| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Driver for high-speed SCC boards (those with DMA support) |
| * Copyright (C) 1997-2000 Klaus Kudielka |
| * |
| * S5SCC/DMA support by Janko Koleznik S52HI |
| */ |
| |
| |
| #include <linux/module.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/if_arp.h> |
| #include <linux/in.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioport.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/netdevice.h> |
| #include <linux/slab.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/sockios.h> |
| #include <linux/workqueue.h> |
| #include <linux/atomic.h> |
| #include <asm/dma.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <linux/uaccess.h> |
| #include <net/ax25.h> |
| #include "z8530.h" |
| |
| |
| /* Number of buffers per channel */ |
| |
| #define NUM_TX_BUF 2 /* NUM_TX_BUF >= 1 (min. 2 recommended) */ |
| #define NUM_RX_BUF 6 /* NUM_RX_BUF >= 1 (min. 2 recommended) */ |
| #define BUF_SIZE 1576 /* BUF_SIZE >= mtu + hard_header_len */ |
| |
| |
| /* Cards supported */ |
| |
| #define HW_PI { "Ottawa PI", 0x300, 0x20, 0x10, 8, \ |
| 0, 8, 1843200, 3686400 } |
| #define HW_PI2 { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \ |
| 0, 8, 3686400, 7372800 } |
| #define HW_TWIN { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \ |
| 0, 4, 6144000, 6144000 } |
| #define HW_S5 { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \ |
| 0, 8, 4915200, 9830400 } |
| |
| #define HARDWARE { HW_PI, HW_PI2, HW_TWIN, HW_S5 } |
| |
| #define TMR_0_HZ 25600 /* Frequency of timer 0 */ |
| |
| #define TYPE_PI 0 |
| #define TYPE_PI2 1 |
| #define TYPE_TWIN 2 |
| #define TYPE_S5 3 |
| #define NUM_TYPES 4 |
| |
| #define MAX_NUM_DEVS 32 |
| |
| |
| /* SCC chips supported */ |
| |
| #define Z8530 0 |
| #define Z85C30 1 |
| #define Z85230 2 |
| |
| #define CHIPNAMES { "Z8530", "Z85C30", "Z85230" } |
| |
| |
| /* I/O registers */ |
| |
| /* 8530 registers relative to card base */ |
| #define SCCB_CMD 0x00 |
| #define SCCB_DATA 0x01 |
| #define SCCA_CMD 0x02 |
| #define SCCA_DATA 0x03 |
| |
| /* 8253/8254 registers relative to card base */ |
| #define TMR_CNT0 0x00 |
| #define TMR_CNT1 0x01 |
| #define TMR_CNT2 0x02 |
| #define TMR_CTRL 0x03 |
| |
| /* Additional PI/PI2 registers relative to card base */ |
| #define PI_DREQ_MASK 0x04 |
| |
| /* Additional PackeTwin registers relative to card base */ |
| #define TWIN_INT_REG 0x08 |
| #define TWIN_CLR_TMR1 0x09 |
| #define TWIN_CLR_TMR2 0x0a |
| #define TWIN_SPARE_1 0x0b |
| #define TWIN_DMA_CFG 0x08 |
| #define TWIN_SERIAL_CFG 0x09 |
| #define TWIN_DMA_CLR_FF 0x0a |
| #define TWIN_SPARE_2 0x0b |
| |
| |
| /* PackeTwin I/O register values */ |
| |
| /* INT_REG */ |
| #define TWIN_SCC_MSK 0x01 |
| #define TWIN_TMR1_MSK 0x02 |
| #define TWIN_TMR2_MSK 0x04 |
| #define TWIN_INT_MSK 0x07 |
| |
| /* SERIAL_CFG */ |
| #define TWIN_DTRA_ON 0x01 |
| #define TWIN_DTRB_ON 0x02 |
| #define TWIN_EXTCLKA 0x04 |
| #define TWIN_EXTCLKB 0x08 |
| #define TWIN_LOOPA_ON 0x10 |
| #define TWIN_LOOPB_ON 0x20 |
| #define TWIN_EI 0x80 |
| |
| /* DMA_CFG */ |
| #define TWIN_DMA_HDX_T1 0x08 |
| #define TWIN_DMA_HDX_R1 0x0a |
| #define TWIN_DMA_HDX_T3 0x14 |
| #define TWIN_DMA_HDX_R3 0x16 |
| #define TWIN_DMA_FDX_T3R1 0x1b |
| #define TWIN_DMA_FDX_T1R3 0x1d |
| |
| |
| /* Status values */ |
| |
| #define IDLE 0 |
| #define TX_HEAD 1 |
| #define TX_DATA 2 |
| #define TX_PAUSE 3 |
| #define TX_TAIL 4 |
| #define RTS_OFF 5 |
| #define WAIT 6 |
| #define DCD_ON 7 |
| #define RX_ON 8 |
| #define DCD_OFF 9 |
| |
| |
| /* Ioctls */ |
| |
| #define SIOCGSCCPARAM SIOCDEVPRIVATE |
| #define SIOCSSCCPARAM (SIOCDEVPRIVATE+1) |
| |
| |
| /* Data types */ |
| |
| struct scc_param { |
| int pclk_hz; /* frequency of BRG input (don't change) */ |
| int brg_tc; /* BRG terminal count; BRG disabled if < 0 */ |
| int nrzi; /* 0 (nrz), 1 (nrzi) */ |
| int clocks; /* see dmascc_cfg documentation */ |
| int txdelay; /* [1/TMR_0_HZ] */ |
| int txtimeout; /* [1/HZ] */ |
| int txtail; /* [1/TMR_0_HZ] */ |
| int waittime; /* [1/TMR_0_HZ] */ |
| int slottime; /* [1/TMR_0_HZ] */ |
| int persist; /* 1 ... 256 */ |
| int dma; /* -1 (disable), 0, 1, 3 */ |
| int txpause; /* [1/TMR_0_HZ] */ |
| int rtsoff; /* [1/TMR_0_HZ] */ |
| int dcdon; /* [1/TMR_0_HZ] */ |
| int dcdoff; /* [1/TMR_0_HZ] */ |
| }; |
| |
| struct scc_hardware { |
| char *name; |
| int io_region; |
| int io_delta; |
| int io_size; |
| int num_devs; |
| int scc_offset; |
| int tmr_offset; |
| int tmr_hz; |
| int pclk_hz; |
| }; |
| |
| struct scc_priv { |
| int type; |
| int chip; |
| struct net_device *dev; |
| struct scc_info *info; |
| |
| int channel; |
| int card_base, scc_cmd, scc_data; |
| int tmr_cnt, tmr_ctrl, tmr_mode; |
| struct scc_param param; |
| char rx_buf[NUM_RX_BUF][BUF_SIZE]; |
| int rx_len[NUM_RX_BUF]; |
| int rx_ptr; |
| struct work_struct rx_work; |
| int rx_head, rx_tail, rx_count; |
| int rx_over; |
| char tx_buf[NUM_TX_BUF][BUF_SIZE]; |
| int tx_len[NUM_TX_BUF]; |
| int tx_ptr; |
