| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * trace_hwlat.c - A simple Hardware Latency detector. |
| * |
| * Use this tracer to detect large system latencies induced by the behavior of |
| * certain underlying system hardware or firmware, independent of Linux itself. |
| * The code was developed originally to detect the presence of SMIs on Intel |
| * and AMD systems, although there is no dependency upon x86 herein. |
| * |
| * The classical example usage of this tracer is in detecting the presence of |
| * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a |
| * somewhat special form of hardware interrupt spawned from earlier CPU debug |
| * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge |
| * LPC (or other device) to generate a special interrupt under certain |
| * circumstances, for example, upon expiration of a special SMI timer device, |
| * due to certain external thermal readings, on certain I/O address accesses, |
| * and other situations. An SMI hits a special CPU pin, triggers a special |
| * SMI mode (complete with special memory map), and the OS is unaware. |
| * |
| * Although certain hardware-inducing latencies are necessary (for example, |
| * a modern system often requires an SMI handler for correct thermal control |
| * and remote management) they can wreak havoc upon any OS-level performance |
| * guarantees toward low-latency, especially when the OS is not even made |
| * aware of the presence of these interrupts. For this reason, we need a |
| * somewhat brute force mechanism to detect these interrupts. In this case, |
| * we do it by hogging all of the CPU(s) for configurable timer intervals, |
| * sampling the built-in CPU timer, looking for discontiguous readings. |
| * |
| * WARNING: This implementation necessarily introduces latencies. Therefore, |
| * you should NEVER use this tracer while running in a production |
| * environment requiring any kind of low-latency performance |
| * guarantee(s). |
| * |
| * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com> |
| * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com> |
| * |
| * Includes useful feedback from Clark Williams <clark@redhat.com> |
| * |
| */ |
| #include <linux/kthread.h> |
| #include <linux/tracefs.h> |
| #include <linux/uaccess.h> |
| #include <linux/cpumask.h> |
| #include <linux/delay.h> |
| #include <linux/sched/clock.h> |
| #include "trace.h" |
| |
| static struct trace_array *hwlat_trace; |
| |
| #define U64STR_SIZE 22 /* 20 digits max */ |
| |
| #define BANNER "hwlat_detector: " |
| #define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ |
| #define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ |
| #define DEFAULT_LAT_THRESHOLD 10 /* 10us */ |
| |
| /* sampling thread*/ |
| static struct task_struct *hwlat_kthread; |
| |
| static struct dentry *hwlat_sample_width; /* sample width us */ |
| static struct dentry *hwlat_sample_window; /* sample window us */ |
| |
| /* Save the previous tracing_thresh value */ |
| static unsigned long save_tracing_thresh; |
| |
| /* NMI timestamp counters */ |
| static u64 nmi_ts_start; |
| static u64 nmi_total_ts; |
| static int nmi_count; |
| static int nmi_cpu; |
| |
| /* Tells NMIs to call back to the hwlat tracer to record timestamps */ |
| bool trace_hwlat_callback_enabled; |
| |
| /* If the user changed threshold, remember it */ |
| static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC; |
| |
| /* Individual latency samples are stored here when detected. */ |
| struct hwlat_sample { |
| u64 seqnum; /* unique sequence */ |
| u64 duration; /* delta */ |
| u64 outer_duration; /* delta (outer loop) */ |
| u64 nmi_total_ts; /* Total time spent in NMIs */ |
| struct timespec64 timestamp; /* wall time */ |
| int nmi_count; /* # NMIs during this sample */ |
