|  | /* | 
|  | * Implement CPU time clocks for the POSIX clock interface. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/math64.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/kernel_stat.h> | 
|  |  | 
|  | /* | 
|  | * Allocate the thread_group_cputime structure appropriately and fill in the | 
|  | * current values of the fields.  Called from copy_signal() via | 
|  | * thread_group_cputime_clone_thread() when adding a second or subsequent | 
|  | * thread to a thread group.  Assumes interrupts are enabled when called. | 
|  | */ | 
|  | int thread_group_cputime_alloc(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  | struct task_cputime *cputime; | 
|  |  | 
|  | /* | 
|  | * If we have multiple threads and we don't already have a | 
|  | * per-CPU task_cputime struct (checked in the caller), allocate | 
|  | * one and fill it in with the times accumulated so far.  We may | 
|  | * race with another thread so recheck after we pick up the sighand | 
|  | * lock. | 
|  | */ | 
|  | cputime = alloc_percpu(struct task_cputime); | 
|  | if (cputime == NULL) | 
|  | return -ENOMEM; | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | if (sig->cputime.totals) { | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | free_percpu(cputime); | 
|  | return 0; | 
|  | } | 
|  | sig->cputime.totals = cputime; | 
|  | cputime = per_cpu_ptr(sig->cputime.totals, smp_processor_id()); | 
|  | cputime->utime = tsk->utime; | 
|  | cputime->stime = tsk->stime; | 
|  | cputime->sum_exec_runtime = tsk->se.sum_exec_runtime; | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * thread_group_cputime - Sum the thread group time fields across all CPUs. | 
|  | * | 
|  | * @tsk:	The task we use to identify the thread group. | 
|  | * @times:	task_cputime structure in which we return the summed fields. | 
|  | * | 
|  | * Walk the list of CPUs to sum the per-CPU time fields in the thread group | 
|  | * time structure. | 
|  | */ | 
|  | void thread_group_cputime( | 
|  | struct task_struct *tsk, | 
|  | struct task_cputime *times) | 
|  | { | 
|  | struct signal_struct *sig; | 
|  | int i; | 
|  | struct task_cputime *tot; | 
|  |  | 
|  | sig = tsk->signal; | 
|  | if (unlikely(!sig) || !sig->cputime.totals) { | 
|  | times->utime = tsk->utime; | 
|  | times->stime = tsk->stime; | 
|  | times->sum_exec_runtime = tsk->se.sum_exec_runtime; | 
|  | return; | 
|  | } | 
|  | times->stime = times->utime = cputime_zero; | 
|  | times->sum_exec_runtime = 0; | 
|  | for_each_possible_cpu(i) { | 
|  | tot = per_cpu_ptr(tsk->signal->cputime.totals, i); | 
|  | times->utime = cputime_add(times->utime, tot->utime); | 
|  | times->stime = cputime_add(times->stime, tot->stime); | 
|  | times->sum_exec_runtime += tot->sum_exec_runtime; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 
|  | */ | 
|  | void update_rlimit_cpu(unsigned long rlim_new) | 
|  | { | 
|  | cputime_t cputime; | 
|  |  | 
|  | cputime = secs_to_cputime(rlim_new); | 
|  | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 
|  | cputime_lt(current->signal->it_prof_expires, cputime)) { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_clock(const clockid_t which_clock) | 
|  | { | 
|  | int error = 0; | 
|  | struct task_struct *p; | 
|  | const pid_t pid = CPUCLOCK_PID(which_clock); | 
|  |  | 
|  | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (pid == 0) | 
|  | return 0; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_task_by_vpid(pid); | 
|  | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? | 
|  | same_thread_group(p, current) : thread_group_leader(p))) { | 
|  | error = -EINVAL; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline union cpu_time_count | 
|  | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) | 
|  | { | 
|  | union cpu_time_count ret; | 
|  | ret.sched = 0;		/* high half always zero when .cpu used */ | 
|  | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; | 
|  | } else { | 
|  | ret.cpu = timespec_to_cputime(tp); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sample_to_timespec(const clockid_t which_clock, | 
|  | union cpu_time_count cpu, | 
|  | struct timespec *tp) | 
|  | { | 
|  | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) | 
|  | *tp = ns_to_timespec(cpu.sched); | 
|  | else | 
|  | cputime_to_timespec(cpu.cpu, tp); | 
|  | } | 
|  |  | 
|  | static inline int cpu_time_before(const clockid_t which_clock, | 
|  | union cpu_time_count now, | 
|  | union cpu_time_count then) | 
|  | { | 
|  | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | return now.sched < then.sched; | 
|  | }  else { | 
|  | return cputime_lt(now.cpu, then.cpu); | 
|  | } | 
|  | } | 
|  | static inline void cpu_time_add(const clockid_t which_clock, | 
|  | union cpu_time_count *acc, | 
|  | union cpu_time_count val) | 
|  | { | 
|  | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | acc->sched += val.sched; | 
|  | }  else { | 
|  | acc->cpu = cputime_add(acc->cpu, val.cpu); | 
|  | } | 
|  | } | 
|  | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, | 
|  | union cpu_time_count a, | 
|  | union cpu_time_count b) | 
|  | { | 
|  | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | a.sched -= b.sched; | 
|  | }  else { | 
|  | a.cpu = cputime_sub(a.cpu, b.cpu); | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Divide and limit the result to res >= 1 | 
|  | * | 
|  | * This is necessary to prevent signal delivery starvation, when the result of | 
|  | * the division would be rounded down to 0. | 
|  | */ | 
|  | static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) | 
|  | { | 
|  | cputime_t res = cputime_div(time, div); | 
|  |  | 
|  | return max_t(cputime_t, res, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update expiry time from increment, and increase overrun count, | 
|  | * given the current clock sample. | 
|  | */ | 
|  | static void bump_cpu_timer(struct k_itimer *timer, | 
|  | union cpu_time_count now) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (timer->it.cpu.incr.sched == 0) | 
|  | return; | 
|  |  | 
|  | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 
|  | unsigned long long delta, incr; | 
|  |  | 
|  | if (now.sched < timer->it.cpu.expires.sched) | 
|  | return; | 
|  | incr = timer->it.cpu.incr.sched; | 
|  | delta = now.sched + incr - timer->it.cpu.expires.sched; | 
|  | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|  | for (i = 0; incr < delta - incr; i++) | 
|  | incr = incr << 1; | 
