| /* |
| * intel_powerclamp.c - package c-state idle injection |
| * |
| * Copyright (c) 2012, Intel Corporation. |
| * |
| * Authors: |
| * Arjan van de Ven <arjan@linux.intel.com> |
| * Jacob Pan <jacob.jun.pan@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * |
| * TODO: |
| * 1. better handle wakeup from external interrupts, currently a fixed |
| * compensation is added to clamping duration when excessive amount |
| * of wakeups are observed during idle time. the reason is that in |
| * case of external interrupts without need for ack, clamping down |
| * cpu in non-irq context does not reduce irq. for majority of the |
| * cases, clamping down cpu does help reduce irq as well, we should |
| * be able to differenciate the two cases and give a quantitative |
| * solution for the irqs that we can control. perhaps based on |
| * get_cpu_iowait_time_us() |
| * |
| * 2. synchronization with other hw blocks |
| * |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/freezer.h> |
| #include <linux/cpu.h> |
| #include <linux/thermal.h> |
| #include <linux/slab.h> |
| #include <linux/tick.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #include <linux/sched/rt.h> |
| |
| #include <asm/nmi.h> |
| #include <asm/msr.h> |
| #include <asm/mwait.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/idle.h> |
| #include <asm/hardirq.h> |
| |
| #define MAX_TARGET_RATIO (50U) |
| /* For each undisturbed clamping period (no extra wake ups during idle time), |
| * we increment the confidence counter for the given target ratio. |
| * CONFIDENCE_OK defines the level where runtime calibration results are |
| * valid. |
| */ |
| #define CONFIDENCE_OK (3) |
| /* Default idle injection duration, driver adjust sleep time to meet target |
| * idle ratio. Similar to frequency modulation. |
| */ |
| #define DEFAULT_DURATION_JIFFIES (6) |
| |
| static unsigned int target_mwait; |
| static struct dentry *debug_dir; |
| |
| /* user selected target */ |
| static unsigned int set_target_ratio; |
| static unsigned int current_ratio; |
| static bool should_skip; |
| static bool reduce_irq; |
| static atomic_t idle_wakeup_counter; |
| static unsigned int control_cpu; /* The cpu assigned to collect stat and update |
| * control parameters. default to BSP but BSP |
| * can be offlined. |
| */ |
| static bool clamping; |
| |
| |
| static struct task_struct * __percpu *powerclamp_thread; |
| static struct thermal_cooling_device *cooling_dev; |
| static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu |
| * clamping thread |
| */ |
| |
| static unsigned int duration; |
| static unsigned int pkg_cstate_ratio_cur; |
| static unsigned int window_size; |
| |
| static int duration_set(const char *arg, const struct kernel_param *kp) |
| { |
| int ret = 0; |
| unsigned long new_duration; |
| |
| ret = kstrtoul(arg, 10, &new_duration); |
| if (ret) |
| goto exit; |
| if (new_duration > 25 || new_duration < 6) { |
| pr_err("Out of recommended range %lu, between 6-25ms\n", |
| new_duration); |
| ret = -EINVAL; |
| } |
| |
| duration = clamp(new_duration, 6ul, 25ul); |
| smp_mb(); |
| |
| exit: |
| |
| return ret; |
| } |
| |
| static struct kernel_param_ops duration_ops = { |
| .set = duration_set, |
| .get = param_get_int, |
| }; |
| |
| |
| module_param_cb(duration, &duration_ops, &duration, 0644); |
| MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); |
| |
| struct powerclamp_calibration_data { |
| unsigned long confidence; /* used for calibration, basically a counter |
| * gets incremented each time a clamping |
| * period is completed without extra wakeups |
| * once that counter is reached given level, |
| * compensation is deemed usable. |
| */ |
| unsigned long steady_comp; /* steady state compensation used when |
| * no extra wakeups occurred. |
| */ |
| unsigned long dynamic_comp; /* compensate excessive wakeup from idle |
| * mostly from external interrupts. |
| */ |
| }; |
| |
| static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; |
| |
| static int window_size_set(const char *arg, const struct kernel_param *kp) |
| { |
| int ret = 0; |
| unsigned long new_window_size; |
| |
| ret = kstrtoul(arg, 10, &new_window_size); |
| if (ret) |
| goto exit_win; |
| if (new_window_size > 10 || new_window_size < 2) { |
| pr_err("Out of recommended window size %lu, between 2-10\n", |
| new_window_size); |