| int count; /* # of iteratons over threash */ |
| }; |
| |
| /* keep the global state somewhere. */ |
| static struct hwlat_data { |
| |
| struct mutex lock; /* protect changes */ |
| |
| u64 count; /* total since reset */ |
| |
| u64 sample_window; /* total sampling window (on+off) */ |
| u64 sample_width; /* active sampling portion of window */ |
| |
| } hwlat_data = { |
| .sample_window = DEFAULT_SAMPLE_WINDOW, |
| .sample_width = DEFAULT_SAMPLE_WIDTH, |
| }; |
| |
| static void trace_hwlat_sample(struct hwlat_sample *sample) |
| { |
| struct trace_array *tr = hwlat_trace; |
| struct trace_event_call *call = &event_hwlat; |
| struct trace_buffer *buffer = tr->array_buffer.buffer; |
| struct ring_buffer_event *event; |
| struct hwlat_entry *entry; |
| unsigned long flags; |
| int pc; |
| |
| pc = preempt_count(); |
| local_save_flags(flags); |
| |
| event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), |
| flags, pc); |
| if (!event) |
| return; |
| entry = ring_buffer_event_data(event); |
| entry->seqnum = sample->seqnum; |
| entry->duration = sample->duration; |
| entry->outer_duration = sample->outer_duration; |
| entry->timestamp = sample->timestamp; |
| entry->nmi_total_ts = sample->nmi_total_ts; |
| entry->nmi_count = sample->nmi_count; |
| entry->count = sample->count; |
| |
| if (!call_filter_check_discard(call, entry, buffer, event)) |
| trace_buffer_unlock_commit_nostack(buffer, event); |
| } |
| |
| /* Macros to encapsulate the time capturing infrastructure */ |
| #define time_type u64 |
| #define time_get() trace_clock_local() |
| #define time_to_us(x) div_u64(x, 1000) |
| #define time_sub(a, b) ((a) - (b)) |
| #define init_time(a, b) (a = b) |
| #define time_u64(a) a |
| |
| void trace_hwlat_callback(bool enter) |
| { |
| if (smp_processor_id() != nmi_cpu) |
| return; |
| |
| /* |
| * Currently trace_clock_local() calls sched_clock() and the |
| * generic version is not NMI safe. |
| */ |
| if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) { |
| if (enter) |
| nmi_ts_start = time_get(); |
| else |
| nmi_total_ts += time_get() - nmi_ts_start; |
| } |
| |
| if (enter) |
| nmi_count++; |
| } |
| |
| /** |
| * get_sample - sample the CPU TSC and look for likely hardware latencies |
| * |
| * Used to repeatedly capture the CPU TSC (or similar), looking for potential |
| * hardware-induced latency. Called with interrupts disabled and with |
| * hwlat_data.lock held. |
| */ |
| static int get_sample(void) |
| { |
| struct trace_array *tr = hwlat_trace; |
| struct hwlat_sample s; |
| time_type start, t1, t2, last_t2; |
| s64 diff, outer_diff, total, last_total = 0; |
| u64 sample = 0; |
| u64 thresh = tracing_thresh; |
| u64 outer_sample = 0; |
| int ret = -1; |
| unsigned int count = 0; |
| |
| do_div(thresh, NSEC_PER_USEC); /* modifies interval value */ |
| |
| nmi_cpu = smp_processor_id(); |
| nmi_total_ts = 0; |
| nmi_count = 0; |
| /* Make sure NMIs see this first */ |
| barrier(); |
| |
| trace_hwlat_callback_enabled = true; |
| |
| init_time(last_t2, 0); |
| start = time_get(); /* start timestamp */ |
| outer_diff = 0; |
| |
| do { |
| |
| t1 = time_get(); /* we'll look for a discontinuity */ |
| t2 = time_get(); |
| |
| if (time_u64(last_t2)) { |
| /* Check the delta from outer loop (t2 to next t1) */ |
| outer_diff = time_to_us(time_sub(t1, last_t2)); |
| /* This shouldn't happen */ |
| if (outer_diff < 0) { |
| pr_err(BANNER "time running backwards\n"); |
| goto out; |
| } |
| if (outer_diff > outer_sample) |
| outer_sample = outer_diff; |
| } |
| last_t2 = t2; |
| |
| total = time_to_us(time_sub(t2, start)); /* sample width */ |
| |
| /* Check for possible overflows */ |
| if (total < last_total) { |
| pr_err("Time total overflowed\n"); |
| break; |
| } |
| last_total = total; |
| |
