| /* |
| * arch/sh/kernel/process_64.c |
| * |
| * This file handles the architecture-dependent parts of process handling.. |
| * |
| * Copyright (C) 2000, 2001 Paolo Alberelli |
| * Copyright (C) 2003 - 2007 Paul Mundt |
| * Copyright (C) 2003, 2004 Richard Curnow |
| * |
| * Started from SH3/4 version: |
| * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima |
| * |
| * In turn started from i386 version: |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/ptrace.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/io.h> |
| #include <asm/syscalls.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu_context.h> |
| #include <asm/fpu.h> |
| |
| struct task_struct *last_task_used_math = NULL; |
| |
| void machine_restart(char * __unused) |
| { |
| extern void phys_stext(void); |
| |
| phys_stext(); |
| } |
| |
| void machine_halt(void) |
| { |
| for (;;); |
| } |
| |
| void machine_power_off(void) |
| { |
| __asm__ __volatile__ ( |
| "sleep\n\t" |
| "synci\n\t" |
| "nop;nop;nop;nop\n\t" |
| ); |
| |
| panic("Unexpected wakeup!\n"); |
| } |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| unsigned long long ah, al, bh, bl, ch, cl; |
| |
| printk("\n"); |
| |
| ah = (regs->pc) >> 32; |
| al = (regs->pc) & 0xffffffff; |
| bh = (regs->regs[18]) >> 32; |
| bl = (regs->regs[18]) & 0xffffffff; |
| ch = (regs->regs[15]) >> 32; |
| cl = (regs->regs[15]) & 0xffffffff; |
| printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->sr) >> 32; |
| al = (regs->sr) & 0xffffffff; |
| asm volatile ("getcon " __TEA ", %0" : "=r" (bh)); |
| asm volatile ("getcon " __TEA ", %0" : "=r" (bl)); |
| bh = (bh) >> 32; |
| bl = (bl) & 0xffffffff; |
| asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch)); |
| asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl)); |
| ch = (ch) >> 32; |
| cl = (cl) & 0xffffffff; |
| printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[0]) >> 32; |
| al = (regs->regs[0]) & 0xffffffff; |
| bh = (regs->regs[1]) >> 32; |
| bl = (regs->regs[1]) & 0xffffffff; |
| ch = (regs->regs[2]) >> 32; |
| cl = (regs->regs[2]) & 0xffffffff; |
| printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[3]) >> 32; |
| al = (regs->regs[3]) & 0xffffffff; |
| bh = (regs->regs[4]) >> 32; |
| bl = (regs->regs[4]) & 0xffffffff; |
| ch = (regs->regs[5]) >> 32; |
| cl = (regs->regs[5]) & 0xffffffff; |
| printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[6]) >> 32; |
| al = (regs->regs[6]) & 0xffffffff; |
| bh = (regs->regs[7]) >> 32; |
| bl = (regs->regs[7]) & 0xffffffff; |
| ch = (regs->regs[8]) >> 32; |
| cl = (regs->regs[8]) & 0xffffffff; |
| printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[9]) >> 32; |
| al = (regs->regs[9]) & 0xffffffff; |
| bh = (regs->regs[10]) >> 32; |
| bl = (regs->regs[10]) & 0xffffffff; |
| ch = (regs->regs[11]) >> 32; |
| cl = (regs->regs[11]) & 0xffffffff; |
| printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[12]) >> 32; |
| al = (regs->regs[12]) & 0xffffffff; |
| bh = (regs->regs[13]) >> 32; |
| bl = (regs->regs[13]) & 0xffffffff; |
| ch = (regs->regs[14]) >> 32; |
| cl = (regs->regs[14]) & 0xffffffff; |
| printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[16]) >> 32; |
| al = (regs->regs[16]) & 0xffffffff; |
| bh = (regs->regs[17]) >> 32; |
| bl = (regs->regs[17]) & 0xffffffff; |
| ch = (regs->regs[19]) >> 32; |
| cl = (regs->regs[19]) & 0xffffffff; |
| printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[20]) >> 32; |
| al = (regs->regs[20]) & 0xffffffff; |
| bh = (regs->regs[21]) >> 32; |
| bl = (regs->regs[21]) & 0xffffffff; |
| ch = (regs->regs[22]) >> 32; |
| cl = (regs->regs[22]) & 0xffffffff; |
| printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[23]) >> 32; |