| int tx_head, tx_tail, tx_count; |
| int state; |
| unsigned long tx_start; |
| int rr0; |
| spinlock_t *register_lock; /* Per scc_info */ |
| spinlock_t ring_lock; |
| }; |
| |
| struct scc_info { |
| int irq_used; |
| int twin_serial_cfg; |
| struct net_device *dev[2]; |
| struct scc_priv priv[2]; |
| struct scc_info *next; |
| spinlock_t register_lock; /* Per device register lock */ |
| }; |
| |
| |
| /* Function declarations */ |
| static int setup_adapter(int card_base, int type, int n) __init; |
| |
| static void write_scc(struct scc_priv *priv, int reg, int val); |
| static void write_scc_data(struct scc_priv *priv, int val, int fast); |
| static int read_scc(struct scc_priv *priv, int reg); |
| static int read_scc_data(struct scc_priv *priv); |
| |
| static int scc_open(struct net_device *dev); |
| static int scc_close(struct net_device *dev); |
| static int scc_siocdevprivate(struct net_device *dev, struct ifreq *ifr, |
| void __user *data, int cmd); |
| static int scc_send_packet(struct sk_buff *skb, struct net_device *dev); |
| static int scc_set_mac_address(struct net_device *dev, void *sa); |
| |
| static inline void tx_on(struct scc_priv *priv); |
| static inline void rx_on(struct scc_priv *priv); |
| static inline void rx_off(struct scc_priv *priv); |
| static void start_timer(struct scc_priv *priv, int t, int r15); |
| static inline unsigned char random(void); |
| |
| static inline void z8530_isr(struct scc_info *info); |
| static irqreturn_t scc_isr(int irq, void *dev_id); |
| static void rx_isr(struct scc_priv *priv); |
| static void special_condition(struct scc_priv *priv, int rc); |
| static void rx_bh(struct work_struct *); |
| static void tx_isr(struct scc_priv *priv); |
| static void es_isr(struct scc_priv *priv); |
| static void tm_isr(struct scc_priv *priv); |
| |
| |
| /* Initialization variables */ |
| |
| static int io[MAX_NUM_DEVS] __initdata = { 0, }; |
| |
| /* Beware! hw[] is also used in dmascc_exit(). */ |
| static struct scc_hardware hw[NUM_TYPES] = HARDWARE; |
| |
| |
| /* Global variables */ |
| |
| static struct scc_info *first; |
| static unsigned long rand; |
| |
| |
| MODULE_AUTHOR("Klaus Kudielka"); |
| MODULE_DESCRIPTION("Driver for high-speed SCC boards"); |
| module_param_hw_array(io, int, ioport, NULL, 0); |
| MODULE_LICENSE("GPL"); |
| |
| static void __exit dmascc_exit(void) |
| { |
| int i; |
| struct scc_info *info; |
| |
| while (first) { |
| info = first; |
| |
| /* Unregister devices */ |
| for (i = 0; i < 2; i++) |
| unregister_netdev(info->dev[i]); |
| |
| /* Reset board */ |
| if (info->priv[0].type == TYPE_TWIN) |
| outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG); |
| write_scc(&info->priv[0], R9, FHWRES); |
| release_region(info->dev[0]->base_addr, |
| hw[info->priv[0].type].io_size); |
| |
| for (i = 0; i < 2; i++) |
| free_netdev(info->dev[i]); |
| |
| /* Free memory */ |
| first = info->next; |
| kfree(info); |
| } |
| } |
| |
| static int __init dmascc_init(void) |
| { |
| int h, i, j, n; |
| int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS], |
| t1[MAX_NUM_DEVS]; |
| unsigned t_val; |
| unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS], |
| counting[MAX_NUM_DEVS]; |
| |
| /* Initialize random number generator */ |
| rand = jiffies; |
| /* Cards found = 0 */ |
| n = 0; |
| /* Warning message */ |
| if (!io[0]) |
| printk(KERN_INFO "dmascc: autoprobing (dangerous)\n"); |
| |
| /* Run autodetection for each card type */ |
| for (h = 0; h < NUM_TYPES; h++) { |
| |
| if (io[0]) { |
| /* User-specified I/O address regions */ |
| for (i = 0; i < hw[h].num_devs; i++) |
| base[i] = 0; |
| for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) { |
| j = (io[i] - |
| hw[h].io_region) / hw[h].io_delta; |
| if (j >= 0 && j < hw[h].num_devs && |
| hw[h].io_region + |
| j * hw[h].io_delta == io[i]) { |
| base[j] = io[i]; |
| } |
| } |
| } else { |
| /* Default I/O address regions */ |
| for (i = 0; i < hw[h].num_devs; i++) { |
| base[i] = |
| hw[h].io_region + i * hw[h].io_delta; |
| } |
| } |
| |
| /* Check valid I/O address regions */ |
| for (i = 0; i < hw[h].num_devs; i++) |
| if (base[i]) { |
| if (!request_region |
| (base[i], hw[h].io_size, "dmascc")) |
| base[i] = 0; |
| else { |
| tcmd[i] = |
| base[i] + hw[h].tmr_offset + |
| TMR_CTRL; |
| t0[i] = |
| base[i] + hw[h].tmr_offset + |
| TMR_CNT0; |
| t1[i] = |
| base[i] + hw[h].tmr_offset + |
| TMR_CNT1; |
| } |
| } |
| |
| /* Start timers */ |
| for (i = 0; i < hw[h].num_devs; i++) |
| if (base[i]) { |
| /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */ |
| outb(0x36, tcmd[i]); |
| outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF, |
| t0[i]); |
| outb((hw[h].tmr_hz / TMR_0_HZ) >> 8, |
| t0[i]); |
| /* Timer 1: LSB+MSB, Mode 0, HZ/10 */ |
| outb(0x70, tcmd[i]); |
| outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]); |
| outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]); |
| start[i] = jiffies; |
| delay[i] = 0; |
| counting[i] = 1; |