|  | for (; i >= 0; incr >>= 1, i--) { | 
|  | if (delta < incr) | 
|  | continue; | 
|  | timer->it.cpu.expires.sched += incr; | 
|  | timer->it_overrun += 1 << i; | 
|  | delta -= incr; | 
|  | } | 
|  | } else { | 
|  | cputime_t delta, incr; | 
|  |  | 
|  | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | 
|  | return; | 
|  | incr = timer->it.cpu.incr.cpu; | 
|  | delta = cputime_sub(cputime_add(now.cpu, incr), | 
|  | timer->it.cpu.expires.cpu); | 
|  | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|  | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | 
|  | incr = cputime_add(incr, incr); | 
|  | for (; i >= 0; incr = cputime_halve(incr), i--) { | 
|  | if (cputime_lt(delta, incr)) | 
|  | continue; | 
|  | timer->it.cpu.expires.cpu = | 
|  | cputime_add(timer->it.cpu.expires.cpu, incr); | 
|  | timer->it_overrun += 1 << i; | 
|  | delta = cputime_sub(delta, incr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline cputime_t prof_ticks(struct task_struct *p) | 
|  | { | 
|  | return cputime_add(p->utime, p->stime); | 
|  | } | 
|  | static inline cputime_t virt_ticks(struct task_struct *p) | 
|  | { | 
|  | return p->utime; | 
|  | } | 
|  |  | 
|  | int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | int error = check_clock(which_clock); | 
|  | if (!error) { | 
|  | tp->tv_sec = 0; | 
|  | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | 
|  | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | /* | 
|  | * If sched_clock is using a cycle counter, we | 
|  | * don't have any idea of its true resolution | 
|  | * exported, but it is much more than 1s/HZ. | 
|  | */ | 
|  | tp->tv_nsec = 1; | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) | 
|  | { | 
|  | /* | 
|  | * You can never reset a CPU clock, but we check for other errors | 
|  | * in the call before failing with EPERM. | 
|  | */ | 
|  | int error = check_clock(which_clock); | 
|  | if (error == 0) { | 
|  | error = -EPERM; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Sample a per-thread clock for the given task. | 
|  | */ | 
|  | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, | 
|  | union cpu_time_count *cpu) | 
|  | { | 
|  | switch (CPUCLOCK_WHICH(which_clock)) { | 
|  | default: | 
|  | return -EINVAL; | 
|  | case CPUCLOCK_PROF: | 
|  | cpu->cpu = prof_ticks(p); | 
|  | break; | 
|  | case CPUCLOCK_VIRT: | 
|  | cpu->cpu = virt_ticks(p); | 
|  | break; | 
|  | case CPUCLOCK_SCHED: | 
|  | cpu->sched = p->se.sum_exec_runtime + task_delta_exec(p); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sample a process (thread group) clock for the given group_leader task. | 
|  | * Must be called with tasklist_lock held for reading. | 
|  | */ | 
|  | static int cpu_clock_sample_group(const clockid_t which_clock, | 
|  | struct task_struct *p, | 
|  | union cpu_time_count *cpu) | 
|  | { | 
|  | struct task_cputime cputime; | 
|  |  | 
|  | thread_group_cputime(p, &cputime); | 
|  | switch (which_clock) { | 
|  | default: | 
|  | return -EINVAL; | 
|  | case CPUCLOCK_PROF: | 
|  | cpu->cpu = cputime_add(cputime.utime, cputime.stime); | 
|  | break; | 
|  | case CPUCLOCK_VIRT: | 
|  | cpu->cpu = cputime.utime; | 
|  | break; | 
|  | case CPUCLOCK_SCHED: | 
|  | cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | const pid_t pid = CPUCLOCK_PID(which_clock); | 
|  | int error = -EINVAL; | 
|  | union cpu_time_count rtn; | 
|  |  | 
|  | if (pid == 0) { | 
|  | /* | 
|  | * Special case constant value for our own clocks. | 
|  | * We don't have to do any lookup to find ourselves. | 
|  | */ | 
|  | if (CPUCLOCK_PERTHREAD(which_clock)) { | 
|  | /* | 
|  | * Sampling just ourselves we can do with no locking. | 
|  | */ | 
|  | error = cpu_clock_sample(which_clock, | 
|  | current, &rtn); | 
|  | } else { | 
|  | read_lock(&tasklist_lock); | 
|  | error = cpu_clock_sample_group(which_clock, | 
|  | current, &rtn); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Find the given PID, and validate that the caller | 
|  | * should be able to see it. | 
|  | */ | 
|  | struct task_struct *p; | 
|  | rcu_read_lock(); | 
|  | p = find_task_by_vpid(pid); | 
|  | if (p) { | 
|  | if (CPUCLOCK_PERTHREAD(which_clock)) { | 
|  | if (same_thread_group(p, current)) { | 
|  | error = cpu_clock_sample(which_clock, | 
|  | p, &rtn); | 
|  | } | 
|  | } else { | 
|  | read_lock(&tasklist_lock); | 
|  | if (thread_group_leader(p) && p->signal) { | 
|  | error = | 
|  | cpu_clock_sample_group(which_clock, | 
|  | p, &rtn); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | sample_to_timespec(which_clock, rtn, tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | 
|  | * This is called from sys_timer_create with the new timer already locked. | 
|  | */ | 
|  | int posix_cpu_timer_create(struct k_itimer *new_timer) | 
|  | { | 
|  | int ret = 0; | 
|  | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | 
|  | new_timer->it.cpu.incr.sched = 0; | 
|  | new_timer->it.cpu.expires.sched = 0; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | 
|  | if (pid == 0) { | 
|  | p = current; | 
|  | } else { | 
|  | p = find_task_by_vpid(pid); | 
|  | if (p && !same_thread_group(p, current)) | 
|  | p = NULL; | 
|  | } | 
|  | } else { | 
|  | if (pid == 0) { | 
|  | p = current->group_leader; | 
|  | } else { | 
|  | p = find_task_by_vpid(pid); | 
|  | if (p && !thread_group_leader(p)) | 
|  | p = NULL; | 
|  | } | 
|  | } | 
|  | new_timer->it.cpu.task = p; | 
|  | if (p) { | 
|  | get_task_struct(p); | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up a CPU-clock timer that is about to be destroyed. | 
|  | * This is called from timer deletion with the timer already locked. | 
|  | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|  | * and try again.  (This happens when the timer is in the middle of firing.) | 
|  | */ | 
|  | int posix_cpu_timer_del(struct k_itimer *timer) | 
|  | { | 
|  | struct task_struct *p = timer->it.cpu.task; | 
|  | int ret = 0; | 
|  |  | 
|  | if (likely(p != NULL)) { | 
|  | read_lock(&tasklist_lock); | 
|  | if (unlikely(p->signal == NULL)) { | 
|  | /* | 
|  | * We raced with the reaping of the task. | 
|  | * The deletion should have cleared us off the list. | 
|  | */ | 
|  | BUG_ON(!list_empty(&timer->it.cpu.entry)); | 
|  | } else { | 
|  | spin_lock(&p->sighand->siglock); | 
|  | if (timer->it.cpu.firing) | 
|  | ret = TIMER_RETRY; | 
|  | else | 
|  | list_del(&timer->it.cpu.entry); | 
|  | spin_unlock(&p->sighand->siglock); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (!ret) | 