| al = (regs->regs[23]) & 0xffffffff; |
| bh = (regs->regs[24]) >> 32; |
| bl = (regs->regs[24]) & 0xffffffff; |
| ch = (regs->regs[25]) >> 32; |
| cl = (regs->regs[25]) & 0xffffffff; |
| printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[26]) >> 32; |
| al = (regs->regs[26]) & 0xffffffff; |
| bh = (regs->regs[27]) >> 32; |
| bl = (regs->regs[27]) & 0xffffffff; |
| ch = (regs->regs[28]) >> 32; |
| cl = (regs->regs[28]) & 0xffffffff; |
| printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[29]) >> 32; |
| al = (regs->regs[29]) & 0xffffffff; |
| bh = (regs->regs[30]) >> 32; |
| bl = (regs->regs[30]) & 0xffffffff; |
| ch = (regs->regs[31]) >> 32; |
| cl = (regs->regs[31]) & 0xffffffff; |
| printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[32]) >> 32; |
| al = (regs->regs[32]) & 0xffffffff; |
| bh = (regs->regs[33]) >> 32; |
| bl = (regs->regs[33]) & 0xffffffff; |
| ch = (regs->regs[34]) >> 32; |
| cl = (regs->regs[34]) & 0xffffffff; |
| printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[35]) >> 32; |
| al = (regs->regs[35]) & 0xffffffff; |
| bh = (regs->regs[36]) >> 32; |
| bl = (regs->regs[36]) & 0xffffffff; |
| ch = (regs->regs[37]) >> 32; |
| cl = (regs->regs[37]) & 0xffffffff; |
| printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[38]) >> 32; |
| al = (regs->regs[38]) & 0xffffffff; |
| bh = (regs->regs[39]) >> 32; |
| bl = (regs->regs[39]) & 0xffffffff; |
| ch = (regs->regs[40]) >> 32; |
| cl = (regs->regs[40]) & 0xffffffff; |
| printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[41]) >> 32; |
| al = (regs->regs[41]) & 0xffffffff; |
| bh = (regs->regs[42]) >> 32; |
| bl = (regs->regs[42]) & 0xffffffff; |
| ch = (regs->regs[43]) >> 32; |
| cl = (regs->regs[43]) & 0xffffffff; |
| printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[44]) >> 32; |
| al = (regs->regs[44]) & 0xffffffff; |
| bh = (regs->regs[45]) >> 32; |
| bl = (regs->regs[45]) & 0xffffffff; |
| ch = (regs->regs[46]) >> 32; |
| cl = (regs->regs[46]) & 0xffffffff; |
| printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[47]) >> 32; |
| al = (regs->regs[47]) & 0xffffffff; |
| bh = (regs->regs[48]) >> 32; |
| bl = (regs->regs[48]) & 0xffffffff; |
| ch = (regs->regs[49]) >> 32; |
| cl = (regs->regs[49]) & 0xffffffff; |
| printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[50]) >> 32; |
| al = (regs->regs[50]) & 0xffffffff; |
| bh = (regs->regs[51]) >> 32; |
| bl = (regs->regs[51]) & 0xffffffff; |
| ch = (regs->regs[52]) >> 32; |
| cl = (regs->regs[52]) & 0xffffffff; |
| printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[53]) >> 32; |
| al = (regs->regs[53]) & 0xffffffff; |
| bh = (regs->regs[54]) >> 32; |
| bl = (regs->regs[54]) & 0xffffffff; |
| ch = (regs->regs[55]) >> 32; |
| cl = (regs->regs[55]) & 0xffffffff; |
| printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[56]) >> 32; |
| al = (regs->regs[56]) & 0xffffffff; |
| bh = (regs->regs[57]) >> 32; |
| bl = (regs->regs[57]) & 0xffffffff; |
| ch = (regs->regs[58]) >> 32; |
| cl = (regs->regs[58]) & 0xffffffff; |
| printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[59]) >> 32; |
| al = (regs->regs[59]) & 0xffffffff; |
| bh = (regs->regs[60]) >> 32; |
| bl = (regs->regs[60]) & 0xffffffff; |
| ch = (regs->regs[61]) >> 32; |
| cl = (regs->regs[61]) & 0xffffffff; |
| printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[62]) >> 32; |
| al = (regs->regs[62]) & 0xffffffff; |
| bh = (regs->tregs[0]) >> 32; |
| bl = (regs->tregs[0]) & 0xffffffff; |
| ch = (regs->tregs[1]) >> 32; |
| cl = (regs->tregs[1]) & 0xffffffff; |
| printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->tregs[2]) >> 32; |
| al = (regs->tregs[2]) & 0xffffffff; |
| bh = (regs->tregs[3]) >> 32; |