| /* Timer 2: LSB+MSB, Mode 0 */ |
| outb(0xb0, tcmd[i]); |
| } |
| time = jiffies; |
| /* Wait until counter registers are loaded */ |
| udelay(2000000 / TMR_0_HZ); |
| |
| /* Timing loop */ |
| while (jiffies - time < 13) { |
| for (i = 0; i < hw[h].num_devs; i++) |
| if (base[i] && counting[i]) { |
| /* Read back Timer 1: latch; read LSB; read MSB */ |
| outb(0x40, tcmd[i]); |
| t_val = |
| inb(t1[i]) + (inb(t1[i]) << 8); |
| /* Also check whether counter did wrap */ |
| if (t_val == 0 || |
| t_val > TMR_0_HZ / HZ * 10) |
| counting[i] = 0; |
| delay[i] = jiffies - start[i]; |
| } |
| } |
| |
| /* Evaluate measurements */ |
| for (i = 0; i < hw[h].num_devs; i++) |
| if (base[i]) { |
| if ((delay[i] >= 9 && delay[i] <= 11) && |
| /* Ok, we have found an adapter */ |
| (setup_adapter(base[i], h, n) == 0)) |
| n++; |
| else |
| release_region(base[i], |
| hw[h].io_size); |
| } |
| |
| } /* NUM_TYPES */ |
| |
| /* If any adapter was successfully initialized, return ok */ |
| if (n) |
| return 0; |
| |
| /* If no adapter found, return error */ |
| printk(KERN_INFO "dmascc: no adapters found\n"); |
| return -EIO; |
| } |
| |
| module_init(dmascc_init); |
| module_exit(dmascc_exit); |
| |
| static void __init dev_setup(struct net_device *dev) |
| { |
| dev->type = ARPHRD_AX25; |
| dev->hard_header_len = AX25_MAX_HEADER_LEN; |
| dev->mtu = 1500; |
| dev->addr_len = AX25_ADDR_LEN; |
| dev->tx_queue_len = 64; |
| memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); |
| memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); |
| } |
| |
| static const struct net_device_ops scc_netdev_ops = { |
| .ndo_open = scc_open, |
| .ndo_stop = scc_close, |
| .ndo_start_xmit = scc_send_packet, |
| .ndo_siocdevprivate = scc_siocdevprivate, |
| .ndo_set_mac_address = scc_set_mac_address, |
| }; |
| |
| static int __init setup_adapter(int card_base, int type, int n) |
| { |
| int i, irq, chip, err; |
| struct scc_info *info; |
| struct net_device *dev; |
| struct scc_priv *priv; |
| unsigned long time; |
| unsigned int irqs; |
| int tmr_base = card_base + hw[type].tmr_offset; |
| int scc_base = card_base + hw[type].scc_offset; |
| char *chipnames[] = CHIPNAMES; |
| |
| /* Initialize what is necessary for write_scc and write_scc_data */ |
| info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA); |
| if (!info) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup); |
| if (!info->dev[0]) { |
| printk(KERN_ERR "dmascc: " |
| "could not allocate memory for %s at %#3x\n", |
| hw[type].name, card_base); |
| err = -ENOMEM; |
| goto out1; |
| } |
| |
| info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup); |
| if (!info->dev[1]) { |
| printk(KERN_ERR "dmascc: " |
| "could not allocate memory for %s at %#3x\n", |
| hw[type].name, card_base); |
| err = -ENOMEM; |
| goto out2; |
| } |
| spin_lock_init(&info->register_lock); |
| |
| priv = &info->priv[0]; |
| priv->type = type; |
| priv->card_base = card_base; |
| priv->scc_cmd = scc_base + SCCA_CMD; |
| priv->scc_data = scc_base + SCCA_DATA; |
| priv->register_lock = &info->register_lock; |
| |
| /* Reset SCC */ |
| write_scc(priv, R9, FHWRES | MIE | NV); |
| |
| /* Determine type of chip by enabling SDLC/HDLC enhancements */ |
| write_scc(priv, R15, SHDLCE); |
| if (!read_scc(priv, R15)) { |
| /* WR7' not present. This is an ordinary Z8530 SCC. */ |
| chip = Z8530; |
| } else { |
| /* Put one character in TX FIFO */ |
| write_scc_data(priv, 0, 0); |
| if (read_scc(priv, R0) & Tx_BUF_EMP) { |
| /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */ |
| chip = Z85230; |
| } else { |
| /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */ |
| chip = Z85C30; |
| } |
| } |
| write_scc(priv, R15, 0); |
| |
| /* Start IRQ auto-detection */ |
| irqs = probe_irq_on(); |
| |
| /* Enable interrupts */ |
| if (type == TYPE_TWIN) { |
| outb(0, card_base + TWIN_DMA_CFG); |
| inb(card_base + TWIN_CLR_TMR1); |
| inb(card_base + TWIN_CLR_TMR2); |
| info->twin_serial_cfg = TWIN_EI; |
| outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG); |
| } else { |
| write_scc(priv, R15, CTSIE); |
| write_scc(priv, R0, RES_EXT_INT); |
| write_scc(priv, R1, EXT_INT_ENAB); |
| } |
| |
| /* Start timer */ |
| outb(1, tmr_base + TMR_CNT1); |
| outb(0, tmr_base + TMR_CNT1); |
| |
| /* Wait and detect IRQ */ |
| time = jiffies; |
| while (jiffies - time < 2 + HZ / TMR_0_HZ); |
| irq = probe_irq_off(irqs); |
| |
| /* Clear pending interrupt, disable interrupts */ |
| if (type == TYPE_TWIN) { |
| inb(card_base + TWIN_CLR_TMR1); |
| } else { |
| write_scc(priv, R1, 0); |
| write_scc(priv, R15, 0); |
| write_scc(priv, R0, RES_EXT_INT); |
| } |
| |
| if (irq <= 0) { |
| printk(KERN_ERR |
| "dmascc: could not find irq of %s at %#3x (irq=%d)\n", |
| hw[type].name, card_base, irq); |
| err = -ENODEV; |
| goto out3; |
| } |
| |
| /* Set up data structures */ |
| for (i = 0; i < 2; i++) { |
| dev = info->dev[i]; |
| priv = &info->priv[i]; |
| priv->type = type; |
| priv->chip = chip; |
| priv->dev = dev; |