|  | put_task_struct(p); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean out CPU timers still ticking when a thread exited.  The task | 
|  | * pointer is cleared, and the expiry time is replaced with the residual | 
|  | * time for later timer_gettime calls to return. | 
|  | * This must be called with the siglock held. | 
|  | */ | 
|  | static void cleanup_timers(struct list_head *head, | 
|  | cputime_t utime, cputime_t stime, | 
|  | unsigned long long sum_exec_runtime) | 
|  | { | 
|  | struct cpu_timer_list *timer, *next; | 
|  | cputime_t ptime = cputime_add(utime, stime); | 
|  |  | 
|  | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | list_del_init(&timer->entry); | 
|  | if (cputime_lt(timer->expires.cpu, ptime)) { | 
|  | timer->expires.cpu = cputime_zero; | 
|  | } else { | 
|  | timer->expires.cpu = cputime_sub(timer->expires.cpu, | 
|  | ptime); | 
|  | } | 
|  | } | 
|  |  | 
|  | ++head; | 
|  | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | list_del_init(&timer->entry); | 
|  | if (cputime_lt(timer->expires.cpu, utime)) { | 
|  | timer->expires.cpu = cputime_zero; | 
|  | } else { | 
|  | timer->expires.cpu = cputime_sub(timer->expires.cpu, | 
|  | utime); | 
|  | } | 
|  | } | 
|  |  | 
|  | ++head; | 
|  | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | list_del_init(&timer->entry); | 
|  | if (timer->expires.sched < sum_exec_runtime) { | 
|  | timer->expires.sched = 0; | 
|  | } else { | 
|  | timer->expires.sched -= sum_exec_runtime; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are both called with the siglock held, when the current thread | 
|  | * is being reaped.  When the final (leader) thread in the group is reaped, | 
|  | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | 
|  | */ | 
|  | void posix_cpu_timers_exit(struct task_struct *tsk) | 
|  | { | 
|  | cleanup_timers(tsk->cpu_timers, | 
|  | tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); | 
|  |  | 
|  | } | 
|  | void posix_cpu_timers_exit_group(struct task_struct *tsk) | 
|  | { | 
|  | struct task_cputime cputime; | 
|  |  | 
|  | thread_group_cputime(tsk, &cputime); | 
|  | cleanup_timers(tsk->signal->cpu_timers, | 
|  | cputime.utime, cputime.stime, cputime.sum_exec_runtime); | 
|  | } | 
|  |  | 
|  | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | 
|  | { | 
|  | /* | 
|  | * That's all for this thread or process. | 
|  | * We leave our residual in expires to be reported. | 
|  | */ | 
|  | put_task_struct(timer->it.cpu.task); | 
|  | timer->it.cpu.task = NULL; | 
|  | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | 
|  | timer->it.cpu.expires, | 
|  | now); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the timer on the appropriate list before any timers that | 
|  | * expire later.  This must be called with the tasklist_lock held | 
|  | * for reading, and interrupts disabled. | 
|  | */ | 
|  | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | 
|  | { | 
|  | struct task_struct *p = timer->it.cpu.task; | 
|  | struct list_head *head, *listpos; | 
|  | struct cpu_timer_list *const nt = &timer->it.cpu; | 
|  | struct cpu_timer_list *next; | 
|  | unsigned long i; | 
|  |  | 
|  | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | 
|  | p->cpu_timers : p->signal->cpu_timers); | 
|  | head += CPUCLOCK_WHICH(timer->it_clock); | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  | spin_lock(&p->sighand->siglock); | 
|  |  | 
|  | listpos = head; | 
|  | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 
|  | list_for_each_entry(next, head, entry) { | 
|  | if (next->expires.sched > nt->expires.sched) | 
|  | break; | 
|  | listpos = &next->entry; | 
|  | } | 
|  | } else { | 
|  | list_for_each_entry(next, head, entry) { | 
|  | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) | 
|  | break; | 
|  | listpos = &next->entry; | 
|  | } | 
|  | } | 
|  | list_add(&nt->entry, listpos); | 
|  |  | 
|  | if (listpos == head) { | 
|  | /* | 
|  | * We are the new earliest-expiring timer. | 
|  | * If we are a thread timer, there can always | 
|  | * be a process timer telling us to stop earlier. | 
|  | */ | 
|  |  | 
|  | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 
|  | default: | 
|  | BUG(); | 
|  | case CPUCLOCK_PROF: | 
|  | if (cputime_eq(p->cputime_expires.prof_exp, | 
|  | cputime_zero) || | 
|  | cputime_gt(p->cputime_expires.prof_exp, | 
|  | nt->expires.cpu)) | 
|  | p->cputime_expires.prof_exp = | 
|  | nt->expires.cpu; | 
|  | break; | 
|  | case CPUCLOCK_VIRT: | 
|  | if (cputime_eq(p->cputime_expires.virt_exp, | 
|  | cputime_zero) || | 
|  | cputime_gt(p->cputime_expires.virt_exp, | 
|  | nt->expires.cpu)) | 
|  | p->cputime_expires.virt_exp = | 
|  | nt->expires.cpu; | 
|  | break; | 
|  | case CPUCLOCK_SCHED: | 
|  | if (p->cputime_expires.sched_exp == 0 || | 
|  | p->cputime_expires.sched_exp > | 
|  | nt->expires.sched) | 
|  | p->cputime_expires.sched_exp = | 
|  | nt->expires.sched; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * For a process timer, set the cached expiration time. | 
|  | */ | 
|  | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 
|  | default: | 
|  | BUG(); | 
|  | case CPUCLOCK_VIRT: | 
|  | if (!cputime_eq(p->signal->it_virt_expires, | 
|  | cputime_zero) && | 
|  | cputime_lt(p->signal->it_virt_expires, | 
|  | timer->it.cpu.expires.cpu)) | 
|  | break; | 
|  | p->signal->cputime_expires.virt_exp = | 
|  | timer->it.cpu.expires.cpu; | 
|  | break; | 
|  | case CPUCLOCK_PROF: | 
|  | if (!cputime_eq(p->signal->it_prof_expires, | 
|  | cputime_zero) && | 
|  | cputime_lt(p->signal->it_prof_expires, | 
|  | timer->it.cpu.expires.cpu)) | 
|  | break; | 
|  | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 
|  | if (i != RLIM_INFINITY && | 
|  | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 
|  | break; | 
|  | p->signal->cputime_expires.prof_exp = | 
|  | timer->it.cpu.expires.cpu; | 
|  | break; | 
|  | case CPUCLOCK_SCHED: | 
|  | p->signal->cputime_expires.sched_exp = | 
|  | timer->it.cpu.expires.sched; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&p->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The timer is locked, fire it and arrange for its reload. | 
|  | */ | 
|  | static void cpu_timer_fire(struct k_itimer *timer) | 
|  | { | 
|  | if (unlikely(timer->sigq == NULL)) { | 
|  | /* | 
|  | * This a special case for clock_nanosleep, | 
|  | * not a normal timer from sys_timer_create. | 
|  | */ | 
