret; |
| |
| for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { |
| /* Request semaphore */ |
| iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); |
| |
| /* See if we got it */ |
| ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, |
| EEPROM_SEM_TIMEOUT); |
| if (ret >= 0) { |
| IWL_DEBUG_EEPROM(trans->dev, |
| "Acquired semaphore after %d tries.\n", |
| count+1); |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void iwl_eeprom_release_semaphore(struct iwl_trans *trans) |
| { |
| iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG, |
| CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); |
| } |
| |
| static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp) |
| { |
| u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; |
| |
| IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp); |
| |
| switch (gp) { |
| case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP: |
| if (!nvm_is_otp) { |
| IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n", |
| gp); |
| return -ENOENT; |
| } |
| return 0; |
| case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: |
| case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: |
| if (nvm_is_otp) { |
| IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp); |
| return -ENOENT; |
| } |
| return 0; |
| case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP: |
| default: |
| IWL_ERR(trans, |
| "bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n", |
| nvm_is_otp ? "OTP" : "EEPROM", gp); |
| return -ENOENT; |
| } |
| } |
| |
| /****************************************************************************** |
| * |
| * OTP related functions |
| * |
| ******************************************************************************/ |
| |
| static void iwl_set_otp_access_absolute(struct iwl_trans *trans) |
| { |
| iwl_read32(trans, CSR_OTP_GP_REG); |
| |
| iwl_clear_bit(trans, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_OTP_ACCESS_MODE); |
| } |
| |
| static int iwl_nvm_is_otp(struct iwl_trans *trans) |
| { |
| u32 otpgp; |
| |
| /* OTP only valid for CP/PP and after */ |
| switch (trans->hw_rev & CSR_HW_REV_TYPE_MSK) { |
| case CSR_HW_REV_TYPE_NONE: |
| IWL_ERR(trans, "Unknown hardware type\n"); |
| return -EIO; |
| case CSR_HW_REV_TYPE_5300: |
| case CSR_HW_REV_TYPE_5350: |
| case CSR_HW_REV_TYPE_5100: |
| case CSR_HW_REV_TYPE_5150: |
| return 0; |
| default: |
| otpgp = iwl_read32(trans, CSR_OTP_GP_REG); |
| if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT) |
| return 1; |
| return 0; |
| } |
| } |
| |
| static int iwl_init_otp_access(struct iwl_trans *trans) |
| { |
| int ret; |
| |
| ret = iwl_finish_nic_init(trans); |
| if (ret) |
| return ret; |
| |
| iwl_set_bits_prph(trans, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_RESET_REQ); |
| udelay(5); |
| iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG, |
| APMG_PS_CTRL_VAL_RESET_REQ); |
| |
| /* |
| * CSR auto clock gate disable bit - |
| * this is only applicable for HW with OTP shadow RAM |
| */ |
| if (trans->trans_cfg->base_params->shadow_ram_support) |
| iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, |
| CSR_RESET_LINK_PWR_MGMT_DISABLED); |
| |
| return 0; |
| } |
| |
| static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr, |
| __le16 *eeprom_data) |
| { |
| int ret = 0; |
| u32 r; |
| u32 otpgp; |
| |
| iwl_write32(trans, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); |
| ret = iwl_poll_bit(trans, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| IWL_EEPROM_ACCESS_TIMEOUT); |
| if (ret < 0) { |
| IWL_ERR(trans, "Time out reading OTP[%d]\n", addr); |
| return ret; |
| } |
| r = iwl_read32(trans, CSR_EEPROM_REG); |
| /* check for ECC errors: */ |
| otpgp = iwl_read32(trans, CSR_OTP_GP_REG); |
| if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) { |
| /* stop in this case */ |
| /* set the uncorrectable OTP ECC bit for acknowledgment */ |
| iwl_set_bit(trans, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); |
| IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n"); |
| return -EINVAL; |
| } |
| if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) { |
| /* continue in this case */ |
| /* set the correctable OTP ECC bit for acknowledgment */ |
| iwl_set_bit(trans, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK); |
| IWL_ERR(trans, "Correctable OTP ECC error, continue read\n"); |
| } |
| *eeprom_data = cpu_to_le16(r >> 16); |
| return 0; |
| } |
| |
| /* |
| * iwl_is_otp_empty: check for empty OTP |
| */ |
| static bool iwl_is_otp_empty(struct iwl_trans *trans) |
| { |
| u16 next_link_addr = 0; |
| __le16 link_value; |
| bool is_empty = false; |
| |
| /* locate the beginning of OTP link list */ |
| if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) { |
| if (!link_value) { |
| IWL_ERR(trans, "OTP is empty\n"); |
| is_empty = true; |
| } |
| } else { |
| IWL_ERR(trans, "Unable to read first block of OTP list.\n"); |
| is_empty = true; |
| } |
| |
| return is_empty; |