| priv->info = info; |
| priv->channel = i; |
| spin_lock_init(&priv->ring_lock); |
| priv->register_lock = &info->register_lock; |
| priv->card_base = card_base; |
| priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD); |
| priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA); |
| priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1); |
| priv->tmr_ctrl = tmr_base + TMR_CTRL; |
| priv->tmr_mode = i ? 0xb0 : 0x70; |
| priv->param.pclk_hz = hw[type].pclk_hz; |
| priv->param.brg_tc = -1; |
| priv->param.clocks = TCTRxCP | RCRTxCP; |
| priv->param.persist = 256; |
| priv->param.dma = -1; |
| INIT_WORK(&priv->rx_work, rx_bh); |
| dev->ml_priv = priv; |
| snprintf(dev->name, sizeof(dev->name), "dmascc%i", 2 * n + i); |
| dev->base_addr = card_base; |
| dev->irq = irq; |
| dev->netdev_ops = &scc_netdev_ops; |
| dev->header_ops = &ax25_header_ops; |
| } |
| if (register_netdev(info->dev[0])) { |
| printk(KERN_ERR "dmascc: could not register %s\n", |
| info->dev[0]->name); |
| err = -ENODEV; |
| goto out3; |
| } |
| if (register_netdev(info->dev[1])) { |
| printk(KERN_ERR "dmascc: could not register %s\n", |
| info->dev[1]->name); |
| err = -ENODEV; |
| goto out4; |
| } |
| |
| |
| info->next = first; |
| first = info; |
| printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n", |
| hw[type].name, chipnames[chip], card_base, irq); |
| return 0; |
| |
| out4: |
| unregister_netdev(info->dev[0]); |
| out3: |
| if (info->priv[0].type == TYPE_TWIN) |
| outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG); |
| write_scc(&info->priv[0], R9, FHWRES); |
| free_netdev(info->dev[1]); |
| out2: |
| free_netdev(info->dev[0]); |
| out1: |
| kfree(info); |
| out: |
| return err; |
| } |
| |
| |
| /* Driver functions */ |
| |
| static void write_scc(struct scc_priv *priv, int reg, int val) |
| { |
| unsigned long flags; |
| switch (priv->type) { |
| case TYPE_S5: |
| if (reg) |
| outb(reg, priv->scc_cmd); |
| outb(val, priv->scc_cmd); |
| return; |
| case TYPE_TWIN: |
| if (reg) |
| outb_p(reg, priv->scc_cmd); |
| outb_p(val, priv->scc_cmd); |
| return; |
| default: |
| spin_lock_irqsave(priv->register_lock, flags); |
| outb_p(0, priv->card_base + PI_DREQ_MASK); |
| if (reg) |
| outb_p(reg, priv->scc_cmd); |
| outb_p(val, priv->scc_cmd); |
| outb(1, priv->card_base + PI_DREQ_MASK); |
| spin_unlock_irqrestore(priv->register_lock, flags); |
| return; |
| } |
| } |
| |
| |
| static void write_scc_data(struct scc_priv *priv, int val, int fast) |
| { |
| unsigned long flags; |
| switch (priv->type) { |
| case TYPE_S5: |
| outb(val, priv->scc_data); |
| return; |
| case TYPE_TWIN: |
| outb_p(val, priv->scc_data); |
| return; |
| default: |
| if (fast) |
| outb_p(val, priv->scc_data); |
| else { |
| spin_lock_irqsave(priv->register_lock, flags); |
| outb_p(0, priv->card_base + PI_DREQ_MASK); |
| outb_p(val, priv->scc_data); |
| outb(1, priv->card_base + PI_DREQ_MASK); |
| spin_unlock_irqrestore(priv->register_lock, flags); |
| } |
| return; |
| } |
| } |
| |
| |
| static int read_scc(struct scc_priv *priv, int reg) |
| { |
| int rc; |
| unsigned long flags; |
| switch (priv->type) { |
| case TYPE_S5: |
| if (reg) |
| outb(reg, priv->scc_cmd); |
| return inb(priv->scc_cmd); |
| case TYPE_TWIN: |
| if (reg) |
| outb_p(reg, priv->scc_cmd); |
| return inb_p(priv->scc_cmd); |
| default: |
| spin_lock_irqsave(priv->register_lock, flags); |
| outb_p(0, priv->card_base + PI_DREQ_MASK); |
| if (reg) |
| outb_p(reg, priv->scc_cmd); |
| rc = inb_p(priv->scc_cmd); |
| outb(1, priv->card_base + PI_DREQ_MASK); |
| spin_unlock_irqrestore(priv->register_lock, flags); |
| return rc; |
| } |
| } |
| |
| |
| static int read_scc_data(struct scc_priv *priv) |
| { |
| int rc; |
| unsigned long flags; |
| switch (priv->type) { |
| case TYPE_S5: |
| return inb(priv->scc_data); |
| case TYPE_TWIN: |
| return inb_p(priv->scc_data); |
| default: |
| spin_lock_irqsave(priv->register_lock, flags); |
| outb_p(0, priv->card_base + PI_DREQ_MASK); |
| rc = inb_p(priv->scc_data); |
| outb(1, priv->card_base + PI_DREQ_MASK); |
| spin_unlock_irqrestore(priv->register_lock, flags); |
| return rc; |
| } |
| } |
| |
| |
| static int scc_open(struct net_device *dev) |
| { |
| struct scc_priv *priv = dev->ml_priv; |
| struct scc_info *info = priv->info; |
| int card_base = priv->card_base; |
| |
| /* Request IRQ if not already used by other channel */ |
| if (!info->irq_used) { |
| if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) { |
| return -EAGAIN; |
| } |
| } |
| info->irq_used++; |
| |
| /* Request DMA if required */ |
| if (priv->param.dma >= 0) { |
| if (request_dma(priv->param.dma, "dmascc")) { |
| if (--info->irq_used == 0) |
| free_irq(dev->irq, info); |
| return -EAGAIN; |
| } else { |
| unsigned long flags = claim_dma_lock(); |
| clear_dma_ff(priv->param.dma); |
| release_dma_lock(flags); |
| } |
| } |
| |
| /* Initialize local variables */ |
| priv->rx_ptr = 0; |
| priv->rx_over = 0; |
| priv->rx_head = priv->rx_tail = priv->rx_count = 0; |