|  | wake_up_process(timer->it_process); | 
|  | timer->it.cpu.expires.sched = 0; | 
|  | } else if (timer->it.cpu.incr.sched == 0) { | 
|  | /* | 
|  | * One-shot timer.  Clear it as soon as it's fired. | 
|  | */ | 
|  | posix_timer_event(timer, 0); | 
|  | timer->it.cpu.expires.sched = 0; | 
|  | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | 
|  | /* | 
|  | * The signal did not get queued because the signal | 
|  | * was ignored, so we won't get any callback to | 
|  | * reload the timer.  But we need to keep it | 
|  | * ticking in case the signal is deliverable next time. | 
|  | */ | 
|  | posix_cpu_timer_schedule(timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Guts of sys_timer_settime for CPU timers. | 
|  | * This is called with the timer locked and interrupts disabled. | 
|  | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|  | * and try again.  (This happens when the timer is in the middle of firing.) | 
|  | */ | 
|  | int posix_cpu_timer_set(struct k_itimer *timer, int flags, | 
|  | struct itimerspec *new, struct itimerspec *old) | 
|  | { | 
|  | struct task_struct *p = timer->it.cpu.task; | 
|  | union cpu_time_count old_expires, new_expires, val; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(p == NULL)) { | 
|  | /* | 
|  | * Timer refers to a dead task's clock. | 
|  | */ | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | /* | 
|  | * We need the tasklist_lock to protect against reaping that | 
|  | * clears p->signal.  If p has just been reaped, we can no | 
|  | * longer get any information about it at all. | 
|  | */ | 
|  | if (unlikely(p->signal == NULL)) { | 
|  | read_unlock(&tasklist_lock); | 
|  | put_task_struct(p); | 
|  | timer->it.cpu.task = NULL; | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disarm any old timer after extracting its expiry time. | 
|  | */ | 
|  | BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | ret = 0; | 
|  | spin_lock(&p->sighand->siglock); | 
|  | old_expires = timer->it.cpu.expires; | 
|  | if (unlikely(timer->it.cpu.firing)) { | 
|  | timer->it.cpu.firing = -1; | 
|  | ret = TIMER_RETRY; | 
|  | } else | 
|  | list_del_init(&timer->it.cpu.entry); | 
|  | spin_unlock(&p->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * We need to sample the current value to convert the new | 
|  | * value from to relative and absolute, and to convert the | 
|  | * old value from absolute to relative.  To set a process | 
|  | * timer, we need a sample to balance the thread expiry | 
|  | * times (in arm_timer).  With an absolute time, we must | 
|  | * check if it's already passed.  In short, we need a sample. | 
|  | */ | 
|  | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | cpu_clock_sample(timer->it_clock, p, &val); | 
|  | } else { | 
|  | cpu_clock_sample_group(timer->it_clock, p, &val); | 
|  | } | 
|  |  | 
|  | if (old) { | 
|  | if (old_expires.sched == 0) { | 
|  | old->it_value.tv_sec = 0; | 
|  | old->it_value.tv_nsec = 0; | 
|  | } else { | 
|  | /* | 
|  | * Update the timer in case it has | 
|  | * overrun already.  If it has, | 
|  | * we'll report it as having overrun | 
|  | * and with the next reloaded timer | 
|  | * already ticking, though we are | 
|  | * swallowing that pending | 
|  | * notification here to install the | 
|  | * new setting. | 
|  | */ | 
|  | bump_cpu_timer(timer, val); | 
|  | if (cpu_time_before(timer->it_clock, val, | 
|  | timer->it.cpu.expires)) { | 
|  | old_expires = cpu_time_sub( | 
|  | timer->it_clock, | 
|  | timer->it.cpu.expires, val); | 
|  | sample_to_timespec(timer->it_clock, | 
|  | old_expires, | 
|  | &old->it_value); | 
|  | } else { | 
|  | old->it_value.tv_nsec = 1; | 
|  | old->it_value.tv_sec = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(ret)) { | 
|  | /* | 
|  | * We are colliding with the timer actually firing. | 
|  | * Punt after filling in the timer's old value, and | 
|  | * disable this firing since we are already reporting | 
|  | * it as an overrun (thanks to bump_cpu_timer above). | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | 
|  | cpu_time_add(timer->it_clock, &new_expires, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Install the new expiry time (or zero). | 
|  | * For a timer with no notification action, we don't actually | 
|  | * arm the timer (we'll just fake it for timer_gettime). | 
|  | */ | 
|  | timer->it.cpu.expires = new_expires; | 
|  | if (new_expires.sched != 0 && | 
|  | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | 
|  | cpu_time_before(timer->it_clock, val, new_expires)) { | 
|  | arm_timer(timer, val); | 
|  | } | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * Install the new reload setting, and | 
|  | * set up the signal and overrun bookkeeping. | 
|  | */ | 
|  | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | 
|  | &new->it_interval); | 
|  |  | 
|  | /* | 
|  | * This acts as a modification timestamp for the timer, | 
|  | * so any automatic reload attempt will punt on seeing | 
|  | * that we have reset the timer manually. | 
|  | */ | 
|  | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | 
|  | ~REQUEUE_PENDING; | 
|  | timer->it_overrun_last = 0; | 
|  | timer->it_overrun = -1; | 
|  |  | 
|  | if (new_expires.sched != 0 && | 
|  | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | 
|  | !cpu_time_before(timer->it_clock, val, new_expires)) { | 
|  | /* | 
|  | * The designated time already passed, so we notify | 
|  | * immediately, even if the thread never runs to | 
|  | * accumulate more time on this clock. | 
|  | */ | 
|  | cpu_timer_fire(timer); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | if (old) { | 
|  | sample_to_timespec(timer->it_clock, | 
|  | timer->it.cpu.incr, &old->it_interval); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | 
|  | { | 
|  | union cpu_time_count now; | 
|  | struct task_struct *p = timer->it.cpu.task; | 
|  | int clear_dead; | 
|  |  | 
|  | /* | 
|  | * Easy part: convert the reload time. | 
|  | */ | 
|  | sample_to_timespec(timer->it_clock, | 
|  | timer->it.cpu.incr, &itp->it_interval); | 
|  |  | 
|  | if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */ | 
|  | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(p == NULL)) { | 
|  | /* | 
|  | * This task already died and the timer will never fire. | 
|  | * In this case, expires is actually the dead value. | 
|  | */ | 
|  | dead: | 
|  | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | 