| /* This checks the inner loop (t1 to t2) */ |
| diff = time_to_us(time_sub(t2, t1)); /* current diff */ |
| |
| if (diff > thresh || outer_diff > thresh) { |
| if (!count) |
| ktime_get_real_ts64(&s.timestamp); |
| count++; |
| } |
| |
| /* This shouldn't happen */ |
| if (diff < 0) { |
| pr_err(BANNER "time running backwards\n"); |
| goto out; |
| } |
| |
| if (diff > sample) |
| sample = diff; /* only want highest value */ |
| |
| } while (total <= hwlat_data.sample_width); |
| |
| barrier(); /* finish the above in the view for NMIs */ |
| trace_hwlat_callback_enabled = false; |
| barrier(); /* Make sure nmi_total_ts is no longer updated */ |
| |
| ret = 0; |
| |
| /* If we exceed the threshold value, we have found a hardware latency */ |
| if (sample > thresh || outer_sample > thresh) { |
| u64 latency; |
| |
| ret = 1; |
| |
| /* We read in microseconds */ |
| if (nmi_total_ts) |
| do_div(nmi_total_ts, NSEC_PER_USEC); |
| |
| hwlat_data.count++; |
| s.seqnum = hwlat_data.count; |
| s.duration = sample; |
| s.outer_duration = outer_sample; |
| s.nmi_total_ts = nmi_total_ts; |
| s.nmi_count = nmi_count; |
| s.count = count; |
| trace_hwlat_sample(&s); |
| |
| latency = max(sample, outer_sample); |
| |
| /* Keep a running maximum ever recorded hardware latency */ |
| if (latency > tr->max_latency) { |
| tr->max_latency = latency; |
| latency_fsnotify(tr); |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static struct cpumask save_cpumask; |
| static bool disable_migrate; |
| |
| static void move_to_next_cpu(void) |
| { |
| struct cpumask *current_mask = &save_cpumask; |
| int next_cpu; |
| |
| if (disable_migrate) |
| return; |
| /* |
| * If for some reason the user modifies the CPU affinity |
| * of this thread, then stop migrating for the duration |
| * of the current test. |
| */ |
| if (!cpumask_equal(current_mask, current->cpus_ptr)) |
| goto disable; |
| |
| get_online_cpus(); |
| cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask); |
| next_cpu = cpumask_next(smp_processor_id(), current_mask); |
| put_online_cpus(); |
| |
| if (next_cpu >= nr_cpu_ids) |
| next_cpu = cpumask_first(current_mask); |
| |
| if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */ |
| goto disable; |
| |
| cpumask_clear(current_mask); |
| cpumask_set_cpu(next_cpu, current_mask); |
| |
| sched_setaffinity(0, current_mask); |
| return; |
| |
| disable: |
| disable_migrate = true; |
| } |
| |
| /* |
| * kthread_fn - The CPU time sampling/hardware latency detection kernel thread |
| * |
| * Used to periodically sample the CPU TSC via a call to get_sample. We |
| * disable interrupts, which does (intentionally) introduce latency since we |
| * need to ensure nothing else might be running (and thus preempting). |
| * Obviously this should never be used in production environments. |
| * |
| * Executes one loop interaction on each CPU in tracing_cpumask sysfs file. |
| */ |
| static int kthread_fn(void *data) |
| { |
| u64 interval; |
| |
| while (!kthread_should_stop()) { |
| |
| move_to_next_cpu(); |
| |
| local_irq_disable(); |
| get_sample(); |
| local_irq_enable(); |
| |
| mutex_lock(&hwlat_data.lock); |
| interval = hwlat_data.sample_window - hwlat_data.sample_width; |
| mutex_unlock(&hwlat_data.lock); |
| |
| do_div(interval, USEC_PER_MSEC); /* modifies interval value */ |
| |
| /* Always sleep for at least 1ms */ |
| if (interval < 1) |
| interval = 1; |
| |
| if (msleep_interruptible(interval)) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * start_kthread - Kick off the hardware latency sampling/detector kthread |
| * |
| * This starts the kernel thread that will sit and sample the CPU timestamp |
| * counter (TSC or similar) and look for potential hardware latencies. |
| */ |
| static int start_kthread(struct trace_array *tr) |
| { |