| priv->state = IDLE; |
| priv->tx_head = priv->tx_tail = priv->tx_count = 0; |
| priv->tx_ptr = 0; |
| |
| /* Reset channel */ |
| write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV); |
| /* X1 clock, SDLC mode */ |
| write_scc(priv, R4, SDLC | X1CLK); |
| /* DMA */ |
| write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); |
| /* 8 bit RX char, RX disable */ |
| write_scc(priv, R3, Rx8); |
| /* 8 bit TX char, TX disable */ |
| write_scc(priv, R5, Tx8); |
| /* SDLC address field */ |
| write_scc(priv, R6, 0); |
| /* SDLC flag */ |
| write_scc(priv, R7, FLAG); |
| switch (priv->chip) { |
| case Z85C30: |
| /* Select WR7' */ |
| write_scc(priv, R15, SHDLCE); |
| /* Auto EOM reset */ |
| write_scc(priv, R7, AUTOEOM); |
| write_scc(priv, R15, 0); |
| break; |
| case Z85230: |
| /* Select WR7' */ |
| write_scc(priv, R15, SHDLCE); |
| /* The following bits are set (see 2.5.2.1): |
| - Automatic EOM reset |
| - Interrupt request if RX FIFO is half full |
| This bit should be ignored in DMA mode (according to the |
| documentation), but actually isn't. The receiver doesn't work if |
| it is set. Thus, we have to clear it in DMA mode. |
| - Interrupt/DMA request if TX FIFO is completely empty |
| a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30 |
| compatibility). |
| b) If cleared, DMA requests may follow each other very quickly, |
| filling up the TX FIFO. |
| Advantage: TX works even in case of high bus latency. |
| Disadvantage: Edge-triggered DMA request circuitry may miss |
| a request. No more data is delivered, resulting |
| in a TX FIFO underrun. |
| Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared. |
| The PackeTwin doesn't. I don't know about the PI, but let's |
| assume it behaves like the PI2. |
| */ |
| if (priv->param.dma >= 0) { |
| if (priv->type == TYPE_TWIN) |
| write_scc(priv, R7, AUTOEOM | TXFIFOE); |
| else |
| write_scc(priv, R7, AUTOEOM); |
| } else { |
| write_scc(priv, R7, AUTOEOM | RXFIFOH); |
| } |
| write_scc(priv, R15, 0); |
| break; |
| } |
| /* Preset CRC, NRZ(I) encoding */ |
| write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ)); |
| |
| /* Configure baud rate generator */ |
| if (priv->param.brg_tc >= 0) { |
| /* Program BR generator */ |
| write_scc(priv, R12, priv->param.brg_tc & 0xFF); |
| write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF); |
| /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by |
| PackeTwin, not connected on the PI2); set DPLL source to BRG */ |
| write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL); |
| /* Enable DPLL */ |
| write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL); |
| } else { |
| /* Disable BR generator */ |
| write_scc(priv, R14, DTRREQ | BRSRC); |
| } |
| |
| /* Configure clocks */ |
| if (priv->type == TYPE_TWIN) { |
| /* Disable external TX clock receiver */ |
| outb((info->twin_serial_cfg &= |
| ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), |
| card_base + TWIN_SERIAL_CFG); |
| } |
| write_scc(priv, R11, priv->param.clocks); |
| if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) { |
| /* Enable external TX clock receiver */ |
| outb((info->twin_serial_cfg |= |
| (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), |
| card_base + TWIN_SERIAL_CFG); |
| } |
| |
| /* Configure PackeTwin */ |
| if (priv->type == TYPE_TWIN) { |
| /* Assert DTR, enable interrupts */ |
| outb((info->twin_serial_cfg |= TWIN_EI | |
| (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)), |
| card_base + TWIN_SERIAL_CFG); |
| } |
| |
| /* Read current status */ |
| priv->rr0 = read_scc(priv, R0); |
| /* Enable DCD interrupt */ |
| write_scc(priv, R15, DCDIE); |
| |
| netif_start_queue(dev); |
| |
| return 0; |
| } |
| |
| |
| static int scc_close(struct net_device *dev) |
| { |
| struct scc_priv *priv = dev->ml_priv; |
| struct scc_info *info = priv->info; |
| int card_base = priv->card_base; |
| |
| netif_stop_queue(dev); |
| |
| if (priv->type == TYPE_TWIN) { |
| /* Drop DTR */ |
| outb((info->twin_serial_cfg &= |
| (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)), |
| card_base + TWIN_SERIAL_CFG); |
| } |
| |
| /* Reset channel, free DMA and IRQ */ |
| write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV); |
| if (priv->param.dma >= 0) { |
| if (priv->type == TYPE_TWIN) |
| outb(0, card_base + TWIN_DMA_CFG); |
| free_dma(priv->param.dma); |
| } |
| if (--info->irq_used == 0) |
| free_irq(dev->irq, info); |
| |
| return 0; |
| } |
| |
| |
| static int scc_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) |
| { |
| struct scc_priv *priv = dev->ml_priv; |
| |
| switch (cmd) { |
| case SIOCGSCCPARAM: |
| if (copy_to_user(data, &priv->param, sizeof(struct scc_param))) |
| return -EFAULT; |
| return 0; |
| case SIOCSSCCPARAM: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| if (netif_running(dev)) |
| return -EAGAIN; |
| if (copy_from_user(&priv->param, data, |
| sizeof(struct scc_param))) |
| return -EFAULT; |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| |