|  | &itp->it_value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sample the clock to take the difference with the expiry time. | 
|  | */ | 
|  | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | cpu_clock_sample(timer->it_clock, p, &now); | 
|  | clear_dead = p->exit_state; | 
|  | } else { | 
|  | read_lock(&tasklist_lock); | 
|  | if (unlikely(p->signal == NULL)) { | 
|  | /* | 
|  | * The process has been reaped. | 
|  | * We can't even collect a sample any more. | 
|  | * Call the timer disarmed, nothing else to do. | 
|  | */ | 
|  | put_task_struct(p); | 
|  | timer->it.cpu.task = NULL; | 
|  | timer->it.cpu.expires.sched = 0; | 
|  | read_unlock(&tasklist_lock); | 
|  | goto dead; | 
|  | } else { | 
|  | cpu_clock_sample_group(timer->it_clock, p, &now); | 
|  | clear_dead = (unlikely(p->exit_state) && | 
|  | thread_group_empty(p)); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | 
|  | if (timer->it.cpu.incr.sched == 0 && | 
|  | cpu_time_before(timer->it_clock, | 
|  | timer->it.cpu.expires, now)) { | 
|  | /* | 
|  | * Do-nothing timer expired and has no reload, | 
|  | * so it's as if it was never set. | 
|  | */ | 
|  | timer->it.cpu.expires.sched = 0; | 
|  | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Account for any expirations and reloads that should | 
|  | * have happened. | 
|  | */ | 
|  | bump_cpu_timer(timer, now); | 
|  | } | 
|  |  | 
|  | if (unlikely(clear_dead)) { | 
|  | /* | 
|  | * We've noticed that the thread is dead, but | 
|  | * not yet reaped.  Take this opportunity to | 
|  | * drop our task ref. | 
|  | */ | 
|  | clear_dead_task(timer, now); | 
|  | goto dead; | 
|  | } | 
|  |  | 
|  | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | 
|  | sample_to_timespec(timer->it_clock, | 
|  | cpu_time_sub(timer->it_clock, | 
|  | timer->it.cpu.expires, now), | 
|  | &itp->it_value); | 
|  | } else { | 
|  | /* | 
|  | * The timer should have expired already, but the firing | 
|  | * hasn't taken place yet.  Say it's just about to expire. | 
|  | */ | 
|  | itp->it_value.tv_nsec = 1; | 
|  | itp->it_value.tv_sec = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for any per-thread CPU timers that have fired and move them off | 
|  | * the tsk->cpu_timers[N] list onto the firing list.  Here we update the | 
|  | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | 
|  | */ | 
|  | static void check_thread_timers(struct task_struct *tsk, | 
|  | struct list_head *firing) | 
|  | { | 
|  | int maxfire; | 
|  | struct list_head *timers = tsk->cpu_timers; | 
|  | struct signal_struct *const sig = tsk->signal; | 
|  |  | 
|  | maxfire = 20; | 
|  | tsk->cputime_expires.prof_exp = cputime_zero; | 
|  | while (!list_empty(timers)) { | 
|  | struct cpu_timer_list *t = list_first_entry(timers, | 
|  | struct cpu_timer_list, | 
|  | entry); | 
|  | if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { | 
|  | tsk->cputime_expires.prof_exp = t->expires.cpu; | 
|  | break; | 
|  | } | 
|  | t->firing = 1; | 
|  | list_move_tail(&t->entry, firing); | 
|  | } | 
|  |  | 
|  | ++timers; | 
|  | maxfire = 20; | 
|  | tsk->cputime_expires.virt_exp = cputime_zero; | 
|  | while (!list_empty(timers)) { | 
|  | struct cpu_timer_list *t = list_first_entry(timers, | 
|  | struct cpu_timer_list, | 
|  | entry); | 
|  | if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { | 
|  | tsk->cputime_expires.virt_exp = t->expires.cpu; | 
|  | break; | 
|  | } | 
|  | t->firing = 1; | 
|  | list_move_tail(&t->entry, firing); | 
|  | } | 
|  |  | 
|  | ++timers; | 
|  | maxfire = 20; | 
|  | tsk->cputime_expires.sched_exp = 0; | 
|  | while (!list_empty(timers)) { | 
|  | struct cpu_timer_list *t = list_first_entry(timers, | 
|  | struct cpu_timer_list, | 
|  | entry); | 
|  | if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { | 
|  | tsk->cputime_expires.sched_exp = t->expires.sched; | 
|  | break; | 
|  | } | 
|  | t->firing = 1; | 
|  | list_move_tail(&t->entry, firing); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the special case thread timers. | 
|  | */ | 
|  | if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) { | 
|  | unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max; | 
|  | unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur; | 
|  |  | 
|  | if (hard != RLIM_INFINITY && | 
|  | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { | 
|  | /* | 
|  | * At the hard limit, we just die. | 
|  | * No need to calculate anything else now. | 
|  | */ | 
|  | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | 
|  | return; | 
|  | } | 
|  | if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) { | 
|  | /* | 
|  | * At the soft limit, send a SIGXCPU every second. | 
|  | */ | 
|  | if (sig->rlim[RLIMIT_RTTIME].rlim_cur | 
|  | < sig->rlim[RLIMIT_RTTIME].rlim_max) { | 
|  | sig->rlim[RLIMIT_RTTIME].rlim_cur += | 
|  | USEC_PER_SEC; | 
|  | } | 
|  | printk(KERN_INFO | 
|  | "RT Watchdog Timeout: %s[%d]\n", | 
|  | tsk->comm, task_pid_nr(tsk)); | 
|  | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for any per-thread CPU timers that have fired and move them | 
|  | * off the tsk->*_timers list onto the firing list.  Per-thread timers | 
|  | * have already been taken off. | 
|  | */ | 
|  | static void check_process_timers(struct task_struct *tsk, | 
|  | struct list_head *firing) | 
|  | { | 
|  | int maxfire; | 
|  | struct signal_struct *const sig = tsk->signal; | 
|  | cputime_t utime, ptime, virt_expires, prof_expires; | 
|  | unsigned long long sum_sched_runtime, sched_expires; | 
|  | struct list_head *timers = sig->cpu_timers; | 
|  | struct task_cputime cputime; | 
|  |  | 
|  | /* | 
|  | * Don't sample the current process CPU clocks if there are no timers. | 
|  | */ | 
|  | if (list_empty(&timers[CPUCLOCK_PROF]) && | 
|  | cputime_eq(sig->it_prof_expires, cputime_zero) && | 
|  | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 
|  | list_empty(&timers[CPUCLOCK_VIRT]) && | 
|  | cputime_eq(sig->it_virt_expires, cputime_zero) && | 
|  | list_empty(&timers[CPUCLOCK_SCHED])) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Collect the current process totals. | 
|  | */ | 
|  | thread_group_cputime(tsk, &cputime); | 
|  | utime = cputime.utime; | 
|  | ptime = cputime_add(utime, cputime.stime); | 
|  | sum_sched_runtime = cputime.sum_exec_runtime; | 
|  | maxfire = 20; | 
|  | prof_expires = cputime_zero; | 
|  | while (!list_empty(timers)) { | 
|  | struct cpu_timer_list *tl = list_first_entry(timers, | 
|  | struct cpu_timer_list, | 
|  | entry); | 