| ret = -EINVAL; |
| } |
| |
| window_size = clamp(new_window_size, 2ul, 10ul); |
| smp_mb(); |
| |
| exit_win: |
| |
| return ret; |
| } |
| |
| static struct kernel_param_ops window_size_ops = { |
| .set = window_size_set, |
| .get = param_get_int, |
| }; |
| |
| module_param_cb(window_size, &window_size_ops, &window_size, 0644); |
| MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" |
| "\tpowerclamp controls idle ratio within this window. larger\n" |
| "\twindow size results in slower response time but more smooth\n" |
| "\tclamping results. default to 2."); |
| |
| static void find_target_mwait(void) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| unsigned int highest_cstate = 0; |
| unsigned int highest_subcstate = 0; |
| int i; |
| |
| if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) |
| return; |
| |
| cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); |
| |
| if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || |
| !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) |
| return; |
| |
| edx >>= MWAIT_SUBSTATE_SIZE; |
| for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { |
| if (edx & MWAIT_SUBSTATE_MASK) { |
| highest_cstate = i; |
| highest_subcstate = edx & MWAIT_SUBSTATE_MASK; |
| } |
| } |
| target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | |
| (highest_subcstate - 1); |
| |
| } |
| |
| static bool has_pkg_state_counter(void) |
| { |
| u64 tmp; |
| return !rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &tmp) || |
| !rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &tmp) || |
| !rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &tmp) || |
| !rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &tmp); |
| } |
| |
| static u64 pkg_state_counter(void) |
| { |
| u64 val; |
| u64 count = 0; |
| |
| static bool skip_c2; |
| static bool skip_c3; |
| static bool skip_c6; |
| static bool skip_c7; |
| |
| if (!skip_c2) { |
| if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val)) |
| count += val; |
| else |
| skip_c2 = true; |
| } |
| |
| if (!skip_c3) { |
| if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val)) |
| count += val; |
| else |
| skip_c3 = true; |
| } |
| |
| if (!skip_c6) { |
| if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val)) |
| count += val; |
| else |
| skip_c6 = true; |
| } |
| |
| if (!skip_c7) { |
| if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val)) |
| count += val; |
| else |
| skip_c7 = true; |
| } |
| |
| return count; |
| } |
| |
| static void noop_timer(unsigned long foo) |
| { |
| /* empty... just the fact that we get the interrupt wakes us up */ |
| } |
| |
| static unsigned int get_compensation(int ratio) |
| { |
| unsigned int comp = 0; |
| |
| /* we only use compensation if all adjacent ones are good */ |
| if (ratio == 1 && |
| cal_data[ratio].confidence >= CONFIDENCE_OK && |
| cal_data[ratio + 1].confidence >= CONFIDENCE_OK && |
| cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { |
| comp = (cal_data[ratio].steady_comp + |
| cal_data[ratio + 1].steady_comp + |
| cal_data[ratio + 2].steady_comp) / 3; |
| } else if (ratio == MAX_TARGET_RATIO - 1 && |
| cal_data[ratio].confidence >= CONFIDENCE_OK && |
| cal_data[ratio - 1].confidence >= CONFIDENCE_OK && |
| cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { |
| comp = (cal_data[ratio].steady_comp + |
| cal_data[ratio - 1].steady_comp + |
| cal_data[ratio - 2].steady_comp) / 3; |
| } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && |
| cal_data[ratio - 1].confidence >= CONFIDENCE_OK && |
| cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { |
| comp = (cal_data[ratio].steady_comp + |
| cal_data[ratio - 1].steady_comp + |
| cal_data[ratio + 1].steady_comp) / 3; |
| } |
| |
| /* REVISIT: simple penalty of double idle injection */ |
| if (reduce_irq) |
| comp = ratio; |
| /* do not exceed limit */ |
| if (comp + ratio >= MAX_TARGET_RATIO) |
| comp = MAX_TARGET_RATIO - ratio - 1; |
| |
| return comp; |
| } |
| |
| static void adjust_compensation(int target_ratio, unsigned int win) |
| { |
| int delta; |
| struct powerclamp_calibration_data *d = &cal_data[target_ratio]; |
| |
| /* |
| * adjust compensations if confidence level has not been reached or |
| * there are too many wakeups during the last idle injection period, we |
| * cannot trust the data for compensation. |
| */ |