| static int scc_send_packet(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct scc_priv *priv = dev->ml_priv; |
| unsigned long flags; |
| int i; |
| |
| if (skb->protocol == htons(ETH_P_IP)) |
| return ax25_ip_xmit(skb); |
| |
| /* Temporarily stop the scheduler feeding us packets */ |
| netif_stop_queue(dev); |
| |
| /* Transfer data to DMA buffer */ |
| i = priv->tx_head; |
| skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1); |
| priv->tx_len[i] = skb->len - 1; |
| |
| /* Clear interrupts while we touch our circular buffers */ |
| |
| spin_lock_irqsave(&priv->ring_lock, flags); |
| /* Move the ring buffer's head */ |
| priv->tx_head = (i + 1) % NUM_TX_BUF; |
| priv->tx_count++; |
| |
| /* If we just filled up the last buffer, leave queue stopped. |
| The higher layers must wait until we have a DMA buffer |
| to accept the data. */ |
| if (priv->tx_count < NUM_TX_BUF) |
| netif_wake_queue(dev); |
| |
| /* Set new TX state */ |
| if (priv->state == IDLE) { |
| /* Assert RTS, start timer */ |
| priv->state = TX_HEAD; |
| priv->tx_start = jiffies; |
| write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8); |
| write_scc(priv, R15, 0); |
| start_timer(priv, priv->param.txdelay, 0); |
| } |
| |
| /* Turn interrupts back on and free buffer */ |
| spin_unlock_irqrestore(&priv->ring_lock, flags); |
| dev_kfree_skb(skb); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| static int scc_set_mac_address(struct net_device *dev, void *sa) |
| { |
| memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data, |
| dev->addr_len); |
| return 0; |
| } |
| |
| |
| static inline void tx_on(struct scc_priv *priv) |
| { |
| int i, n; |
| unsigned long flags; |
| |
| if (priv->param.dma >= 0) { |
| n = (priv->chip == Z85230) ? 3 : 1; |
| /* Program DMA controller */ |
| flags = claim_dma_lock(); |
| set_dma_mode(priv->param.dma, DMA_MODE_WRITE); |
| set_dma_addr(priv->param.dma, |
| virt_to_bus(priv->tx_buf[priv->tx_tail]) + n); |
| set_dma_count(priv->param.dma, |
| priv->tx_len[priv->tx_tail] - n); |
| release_dma_lock(flags); |
| /* Enable TX underrun interrupt */ |
| write_scc(priv, R15, TxUIE); |
| /* Configure DREQ */ |
| if (priv->type == TYPE_TWIN) |
| outb((priv->param.dma == |
| 1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3, |
| priv->card_base + TWIN_DMA_CFG); |
| else |
| write_scc(priv, R1, |
| EXT_INT_ENAB | WT_FN_RDYFN | |
| WT_RDY_ENAB); |
| /* Write first byte(s) */ |
| spin_lock_irqsave(priv->register_lock, flags); |
| for (i = 0; i < n; i++) |
| write_scc_data(priv, |
| priv->tx_buf[priv->tx_tail][i], 1); |
| enable_dma(priv->param.dma); |
| spin_unlock_irqrestore(priv->register_lock, flags); |
| } else { |
| write_scc(priv, R15, TxUIE); |
| write_scc(priv, R1, |
| EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB); |
| tx_isr(priv); |
| } |
| /* Reset EOM latch if we do not have the AUTOEOM feature */ |
| if (priv->chip == Z8530) |
| write_scc(priv, R0, RES_EOM_L); |
| } |
| |
| |
| static inline void rx_on(struct scc_priv *priv) |
| { |
| unsigned long flags; |
| |
| /* Clear RX FIFO */ |
| while (read_scc(priv, R0) & Rx_CH_AV) |
| read_scc_data(priv); |
| priv->rx_over = 0; |
| if (priv->param.dma >= 0) { |
| /* Program DMA controller */ |
| flags = claim_dma_lock(); |
| set_dma_mode(priv->param.dma, DMA_MODE_READ); |
| set_dma_addr(priv->param.dma, |
| virt_to_bus(priv->rx_buf[priv->rx_head])); |
| set_dma_count(priv->param.dma, BUF_SIZE); |
| release_dma_lock(flags); |
| enable_dma(priv->param.dma); |
| /* Configure PackeTwin DMA */ |
| if (priv->type == TYPE_TWIN) { |
| outb((priv->param.dma == |
| 1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3, |
| priv->card_base + TWIN_DMA_CFG); |
| } |
| /* Sp. cond. intr. only, ext int enable, RX DMA enable */ |
| write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx | |
| WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB); |
| } else { |
| /* Reset current frame */ |
| priv->rx_ptr = 0; |
| /* Intr. on all Rx characters and Sp. cond., ext int enable */ |
| write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT | |
| WT_FN_RDYFN); |
| } |
| write_scc(priv, R0, ERR_RES); |
| write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB); |
| } |
| |
| |
| static inline void rx_off(struct scc_priv *priv) |
| { |
| /* Disable receiver */ |
| write_scc(priv, R3, Rx8); |
| /* Disable DREQ / RX interrupt */ |
| if (priv->param.dma >= 0 && priv->type == TYPE_TWIN) |
| outb(0, priv->card_base + TWIN_DMA_CFG); |
| else |
| write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); |
| /* Disable DMA */ |
| if (priv->param.dma >= 0) |
| disable_dma(priv->param.dma); |
| } |
| |
| |
| static void start_timer(struct scc_priv *priv, int t, int r15) |
| { |
| outb(priv->tmr_mode, priv->tmr_ctrl); |
| if (t == 0) { |
| tm_isr(priv); |
| } else if (t > 0) { |
| outb(t & 0xFF, priv->tmr_cnt); |
| outb((t >> 8) & 0xFF, priv->tmr_cnt); |
| if (priv->type != TYPE_TWIN) { |
| write_scc(priv, R15, r15 | CTSIE); |