| struct cpumask *current_mask = &save_cpumask; |
| struct task_struct *kthread; |
| int next_cpu; |
| |
| if (WARN_ON(hwlat_kthread)) |
| return 0; |
| |
| /* Just pick the first CPU on first iteration */ |
| current_mask = &save_cpumask; |
| get_online_cpus(); |
| cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask); |
| put_online_cpus(); |
| next_cpu = cpumask_first(current_mask); |
| |
| kthread = kthread_create(kthread_fn, NULL, "hwlatd"); |
| if (IS_ERR(kthread)) { |
| pr_err(BANNER "could not start sampling thread\n"); |
| return -ENOMEM; |
| } |
| |
| cpumask_clear(current_mask); |
| cpumask_set_cpu(next_cpu, current_mask); |
| sched_setaffinity(kthread->pid, current_mask); |
| |
| hwlat_kthread = kthread; |
| wake_up_process(kthread); |
| |
| return 0; |
| } |
| |
| /** |
| * stop_kthread - Inform the hardware latency samping/detector kthread to stop |
| * |
| * This kicks the running hardware latency sampling/detector kernel thread and |
| * tells it to stop sampling now. Use this on unload and at system shutdown. |
| */ |
| static void stop_kthread(void) |
| { |
| if (!hwlat_kthread) |
| return; |
| kthread_stop(hwlat_kthread); |
| hwlat_kthread = NULL; |
| } |
| |
| /* |
| * hwlat_read - Wrapper read function for reading both window and width |
| * @filp: The active open file structure |
| * @ubuf: The userspace provided buffer to read value into |
| * @cnt: The maximum number of bytes to read |
| * @ppos: The current "file" position |
| * |
| * This function provides a generic read implementation for the global state |
| * "hwlat_data" structure filesystem entries. |
| */ |
| static ssize_t hwlat_read(struct file *filp, char __user *ubuf, |
| size_t cnt, loff_t *ppos) |
| { |
| char buf[U64STR_SIZE]; |
| u64 *entry = filp->private_data; |
| u64 val; |
| int len; |
| |
| if (!entry) |
| return -EFAULT; |
| |
| if (cnt > sizeof(buf)) |
| cnt = sizeof(buf); |
| |
| val = *entry; |
| |
| len = snprintf(buf, sizeof(buf), "%llu\n", val); |
| |
| return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); |
| } |
| |
| /** |
| * hwlat_width_write - Write function for "width" entry |
| * @filp: The active open file structure |
| * @ubuf: The user buffer that contains the value to write |
| * @cnt: The maximum number of bytes to write to "file" |
| * @ppos: The current position in @file |
| * |
| * This function provides a write implementation for the "width" interface |
| * to the hardware latency detector. It can be used to configure |
| * for how many us of the total window us we will actively sample for any |
| * hardware-induced latency periods. Obviously, it is not possible to |
| * sample constantly and have the system respond to a sample reader, or, |
| * worse, without having the system appear to have gone out to lunch. It |
| * is enforced that width is less that the total window size. |
| */ |
| static ssize_t |
| hwlat_width_write(struct file *filp, const char __user *ubuf, |
| size_t cnt, loff_t *ppos) |
| { |
| u64 val; |
| int err; |
| |
| err = kstrtoull_from_user(ubuf, cnt, 10, &val); |
| if (err) |
| return err; |
| |
| mutex_lock(&hwlat_data.lock); |
| if (val < hwlat_data.sample_window) |
| hwlat_data.sample_width = val; |
| else |
| err = -EINVAL; |
| mutex_unlock(&hwlat_data.lock); |
| |
| if (err) |
| return err; |
| |
| return cnt; |
| } |
| |
| /** |
| * hwlat_window_write - Write function for "window" entry |
| * @filp: The active open file structure |
| * @ubuf: The user buffer that contains the value to write |
| * @cnt: The maximum number of bytes to write to "file" |
| * @ppos: The current position in @file |
| * |
| * This function provides a write implementation for the "window" interface |
| * to the hardware latency detetector. The window is the total time |