|  | if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { | 
|  | prof_expires = tl->expires.cpu; | 
|  | break; | 
|  | } | 
|  | tl->firing = 1; | 
|  | list_move_tail(&tl->entry, firing); | 
|  | } | 
|  |  | 
|  | ++timers; | 
|  | maxfire = 20; | 
|  | virt_expires = cputime_zero; | 
|  | while (!list_empty(timers)) { | 
|  | struct cpu_timer_list *tl = list_first_entry(timers, | 
|  | struct cpu_timer_list, | 
|  | entry); | 
|  | if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { | 
|  | virt_expires = tl->expires.cpu; | 
|  | break; | 
|  | } | 
|  | tl->firing = 1; | 
|  | list_move_tail(&tl->entry, firing); | 
|  | } | 
|  |  | 
|  | ++timers; | 
|  | maxfire = 20; | 
|  | sched_expires = 0; | 
|  | while (!list_empty(timers)) { | 
|  | struct cpu_timer_list *tl = list_first_entry(timers, | 
|  | struct cpu_timer_list, | 
|  | entry); | 
|  | if (!--maxfire || sum_sched_runtime < tl->expires.sched) { | 
|  | sched_expires = tl->expires.sched; | 
|  | break; | 
|  | } | 
|  | tl->firing = 1; | 
|  | list_move_tail(&tl->entry, firing); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the special case process timers. | 
|  | */ | 
|  | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 
|  | if (cputime_ge(ptime, sig->it_prof_expires)) { | 
|  | /* ITIMER_PROF fires and reloads.  */ | 
|  | sig->it_prof_expires = sig->it_prof_incr; | 
|  | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 
|  | sig->it_prof_expires = cputime_add( | 
|  | sig->it_prof_expires, ptime); | 
|  | } | 
|  | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | 
|  | } | 
|  | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | 
|  | (cputime_eq(prof_expires, cputime_zero) || | 
|  | cputime_lt(sig->it_prof_expires, prof_expires))) { | 
|  | prof_expires = sig->it_prof_expires; | 
|  | } | 
|  | } | 
|  | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | 
|  | if (cputime_ge(utime, sig->it_virt_expires)) { | 
|  | /* ITIMER_VIRTUAL fires and reloads.  */ | 
|  | sig->it_virt_expires = sig->it_virt_incr; | 
|  | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | 
|  | sig->it_virt_expires = cputime_add( | 
|  | sig->it_virt_expires, utime); | 
|  | } | 
|  | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | 
|  | } | 
|  | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | 
|  | (cputime_eq(virt_expires, cputime_zero) || | 
|  | cputime_lt(sig->it_virt_expires, virt_expires))) { | 
|  | virt_expires = sig->it_virt_expires; | 
|  | } | 
|  | } | 
|  | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 
|  | unsigned long psecs = cputime_to_secs(ptime); | 
|  | cputime_t x; | 
|  | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { | 
|  | /* | 
|  | * At the hard limit, we just die. | 
|  | * No need to calculate anything else now. | 
|  | */ | 
|  | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | 
|  | return; | 
|  | } | 
|  | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { | 
|  | /* | 
|  | * At the soft limit, send a SIGXCPU every second. | 
|  | */ | 
|  | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | 
|  | if (sig->rlim[RLIMIT_CPU].rlim_cur | 
|  | < sig->rlim[RLIMIT_CPU].rlim_max) { | 
|  | sig->rlim[RLIMIT_CPU].rlim_cur++; | 
|  | } | 
|  | } | 
|  | x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | 
|  | if (cputime_eq(prof_expires, cputime_zero) || | 
|  | cputime_lt(x, prof_expires)) { | 
|  | prof_expires = x; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!cputime_eq(prof_expires, cputime_zero) && | 
|  | (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) || | 
|  | cputime_gt(sig->cputime_expires.prof_exp, prof_expires))) | 
|  | sig->cputime_expires.prof_exp = prof_expires; | 
|  | if (!cputime_eq(virt_expires, cputime_zero) && | 
|  | (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) || | 
|  | cputime_gt(sig->cputime_expires.virt_exp, virt_expires))) | 
|  | sig->cputime_expires.virt_exp = virt_expires; | 
|  | if (sched_expires != 0 && | 
|  | (sig->cputime_expires.sched_exp == 0 || | 
|  | sig->cputime_expires.sched_exp > sched_expires)) | 
|  | sig->cputime_expires.sched_exp = sched_expires; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called from the signal code (via do_schedule_next_timer) | 
|  | * when the last timer signal was delivered and we have to reload the timer. | 
|  | */ | 
|  | void posix_cpu_timer_schedule(struct k_itimer *timer) | 
|  | { | 
|  | struct task_struct *p = timer->it.cpu.task; | 
|  | union cpu_time_count now; | 
|  |  | 
|  | if (unlikely(p == NULL)) | 
|  | /* | 
|  | * The task was cleaned up already, no future firings. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Fetch the current sample and update the timer's expiry time. | 
|  | */ | 
|  | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | cpu_clock_sample(timer->it_clock, p, &now); | 
|  | bump_cpu_timer(timer, now); | 
|  | if (unlikely(p->exit_state)) { | 
|  | clear_dead_task(timer, now); | 
|  | goto out; | 
|  | } | 
|  | read_lock(&tasklist_lock); /* arm_timer needs it.  */ | 
|  | } else { | 
|  | read_lock(&tasklist_lock); | 
|  | if (unlikely(p->signal == NULL)) { | 
|  | /* | 
|  | * The process has been reaped. | 
|  | * We can't even collect a sample any more. | 
|  | */ | 
|  | put_task_struct(p); | 
|  | timer->it.cpu.task = p = NULL; | 
|  | timer->it.cpu.expires.sched = 0; | 
|  | goto out_unlock; | 
|  | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { | 
|  | /* | 
|  | * We've noticed that the thread is dead, but | 
|  | * not yet reaped.  Take this opportunity to | 
|  | * drop our task ref. | 
|  | */ | 
|  | clear_dead_task(timer, now); | 
|  | goto out_unlock; | 
|  | } | 
|  | cpu_clock_sample_group(timer->it_clock, p, &now); | 
|  | bump_cpu_timer(timer, now); | 
|  | /* Leave the tasklist_lock locked for the call below.  */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now re-arm for the new expiry time. | 
|  | */ | 
|  | arm_timer(timer, now); | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | out: | 
|  | timer->it_overrun_last = timer->it_overrun; | 
|  | timer->it_overrun = -1; | 
|  | ++timer->it_requeue_pending; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_cputime_zero - Check a task_cputime struct for all zero fields. | 
|  | * | 
|  | * @cputime:	The struct to compare. | 
|  | * | 
|  | * Checks @cputime to see if all fields are zero.  Returns true if all fields | 
|  | * are zero, false if any field is nonzero. | 
|  | */ | 