| bl = (regs->tregs[3]) & 0xffffffff; |
| ch = (regs->tregs[4]) >> 32; |
| cl = (regs->tregs[4]) & 0xffffffff; |
| printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->tregs[5]) >> 32; |
| al = (regs->tregs[5]) & 0xffffffff; |
| bh = (regs->tregs[6]) >> 32; |
| bl = (regs->tregs[6]) & 0xffffffff; |
| ch = (regs->tregs[7]) >> 32; |
| cl = (regs->tregs[7]) & 0xffffffff; |
| printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| /* |
| * If we're in kernel mode, dump the stack too.. |
| */ |
| if (!user_mode(regs)) { |
| void show_stack(struct task_struct *tsk, unsigned long *sp); |
| unsigned long sp = regs->regs[15] & 0xffffffff; |
| struct task_struct *tsk = get_current(); |
| |
| tsk->thread.kregs = regs; |
| |
| show_stack(tsk, (unsigned long *)sp); |
| } |
| } |
| |
| /* |
| * Create a kernel thread |
| */ |
| ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *)) |
| { |
| do_exit(fn(arg)); |
| } |
| |
| /* |
| * This is the mechanism for creating a new kernel thread. |
| * |
| * NOTE! Only a kernel-only process(ie the swapper or direct descendants |
| * who haven't done an "execve()") should use this: it will work within |
| * a system call from a "real" process, but the process memory space will |
| * not be freed until both the parent and the child have exited. |
| */ |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| regs.regs[2] = (unsigned long)arg; |
| regs.regs[3] = (unsigned long)fn; |
| |
| regs.pc = (unsigned long)kernel_thread_helper; |
| regs.sr = (1 << 30); |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, |
| ®s, 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| /* |
| * See arch/sparc/kernel/process.c for the precedent for doing |
| * this -- RPC. |
| * |
| * The SH-5 FPU save/restore approach relies on |
| * last_task_used_math pointing to a live task_struct. When |
| * another task tries to use the FPU for the 1st time, the FPUDIS |
| * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the |
| * existing FPU state to the FP regs field within |
| * last_task_used_math before re-loading the new task's FPU state |
| * (or initialising it if the FPU has been used before). So if |
| * last_task_used_math is stale, and its page has already been |
| * re-allocated for another use, the consequences are rather |
| * grim. Unless we null it here, there is no other path through |
| * which it would get safely nulled. |
| */ |
| #ifdef CONFIG_SH_FPU |
| if (last_task_used_math == current) { |
| last_task_used_math = NULL; |
| } |
| #endif |
| } |
| |
| void flush_thread(void) |
| { |
| |
| /* Called by fs/exec.c (setup_new_exec) to remove traces of a |
| * previously running executable. */ |
| #ifdef CONFIG_SH_FPU |
| if (last_task_used_math == current) { |
| last_task_used_math = NULL; |
| } |
| /* Force FPU state to be reinitialised after exec */ |
| clear_used_math(); |
| #endif |
| |
| /* if we are a kernel thread, about to change to user thread, |
| * update kreg |
| */ |
| if(current->thread.kregs==&fake_swapper_regs) { |
| current->thread.kregs = |
| ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1); |
| current->thread.uregs = current->thread.kregs; |
| } |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| /* do nothing */ |
| } |
| |
| /* Fill in the fpu structure for a core dump.. */ |
| int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) |
| { |
| #ifdef CONFIG_SH_FPU |
| int fpvalid; |
| struct task_struct *tsk = current; |
| |
| fpvalid = !!tsk_used_math(tsk); |
| if (fpvalid) { |
| if (current == last_task_used_math) { |
| enable_fpu(); |
| save_fpu(tsk); |
| disable_fpu(); |
| last_task_used_math = 0; |
| regs->sr |= SR_FD; |
| } |
| |
| memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu)); |