| priv->rr0 |= CTS; |
| } |
| } |
| } |
| |
| |
| static inline unsigned char random(void) |
| { |
| /* See "Numerical Recipes in C", second edition, p. 284 */ |
| rand = rand * 1664525L + 1013904223L; |
| return (unsigned char) (rand >> 24); |
| } |
| |
| static inline void z8530_isr(struct scc_info *info) |
| { |
| int is, i = 100; |
| |
| while ((is = read_scc(&info->priv[0], R3)) && i--) { |
| if (is & CHARxIP) { |
| rx_isr(&info->priv[0]); |
| } else if (is & CHATxIP) { |
| tx_isr(&info->priv[0]); |
| } else if (is & CHAEXT) { |
| es_isr(&info->priv[0]); |
| } else if (is & CHBRxIP) { |
| rx_isr(&info->priv[1]); |
| } else if (is & CHBTxIP) { |
| tx_isr(&info->priv[1]); |
| } else { |
| es_isr(&info->priv[1]); |
| } |
| write_scc(&info->priv[0], R0, RES_H_IUS); |
| i++; |
| } |
| if (i < 0) { |
| printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n", |
| is); |
| } |
| /* Ok, no interrupts pending from this 8530. The INT line should |
| be inactive now. */ |
| } |
| |
| |
| static irqreturn_t scc_isr(int irq, void *dev_id) |
| { |
| struct scc_info *info = dev_id; |
| |
| spin_lock(info->priv[0].register_lock); |
| /* At this point interrupts are enabled, and the interrupt under service |
| is already acknowledged, but masked off. |
| |
| Interrupt processing: We loop until we know that the IRQ line is |
| low. If another positive edge occurs afterwards during the ISR, |
| another interrupt will be triggered by the interrupt controller |
| as soon as the IRQ level is enabled again (see asm/irq.h). |
| |
| Bottom-half handlers will be processed after scc_isr(). This is |
| important, since we only have small ringbuffers and want new data |
| to be fetched/delivered immediately. */ |
| |
| if (info->priv[0].type == TYPE_TWIN) { |
| int is, card_base = info->priv[0].card_base; |
| while ((is = ~inb(card_base + TWIN_INT_REG)) & |
| TWIN_INT_MSK) { |
| if (is & TWIN_SCC_MSK) { |
| z8530_isr(info); |
| } else if (is & TWIN_TMR1_MSK) { |
| inb(card_base + TWIN_CLR_TMR1); |
| tm_isr(&info->priv[0]); |
| } else { |
| inb(card_base + TWIN_CLR_TMR2); |
| tm_isr(&info->priv[1]); |
| } |
| } |
| } else |
| z8530_isr(info); |
| spin_unlock(info->priv[0].register_lock); |
| return IRQ_HANDLED; |
| } |
| |
| |
| static void rx_isr(struct scc_priv *priv) |
| { |
| if (priv->param.dma >= 0) { |
| /* Check special condition and perform error reset. See 2.4.7.5. */ |
| special_condition(priv, read_scc(priv, R1)); |
| write_scc(priv, R0, ERR_RES); |
| } else { |
| /* Check special condition for each character. Error reset not necessary. |
| Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */ |
| int rc; |
| while (read_scc(priv, R0) & Rx_CH_AV) { |
| rc = read_scc(priv, R1); |
| if (priv->rx_ptr < BUF_SIZE) |
| priv->rx_buf[priv->rx_head][priv-> |
| rx_ptr++] = |
| read_scc_data(priv); |
| else { |
| priv->rx_over = 2; |
| read_scc_data(priv); |
| } |
| special_condition(priv, rc); |
| } |
| } |
| } |
| |
| |
| static void special_condition(struct scc_priv *priv, int rc) |
| { |
| int cb; |
| unsigned long flags; |
| |
| /* See Figure 2-15. Only overrun and EOF need to be checked. */ |
| |
| if (rc & Rx_OVR) { |
| /* Receiver overrun */ |
| priv->rx_over = 1; |
| if (priv->param.dma < 0) |
| write_scc(priv, R0, ERR_RES); |
| } else if (rc & END_FR) { |
| /* End of frame. Get byte count */ |
| if (priv->param.dma >= 0) { |
| flags = claim_dma_lock(); |
| cb = BUF_SIZE - get_dma_residue(priv->param.dma) - |
| 2; |
| release_dma_lock(flags); |
| } else { |
| cb = priv->rx_ptr - 2; |
| } |
| if (priv->rx_over) { |
| /* We had an overrun */ |
| priv->dev->stats.rx_errors++; |
| if (priv->rx_over == 2) |
| priv->dev->stats.rx_length_errors++; |
| else |
| priv->dev->stats.rx_fifo_errors++; |
| priv->rx_over = 0; |
| } else if (rc & CRC_ERR) { |
| /* Count invalid CRC only if packet length >= minimum */ |
| if (cb >= 15) { |
| priv->dev->stats.rx_errors++; |
| priv->dev->stats.rx_crc_errors++; |
| } |
| } else { |
| if (cb >= 15) { |
| if (priv->rx_count < NUM_RX_BUF - 1) { |
| /* Put good frame in FIFO */ |
| priv->rx_len[priv->rx_head] = cb; |
| priv->rx_head = |
| (priv->rx_head + |
| 1) % NUM_RX_BUF; |
| priv->rx_count++; |
| schedule_work(&priv->rx_work); |
| } else { |
| priv->dev->stats.rx_errors++; |
| priv->dev->stats.rx_over_errors++; |
| } |
| } |
| } |
| /* Get ready for new frame */ |
| if (priv->param.dma >= 0) { |
| flags = claim_dma_lock(); |
| set_dma_addr(priv->param.dma, |
| virt_to_bus(priv->rx_buf[priv->rx_head])); |
| set_dma_count(priv->param.dma, BUF_SIZE); |
| release_dma_lock(flags); |
| } else { |
| priv->rx_ptr = 0; |
| } |
| } |
| } |
| |
| |
| static void rx_bh(struct work_struct *ugli_api) |
| { |
| struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work); |
| int i = priv->rx_tail; |
| int cb; |
| unsigned long flags; |
| struct sk_buff *skb; |
| unsigned char *data; |
| |
| spin_lock_irqsave(&priv->ring_lock, flags); |
| while (priv->rx_count) { |
| spin_unlock_irqrestore(&priv->ring_lock, flags); |