|  | static inline int task_cputime_zero(const struct task_cputime *cputime) | 
|  | { | 
|  | if (cputime_eq(cputime->utime, cputime_zero) && | 
|  | cputime_eq(cputime->stime, cputime_zero) && | 
|  | cputime->sum_exec_runtime == 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_cputime_expired - Compare two task_cputime entities. | 
|  | * | 
|  | * @sample:	The task_cputime structure to be checked for expiration. | 
|  | * @expires:	Expiration times, against which @sample will be checked. | 
|  | * | 
|  | * Checks @sample against @expires to see if any field of @sample has expired. | 
|  | * Returns true if any field of the former is greater than the corresponding | 
|  | * field of the latter if the latter field is set.  Otherwise returns false. | 
|  | */ | 
|  | static inline int task_cputime_expired(const struct task_cputime *sample, | 
|  | const struct task_cputime *expires) | 
|  | { | 
|  | if (!cputime_eq(expires->utime, cputime_zero) && | 
|  | cputime_ge(sample->utime, expires->utime)) | 
|  | return 1; | 
|  | if (!cputime_eq(expires->stime, cputime_zero) && | 
|  | cputime_ge(cputime_add(sample->utime, sample->stime), | 
|  | expires->stime)) | 
|  | return 1; | 
|  | if (expires->sum_exec_runtime != 0 && | 
|  | sample->sum_exec_runtime >= expires->sum_exec_runtime) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fastpath_timer_check - POSIX CPU timers fast path. | 
|  | * | 
|  | * @tsk:	The task (thread) being checked. | 
|  | * | 
|  | * Check the task and thread group timers.  If both are zero (there are no | 
|  | * timers set) return false.  Otherwise snapshot the task and thread group | 
|  | * timers and compare them with the corresponding expiration times.  Return | 
|  | * true if a timer has expired, else return false. | 
|  | */ | 
|  | static inline int fastpath_timer_check(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  |  | 
|  | if (unlikely(!sig)) | 
|  | return 0; | 
|  |  | 
|  | if (!task_cputime_zero(&tsk->cputime_expires)) { | 
|  | struct task_cputime task_sample = { | 
|  | .utime = tsk->utime, | 
|  | .stime = tsk->stime, | 
|  | .sum_exec_runtime = tsk->se.sum_exec_runtime | 
|  | }; | 
|  |  | 
|  | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) | 
|  | return 1; | 
|  | } | 
|  | if (!task_cputime_zero(&sig->cputime_expires)) { | 
|  | struct task_cputime group_sample; | 
|  |  | 
|  | thread_group_cputime(tsk, &group_sample); | 
|  | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called from the timer interrupt handler.  The irq handler has | 
|  | * already updated our counts.  We need to check if any timers fire now. | 
|  | * Interrupts are disabled. | 
|  | */ | 
|  | void run_posix_cpu_timers(struct task_struct *tsk) | 
|  | { | 
|  | LIST_HEAD(firing); | 
|  | struct k_itimer *timer, *next; | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | /* | 
|  | * The fast path checks that there are no expired thread or thread | 
|  | * group timers.  If that's so, just return. | 
|  | */ | 
|  | if (!fastpath_timer_check(tsk)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&tsk->sighand->siglock); | 
|  | /* | 
|  | * Here we take off tsk->signal->cpu_timers[N] and | 
|  | * tsk->cpu_timers[N] all the timers that are firing, and | 
|  | * put them on the firing list. | 
|  | */ | 
|  | check_thread_timers(tsk, &firing); | 
|  | check_process_timers(tsk, &firing); | 
|  |  | 
|  | /* | 
|  | * We must release these locks before taking any timer's lock. | 
|  | * There is a potential race with timer deletion here, as the | 
|  | * siglock now protects our private firing list.  We have set | 
|  | * the firing flag in each timer, so that a deletion attempt | 
|  | * that gets the timer lock before we do will give it up and | 
|  | * spin until we've taken care of that timer below. | 
|  | */ | 
|  | spin_unlock(&tsk->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Now that all the timers on our list have the firing flag, | 
|  | * noone will touch their list entries but us.  We'll take | 
|  | * each timer's lock before clearing its firing flag, so no | 
|  | * timer call will interfere. | 
|  | */ | 
|  | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | 
|  | int firing; | 
|  | spin_lock(&timer->it_lock); | 
|  | list_del_init(&timer->it.cpu.entry); | 
|  | firing = timer->it.cpu.firing; | 
|  | timer->it.cpu.firing = 0; | 
|  | /* | 
|  | * The firing flag is -1 if we collided with a reset | 
|  | * of the timer, which already reported this | 
|  | * almost-firing as an overrun.  So don't generate an event. | 
|  | */ | 
|  | if (likely(firing >= 0)) { | 
|  | cpu_timer_fire(timer); | 
|  | } | 
|  | spin_unlock(&timer->it_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set one of the process-wide special case CPU timers. | 
|  | * The tsk->sighand->siglock must be held by the caller. | 
|  | * The *newval argument is relative and we update it to be absolute, *oldval | 
|  | * is absolute and we update it to be relative. | 
|  | */ | 
|  | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | 
|  | cputime_t *newval, cputime_t *oldval) | 
|  | { | 
|  | union cpu_time_count now; | 
|  | struct list_head *head; | 
|  |  | 
|  | BUG_ON(clock_idx == CPUCLOCK_SCHED); | 
|  | cpu_clock_sample_group(clock_idx, tsk, &now); | 
|  |  | 
|  | if (oldval) { | 
|  | if (!cputime_eq(*oldval, cputime_zero)) { | 
|  | if (cputime_le(*oldval, now.cpu)) { | 
|  | /* Just about to fire. */ | 
|  | *oldval = jiffies_to_cputime(1); | 
|  | } else { | 
|  | *oldval = cputime_sub(*oldval, now.cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cputime_eq(*newval, cputime_zero)) | 
|  | return; | 
|  | *newval = cputime_add(*newval, now.cpu); | 
|  |  | 
|  | /* | 
|  | * If the RLIMIT_CPU timer will expire before the | 
|  | * ITIMER_PROF timer, we have nothing else to do. | 
|  | */ | 
|  | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | 
|  | < cputime_to_secs(*newval)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether there are any process timers already set to fire | 
|  | * before this one.  If so, we don't have anything more to do. | 
|  | */ | 
|  | head = &tsk->signal->cpu_timers[clock_idx]; | 
|  | if (list_empty(head) || | 
|  | cputime_ge(list_first_entry(head, | 
|  | struct cpu_timer_list, entry)->expires.cpu, | 
|  | *newval)) { | 
|  | switch (clock_idx) { | 
|  | case CPUCLOCK_PROF: | 
|  | tsk->signal->cputime_expires.prof_exp = *newval; | 
|  | break; | 
|  | case CPUCLOCK_VIRT: | 