| * in us that will be considered one sample period. Conceptually, windows |
| * occur back-to-back and contain a sample width period during which |
| * actual sampling occurs. Can be used to write a new total window size. It |
| * is enfoced that any value written must be greater than the sample width |
| * size, or an error results. |
| */ |
| static ssize_t |
| hwlat_window_write(struct file *filp, const char __user *ubuf, |
| size_t cnt, loff_t *ppos) |
| { |
| u64 val; |
| int err; |
| |
| err = kstrtoull_from_user(ubuf, cnt, 10, &val); |
| if (err) |
| return err; |
| |
| mutex_lock(&hwlat_data.lock); |
| if (hwlat_data.sample_width < val) |
| hwlat_data.sample_window = val; |
| else |
| err = -EINVAL; |
| mutex_unlock(&hwlat_data.lock); |
| |
| if (err) |
| return err; |
| |
| return cnt; |
| } |
| |
| static const struct file_operations width_fops = { |
| .open = tracing_open_generic, |
| .read = hwlat_read, |
| .write = hwlat_width_write, |
| }; |
| |
| static const struct file_operations window_fops = { |
| .open = tracing_open_generic, |
| .read = hwlat_read, |
| .write = hwlat_window_write, |
| }; |
| |
| /** |
| * init_tracefs - A function to initialize the tracefs interface files |
| * |
| * This function creates entries in tracefs for "hwlat_detector". |
| * It creates the hwlat_detector directory in the tracing directory, |
| * and within that directory is the count, width and window files to |
| * change and view those values. |
| */ |
| static int init_tracefs(void) |
| { |
| struct dentry *d_tracer; |
| struct dentry *top_dir; |
| |
| d_tracer = tracing_init_dentry(); |
| if (IS_ERR(d_tracer)) |
| return -ENOMEM; |
| |
| top_dir = tracefs_create_dir("hwlat_detector", d_tracer); |
| if (!top_dir) |
| return -ENOMEM; |
| |
| hwlat_sample_window = tracefs_create_file("window", 0640, |
| top_dir, |
| &hwlat_data.sample_window, |
| &window_fops); |
| if (!hwlat_sample_window) |
| goto err; |
| |
| hwlat_sample_width = tracefs_create_file("width", 0644, |
| top_dir, |
| &hwlat_data.sample_width, |
| &width_fops); |
| if (!hwlat_sample_width) |
| goto err; |
| |
| return 0; |
| |
| err: |
| tracefs_remove(top_dir); |
| return -ENOMEM; |
| } |
| |
| static void hwlat_tracer_start(struct trace_array *tr) |
| { |
| int err; |
| |
| err = start_kthread(tr); |
| if (err) |
| pr_err(BANNER "Cannot start hwlat kthread\n"); |
| } |
| |
| static void hwlat_tracer_stop(struct trace_array *tr) |
| { |
| stop_kthread(); |
| } |
| |
| static bool hwlat_busy; |
| |
| static int hwlat_tracer_init(struct trace_array *tr) |
| { |
| /* Only allow one instance to enable this */ |
| if (hwlat_busy) |
| return -EBUSY; |
| |
| hwlat_trace = tr; |
| |
| disable_migrate = false; |
| hwlat_data.count = 0; |
| tr->max_latency = 0; |
| save_tracing_thresh = tracing_thresh; |
| |
| /* tracing_thresh is in nsecs, we speak in usecs */ |
| if (!tracing_thresh) |
| tracing_thresh = last_tracing_thresh; |
| |
| if (tracer_tracing_is_on(tr)) |
| hwlat_tracer_start(tr); |
| |
| hwlat_busy = true; |
| |
| return 0; |
| } |
| |
| static void hwlat_tracer_reset(struct trace_array *tr) |
| { |
| stop_kthread(); |
| |
| /* the tracing threshold is static between runs */ |
| last_tracing_thresh = tracing_thresh; |
| |
| tracing_thresh = save_tracing_thresh; |
| hwlat_busy = false; |
| } |
| |
| static struct tracer hwlat_tracer __read_mostly = |
| { |
| .name = "hwlat", |
| .init = hwlat_tracer_init, |
| .reset = hwlat_tracer_reset, |
| .start = hwlat_tracer_start, |
| .stop = hwlat_tracer_stop, |
| .allow_instances = true, |
| }; |
| |
| __init static int init_hwlat_tracer(void) |
| { |
| int ret; |
| |
| mutex_init(&hwlat_data.lock); |
| |
| ret = register_tracer(&hwlat_tracer); |
| if (ret) |
| return ret; |
| |
| init_tracefs(); |
| |
| return 0; |
| } |
| late_initcall(init_hwlat_tracer); |