| cb = priv->rx_len[i]; |
| /* Allocate buffer */ |
| skb = dev_alloc_skb(cb + 1); |
| if (skb == NULL) { |
| /* Drop packet */ |
| priv->dev->stats.rx_dropped++; |
| } else { |
| /* Fill buffer */ |
| data = skb_put(skb, cb + 1); |
| data[0] = 0; |
| memcpy(&data[1], priv->rx_buf[i], cb); |
| skb->protocol = ax25_type_trans(skb, priv->dev); |
| netif_rx(skb); |
| priv->dev->stats.rx_packets++; |
| priv->dev->stats.rx_bytes += cb; |
| } |
| spin_lock_irqsave(&priv->ring_lock, flags); |
| /* Move tail */ |
| priv->rx_tail = i = (i + 1) % NUM_RX_BUF; |
| priv->rx_count--; |
| } |
| spin_unlock_irqrestore(&priv->ring_lock, flags); |
| } |
| |
| |
| static void tx_isr(struct scc_priv *priv) |
| { |
| int i = priv->tx_tail, p = priv->tx_ptr; |
| |
| /* Suspend TX interrupts if we don't want to send anything. |
| See Figure 2-22. */ |
| if (p == priv->tx_len[i]) { |
| write_scc(priv, R0, RES_Tx_P); |
| return; |
| } |
| |
| /* Write characters */ |
| while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) { |
| write_scc_data(priv, priv->tx_buf[i][p++], 0); |
| } |
| |
| /* Reset EOM latch of Z8530 */ |
| if (!priv->tx_ptr && p && priv->chip == Z8530) |
| write_scc(priv, R0, RES_EOM_L); |
| |
| priv->tx_ptr = p; |
| } |
| |
| |
| static void es_isr(struct scc_priv *priv) |
| { |
| int i, rr0, drr0, res; |
| unsigned long flags; |
| |
| /* Read status, reset interrupt bit (open latches) */ |
| rr0 = read_scc(priv, R0); |
| write_scc(priv, R0, RES_EXT_INT); |
| drr0 = priv->rr0 ^ rr0; |
| priv->rr0 = rr0; |
| |
| /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since |
| it might have already been cleared again by AUTOEOM. */ |
| if (priv->state == TX_DATA) { |
| /* Get remaining bytes */ |
| i = priv->tx_tail; |
| if (priv->param.dma >= 0) { |
| disable_dma(priv->param.dma); |
| flags = claim_dma_lock(); |
| res = get_dma_residue(priv->param.dma); |
| release_dma_lock(flags); |
| } else { |
| res = priv->tx_len[i] - priv->tx_ptr; |
| priv->tx_ptr = 0; |
| } |
| /* Disable DREQ / TX interrupt */ |
| if (priv->param.dma >= 0 && priv->type == TYPE_TWIN) |
| outb(0, priv->card_base + TWIN_DMA_CFG); |
| else |
| write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); |
| if (res) { |
| /* Update packet statistics */ |
| priv->dev->stats.tx_errors++; |
| priv->dev->stats.tx_fifo_errors++; |
| /* Other underrun interrupts may already be waiting */ |
| write_scc(priv, R0, RES_EXT_INT); |
| write_scc(priv, R0, RES_EXT_INT); |
| } else { |
| /* Update packet statistics */ |
| priv->dev->stats.tx_packets++; |
| priv->dev->stats.tx_bytes += priv->tx_len[i]; |
| /* Remove frame from FIFO */ |
| priv->tx_tail = (i + 1) % NUM_TX_BUF; |
| priv->tx_count--; |
| /* Inform upper layers */ |
| netif_wake_queue(priv->dev); |
| } |
| /* Switch state */ |
| write_scc(priv, R15, 0); |
| if (priv->tx_count && |
| (jiffies - priv->tx_start) < priv->param.txtimeout) { |
| priv->state = TX_PAUSE; |
| start_timer(priv, priv->param.txpause, 0); |
| } else { |
| priv->state = TX_TAIL; |
| start_timer(priv, priv->param.txtail, 0); |
| } |
| } |
| |
| /* DCD transition */ |
| if (drr0 & DCD) { |
| if (rr0 & DCD) { |
| switch (priv->state) { |
| case IDLE: |
| case WAIT: |
| priv->state = DCD_ON; |
| write_scc(priv, R15, 0); |
| start_timer(priv, priv->param.dcdon, 0); |
| } |
| } else { |
| switch (priv->state) { |
| case RX_ON: |
| rx_off(priv); |
| priv->state = DCD_OFF; |
| write_scc(priv, R15, 0); |
| start_timer(priv, priv->param.dcdoff, 0); |
| } |
| } |
| } |
| |
| /* CTS transition */ |
| if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN) |
| tm_isr(priv); |
| |
| } |
| |
| |
| static void tm_isr(struct scc_priv *priv) |
| { |
| switch (priv->state) { |
| case TX_HEAD: |
| case TX_PAUSE: |
| tx_on(priv); |
| priv->state = TX_DATA; |
| break; |
| case TX_TAIL: |
| write_scc(priv, R5, TxCRC_ENAB | Tx8); |
| priv->state = RTS_OFF; |
| if (priv->type != TYPE_TWIN) |
| write_scc(priv, R15, 0); |
| start_timer(priv, priv->param.rtsoff, 0); |
| break; |
| case RTS_OFF: |
| write_scc(priv, R15, DCDIE); |
| priv->rr0 = read_scc(priv, R0); |
| if (priv->rr0 & DCD) { |
| priv->dev->stats.collisions++; |
| rx_on(priv); |
| priv->state = RX_ON; |
| } else { |
| priv->state = WAIT; |
| start_timer(priv, priv->param.waittime, DCDIE); |
| } |
| break; |
| case WAIT: |
| if (priv->tx_count) { |
| priv->state = TX_HEAD; |
| priv->tx_start = jiffies; |
| write_scc(priv, R5, |
| TxCRC_ENAB | RTS | TxENAB | Tx8); |
| write_scc(priv, R15, 0); |
| start_timer(priv, priv->param.txdelay, 0); |
| } else { |
| priv->state = IDLE; |
| if (priv->type != TYPE_TWIN) |
| write_scc(priv, R15, DCDIE); |
| } |
| break; |
| case DCD_ON: |
| case DCD_OFF: |
| write_scc(priv, R15, DCDIE); |
| priv->rr0 = read_scc(priv, R0); |
| if (priv->rr0 & DCD) { |
| rx_on(priv); |
| priv->state = RX_ON; |
| } else { |
| priv->state = WAIT; |
| start_timer(priv, |
| random() / priv->param.persist * |
| priv->param.slottime, DCDIE); |
| } |
| break; |
| } |
| } |