| } |
| |
| return fpvalid; |
| #else |
| return 0; /* Task didn't use the fpu at all. */ |
| #endif |
| } |
| EXPORT_SYMBOL(dump_fpu); |
| |
| asmlinkage void ret_from_fork(void); |
| |
| int copy_thread(unsigned long clone_flags, unsigned long usp, |
| unsigned long unused, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct pt_regs *childregs; |
| |
| #ifdef CONFIG_SH_FPU |
| if(last_task_used_math == current) { |
| enable_fpu(); |
| save_fpu(current); |
| disable_fpu(); |
| last_task_used_math = NULL; |
| regs->sr |= SR_FD; |
| } |
| #endif |
| /* Copy from sh version */ |
| childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1; |
| |
| *childregs = *regs; |
| |
| /* |
| * Sign extend the edited stack. |
| * Note that thread.pc and thread.pc will stay |
| * 32-bit wide and context switch must take care |
| * of NEFF sign extension. |
| */ |
| if (user_mode(regs)) { |
| childregs->regs[15] = neff_sign_extend(usp); |
| p->thread.uregs = childregs; |
| } else { |
| childregs->regs[15] = |
| neff_sign_extend((unsigned long)task_stack_page(p) + |
| THREAD_SIZE); |
| } |
| |
| childregs->regs[9] = 0; /* Set return value for child */ |
| childregs->sr |= SR_FD; /* Invalidate FPU flag */ |
| |
| p->thread.sp = (unsigned long) childregs; |
| p->thread.pc = (unsigned long) ret_from_fork; |
| |
| return 0; |
| } |
| |
| asmlinkage int sys_fork(unsigned long r2, unsigned long r3, |
| unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); |
| } |
| |
| asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, |
| unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| if (!newsp) |
| newsp = pregs->regs[15]; |
| return do_fork(clone_flags, newsp, pregs, 0, 0, 0); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| asmlinkage int sys_vfork(unsigned long r2, unsigned long r3, |
| unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| asmlinkage int sys_execve(char *ufilename, char **uargv, |
| char **uenvp, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| int error; |
| char *filename; |
| |
| filename = getname((char __user *)ufilename); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| |
| error = do_execve(filename, |
| (char __user * __user *)uargv, |
| (char __user * __user *)uenvp, |
| pregs); |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| /* |
| * These bracket the sleeping functions.. |
| */ |
| extern void interruptible_sleep_on(wait_queue_head_t *q); |
| |
| #define mid_sched ((unsigned long) interruptible_sleep_on) |
| |
| #ifdef CONFIG_FRAME_POINTER |
| static int in_sh64_switch_to(unsigned long pc) |
| { |
| extern char __sh64_switch_to_end; |
| /* For a sleeping task, the PC is somewhere in the middle of the function, |
| so we don't have to worry about masking the LSB off */ |
| return (pc >= (unsigned long) sh64_switch_to) && |
| (pc < (unsigned long) &__sh64_switch_to_end); |
| } |
| #endif |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long pc; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| /* |
| * The same comment as on the Alpha applies here, too ... |
| */ |
| pc = thread_saved_pc(p); |
| |
| #ifdef CONFIG_FRAME_POINTER |
| if (in_sh64_switch_to(pc)) { |
| unsigned long schedule_fp; |
| unsigned long sh64_switch_to_fp; |
| unsigned long schedule_caller_pc; |
| |
| sh64_switch_to_fp = (long) p->thread.sp; |
| /* r14 is saved at offset 4 in the sh64_switch_to frame */ |
| schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4); |
| |
| /* and the caller of 'schedule' is (currently!) saved at offset 24 |
| in the frame of schedule (from disasm) */ |
| schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24); |
| return schedule_caller_pc; |
| } |
| #endif |
| return pc; |
| } |