|  | tsk->signal->cputime_expires.virt_exp = *newval; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, | 
|  | struct timespec *rqtp, struct itimerspec *it) | 
|  | { | 
|  | struct k_itimer timer; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * Set up a temporary timer and then wait for it to go off. | 
|  | */ | 
|  | memset(&timer, 0, sizeof timer); | 
|  | spin_lock_init(&timer.it_lock); | 
|  | timer.it_clock = which_clock; | 
|  | timer.it_overrun = -1; | 
|  | error = posix_cpu_timer_create(&timer); | 
|  | timer.it_process = current; | 
|  | if (!error) { | 
|  | static struct itimerspec zero_it; | 
|  |  | 
|  | memset(it, 0, sizeof *it); | 
|  | it->it_value = *rqtp; | 
|  |  | 
|  | spin_lock_irq(&timer.it_lock); | 
|  | error = posix_cpu_timer_set(&timer, flags, it, NULL); | 
|  | if (error) { | 
|  | spin_unlock_irq(&timer.it_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | while (!signal_pending(current)) { | 
|  | if (timer.it.cpu.expires.sched == 0) { | 
|  | /* | 
|  | * Our timer fired and was reset. | 
|  | */ | 
|  | spin_unlock_irq(&timer.it_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block until cpu_timer_fire (or a signal) wakes us. | 
|  | */ | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_unlock_irq(&timer.it_lock); | 
|  | schedule(); | 
|  | spin_lock_irq(&timer.it_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We were interrupted by a signal. | 
|  | */ | 
|  | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | 
|  | posix_cpu_timer_set(&timer, 0, &zero_it, it); | 
|  | spin_unlock_irq(&timer.it_lock); | 
|  |  | 
|  | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { | 
|  | /* | 
|  | * It actually did fire already. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | error = -ERESTART_RESTARTBLOCK; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int posix_cpu_nsleep(const clockid_t which_clock, int flags, | 
|  | struct timespec *rqtp, struct timespec __user *rmtp) | 
|  | { | 
|  | struct restart_block *restart_block = | 
|  | ¤t_thread_info()->restart_block; | 
|  | struct itimerspec it; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * Diagnose required errors first. | 
|  | */ | 
|  | if (CPUCLOCK_PERTHREAD(which_clock) && | 
|  | (CPUCLOCK_PID(which_clock) == 0 || | 
|  | CPUCLOCK_PID(which_clock) == current->pid)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); | 
|  |  | 
|  | if (error == -ERESTART_RESTARTBLOCK) { | 
|  |  | 
|  | if (flags & TIMER_ABSTIME) | 
|  | return -ERESTARTNOHAND; | 
|  | /* | 
|  | * Report back to the user the time still remaining. | 
|  | */ | 
|  | if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | 
|  | return -EFAULT; | 
|  |  | 
|  | restart_block->fn = posix_cpu_nsleep_restart; | 
|  | restart_block->arg0 = which_clock; | 
|  | restart_block->arg1 = (unsigned long) rmtp; | 
|  | restart_block->arg2 = rqtp->tv_sec; | 
|  | restart_block->arg3 = rqtp->tv_nsec; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | long posix_cpu_nsleep_restart(struct restart_block *restart_block) | 
|  | { | 
|  | clockid_t which_clock = restart_block->arg0; | 
|  | struct timespec __user *rmtp; | 
|  | struct timespec t; | 
|  | struct itimerspec it; | 
|  | int error; | 
|  |  | 
|  | rmtp = (struct timespec __user *) restart_block->arg1; | 
|  | t.tv_sec = restart_block->arg2; | 
|  | t.tv_nsec = restart_block->arg3; | 
|  |  | 
|  | restart_block->fn = do_no_restart_syscall; | 
|  | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); | 
|  |  | 
|  | if (error == -ERESTART_RESTARTBLOCK) { | 
|  | /* | 
|  | * Report back to the user the time still remaining. | 
|  | */ | 
|  | if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | 
|  | return -EFAULT; | 
|  |  | 
|  | restart_block->fn = posix_cpu_nsleep_restart; | 
|  | restart_block->arg0 = which_clock; | 
|  | restart_block->arg1 = (unsigned long) rmtp; | 
|  | restart_block->arg2 = t.tv_sec; | 
|  | restart_block->arg3 = t.tv_nsec; | 
|  | } | 
|  | return error; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | 
|  | #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | 
|  |  | 
|  | static int process_cpu_clock_getres(const clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | 
|  | } | 
|  | static int process_cpu_clock_get(const clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | 
|  | } | 
|  | static int process_cpu_timer_create(struct k_itimer *timer) | 
|  | { | 
|  | timer->it_clock = PROCESS_CLOCK; | 
|  | return posix_cpu_timer_create(timer); | 
|  | } | 
|  | static int process_cpu_nsleep(const clockid_t which_clock, int flags, | 
|  | struct timespec *rqtp, | 
|  | struct timespec __user *rmtp) | 
|  | { | 
|  | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); | 
|  | } | 
|  | static long process_cpu_nsleep_restart(struct restart_block *restart_block) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | static int thread_cpu_clock_getres(const clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | 
|  | } | 
|  | static int thread_cpu_clock_get(const clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | return posix_cpu_clock_get(THREAD_CLOCK, tp); | 
|  | } | 
|  | static int thread_cpu_timer_create(struct k_itimer *timer) | 
|  | { | 
|  | timer->it_clock = THREAD_CLOCK; | 
|  | return posix_cpu_timer_create(timer); | 
|  | } | 
|  | static int thread_cpu_nsleep(const clockid_t which_clock, int flags, | 
|  | struct timespec *rqtp, struct timespec __user *rmtp) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | static long thread_cpu_nsleep_restart(struct restart_block *restart_block) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static __init int init_posix_cpu_timers(void) | 
|  | { | 
|  | struct k_clock process = { | 
|  | .clock_getres = process_cpu_clock_getres, | 
|  | .clock_get = process_cpu_clock_get, | 
|  | .clock_set = do_posix_clock_nosettime, | 
|  | .timer_create = process_cpu_timer_create, | 
|  | .nsleep = process_cpu_nsleep, | 
|  | .nsleep_restart = process_cpu_nsleep_restart, | 
|  | }; | 
|  | struct k_clock thread = { | 
|  | .clock_getres = thread_cpu_clock_getres, | 
|  | .clock_get = thread_cpu_clock_get, | 
|  | .clock_set = do_posix_clock_nosettime, | 
|  | .timer_create = thread_cpu_timer_create, | 
|  | .nsleep = thread_cpu_nsleep, | 
|  | .nsleep_restart = thread_cpu_nsleep_restart, | 
|  | }; | 
|  |  | 
|  | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 
|  | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __initcall(init_posix_cpu_timers); |