| } |
| |
| |
| /* |
| * iwl_find_otp_image: find EEPROM image in OTP |
| * finding the OTP block that contains the EEPROM image. |
| * the last valid block on the link list (the block _before_ the last block) |
| * is the block we should read and used to configure the device. |
| * If all the available OTP blocks are full, the last block will be the block |
| * we should read and used to configure the device. |
| * only perform this operation if shadow RAM is disabled |
| */ |
| static int iwl_find_otp_image(struct iwl_trans *trans, |
| u16 *validblockaddr) |
| { |
| u16 next_link_addr = 0, valid_addr; |
| __le16 link_value = 0; |
| int usedblocks = 0; |
| |
| /* set addressing mode to absolute to traverse the link list */ |
| iwl_set_otp_access_absolute(trans); |
| |
| /* checking for empty OTP or error */ |
| if (iwl_is_otp_empty(trans)) |
| return -EINVAL; |
| |
| /* |
| * start traverse link list |
| * until reach the max number of OTP blocks |
| * different devices have different number of OTP blocks |
| */ |
| do { |
| /* save current valid block address |
| * check for more block on the link list |
| */ |
| valid_addr = next_link_addr; |
| next_link_addr = le16_to_cpu(link_value) * sizeof(u16); |
| IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n", |
| usedblocks, next_link_addr); |
| if (iwl_read_otp_word(trans, next_link_addr, &link_value)) |
| return -EINVAL; |
| if (!link_value) { |
| /* |
| * reach the end of link list, return success and |
| * set address point to the starting address |
| * of the image |
| */ |
| *validblockaddr = valid_addr; |
| /* skip first 2 bytes (link list pointer) */ |
| *validblockaddr += 2; |
| return 0; |
| } |
| /* more in the link list, continue */ |
| usedblocks++; |
| } while (usedblocks <= trans->trans_cfg->base_params->max_ll_items); |
| |
| /* OTP has no valid blocks */ |
| IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * iwl_read_eeprom - read EEPROM contents |
| * |
| * Load the EEPROM contents from adapter and return it |
| * and its size. |
| * |
| * NOTE: This routine uses the non-debug IO access functions. |
| */ |
| int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size) |
| { |
| __le16 *e; |
| u32 gp = iwl_read32(trans, CSR_EEPROM_GP); |
| int sz; |
| int ret; |
| u16 addr; |
| u16 validblockaddr = 0; |
| u16 cache_addr = 0; |
| int nvm_is_otp; |
| |
| if (!eeprom || !eeprom_size) |
| return -EINVAL; |
| |
| nvm_is_otp = iwl_nvm_is_otp(trans); |
| if (nvm_is_otp < 0) |
| return nvm_is_otp; |
| |
| sz = trans->trans_cfg->base_params->eeprom_size; |
| IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz); |
| |
| e = kmalloc(sz, GFP_KERNEL); |
| if (!e) |
| return -ENOMEM; |
| |
| ret = iwl_eeprom_verify_signature(trans, nvm_is_otp); |
| if (ret < 0) { |
| IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); |
| goto err_free; |
| } |
| |
| /* Make sure driver (instead of uCode) is allowed to read EEPROM */ |
| ret = iwl_eeprom_acquire_semaphore(trans); |
| if (ret < 0) { |
| IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n"); |
| goto err_free; |
| } |
| |
| if (nvm_is_otp) { |
| ret = iwl_init_otp_access(trans); |
| if (ret) { |
| IWL_ERR(trans, "Failed to initialize OTP access.\n"); |
| goto err_unlock; |
| } |
| |
| iwl_write32(trans, CSR_EEPROM_GP, |
| iwl_read32(trans, CSR_EEPROM_GP) & |
| ~CSR_EEPROM_GP_IF_OWNER_MSK); |
| |
| iwl_set_bit(trans, CSR_OTP_GP_REG, |
| CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK | |
| CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); |
| /* traversing the linked list if no shadow ram supported */ |
| if (!trans->trans_cfg->base_params->shadow_ram_support) { |
| ret = iwl_find_otp_image(trans, &validblockaddr); |
| if (ret) |
| goto err_unlock; |
| } |
| for (addr = validblockaddr; addr < validblockaddr + sz; |
| addr += sizeof(u16)) { |
| __le16 eeprom_data; |
| |
| ret = iwl_read_otp_word(trans, addr, &eeprom_data); |
| if (ret) |
| goto err_unlock; |
| e[cache_addr / 2] = eeprom_data; |
| cache_addr += sizeof(u16); |
| } |
| } else { |
| /* eeprom is an array of 16bit values */ |
| for (addr = 0; addr < sz; addr += sizeof(u16)) { |
| u32 r; |
| |
| iwl_write32(trans, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); |
| |
| ret = iwl_poll_bit(trans, CSR_EEPROM_REG, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| CSR_EEPROM_REG_READ_VALID_MSK, |
| IWL_EEPROM_ACCESS_TIMEOUT); |
| if (ret < 0) { |
| IWL_ERR(trans, |
| "Time out reading EEPROM[%d]\n", addr); |
| goto err_unlock; |
| } |
| r = iwl_read32(trans, CSR_EEPROM_REG); |
| e[addr / 2] = cpu_to_le16(r >> 16); |
| } |
| } |
| |
| IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n", |
| nvm_is_otp ? "OTP" : "EEPROM"); |
| |
| iwl_eeprom_release_semaphore(trans); |
| |
| *eeprom_size = sz; |
| *eeprom = (u8 *)e; |
| return 0; |
| |
| err_unlock: |
| iwl_eeprom_release_semaphore(trans); |
| err_free: |
| kfree(e); |
| |
| return ret; |
| } |
| IWL_EXPORT_SYMBOL(iwl_read_eeprom); |