| if (d->confidence >= CONFIDENCE_OK || |
| atomic_read(&idle_wakeup_counter) > |
| win * num_online_cpus()) |
| return; |
| |
| delta = set_target_ratio - current_ratio; |
| /* filter out bad data */ |
| if (delta >= 0 && delta <= (1+target_ratio/10)) { |
| if (d->steady_comp) |
| d->steady_comp = |
| roundup(delta+d->steady_comp, 2)/2; |
| else |
| d->steady_comp = delta; |
| d->confidence++; |
| } |
| } |
| |
| static bool powerclamp_adjust_controls(unsigned int target_ratio, |
| unsigned int guard, unsigned int win) |
| { |
| static u64 msr_last, tsc_last; |
| u64 msr_now, tsc_now; |
| u64 val64; |
| |
| /* check result for the last window */ |
| msr_now = pkg_state_counter(); |
| rdtscll(tsc_now); |
| |
| /* calculate pkg cstate vs tsc ratio */ |
| if (!msr_last || !tsc_last) |
| current_ratio = 1; |
| else if (tsc_now-tsc_last) { |
| val64 = 100*(msr_now-msr_last); |
| do_div(val64, (tsc_now-tsc_last)); |
| current_ratio = val64; |
| } |
| |
| /* update record */ |
| msr_last = msr_now; |
| tsc_last = tsc_now; |
| |
| adjust_compensation(target_ratio, win); |
| /* |
| * too many external interrupts, set flag such |
| * that we can take measure later. |
| */ |
| reduce_irq = atomic_read(&idle_wakeup_counter) >= |
| 2 * win * num_online_cpus(); |
| |
| atomic_set(&idle_wakeup_counter, 0); |
| /* if we are above target+guard, skip */ |
| return set_target_ratio + guard <= current_ratio; |
| } |
| |
| static int clamp_thread(void *arg) |
| { |
| int cpunr = (unsigned long)arg; |
| DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0); |
| static const struct sched_param param = { |
| .sched_priority = MAX_USER_RT_PRIO/2, |
| }; |
| unsigned int count = 0; |
| unsigned int target_ratio; |
| |
| set_bit(cpunr, cpu_clamping_mask); |
| set_freezable(); |
| init_timer_on_stack(&wakeup_timer); |
| sched_setscheduler(current, SCHED_FIFO, ¶m); |
| |
| while (true == clamping && !kthread_should_stop() && |
| cpu_online(cpunr)) { |
| int sleeptime; |
| unsigned long target_jiffies; |
| unsigned int guard; |
| unsigned int compensation = 0; |
| int interval; /* jiffies to sleep for each attempt */ |
| unsigned int duration_jiffies = msecs_to_jiffies(duration); |
| unsigned int window_size_now; |
| |
| try_to_freeze(); |
| /* |
| * make sure user selected ratio does not take effect until |
| * the next round. adjust target_ratio if user has changed |
| * target such that we can converge quickly. |
| */ |
| target_ratio = set_target_ratio; |
| guard = 1 + target_ratio/20; |
| window_size_now = window_size; |
| count++; |
| |
| /* |
| * systems may have different ability to enter package level |
| * c-states, thus we need to compensate the injected idle ratio |
| * to achieve the actual target reported by the HW. |
| */ |
| compensation = get_compensation(target_ratio); |
| interval = duration_jiffies*100/(target_ratio+compensation); |
| |
| /* align idle time */ |
| target_jiffies = roundup(jiffies, interval); |
| sleeptime = target_jiffies - jiffies; |
| if (sleeptime <= 0) |
| sleeptime = 1; |
| schedule_timeout_interruptible(sleeptime); |
| /* |
| * only elected controlling cpu can collect stats and update |
| * control parameters. |
| */ |
| if (cpunr == control_cpu && !(count%window_size_now)) { |
| should_skip = |
| powerclamp_adjust_controls(target_ratio, |
| guard, window_size_now); |
| smp_mb(); |
| } |
| |
| if (should_skip) |
| continue; |
| |
| target_jiffies = jiffies + duration_jiffies; |
| mod_timer(&wakeup_timer, target_jiffies); |
| if (unlikely(local_softirq_pending())) |
| continue; |
| /* |
| * stop tick sched during idle time, interrupts are still |
| * allowed. thus jiffies are updated properly. |
| */ |
| preempt_disable(); |
| /* mwait until target jiffies is reached */ |
| while (time_before(jiffies, target_jiffies)) { |
| unsigned long ecx = 1; |
| unsigned long eax = target_mwait; |
| |
| /* |
| * REVISIT: may call enter_idle() to notify drivers who |
| * can save power during cpu idle. same for exit_idle() |
| */ |
| local_touch_nmi(); |
| stop_critical_timings(); |
| mwait_idle_with_hints(eax, ecx); |
| start_critical_timings(); |
| atomic_inc(&idle_wakeup_counter); |
| } |
| preempt_enable(); |
| } |
| del_timer_sync(&wakeup_timer); |
| clear_bit(cpunr, cpu_clamping_mask); |
| |
| return 0; |
| } |
| |
| /* |
| * 1 HZ polling while clamping is active, useful for userspace |
| * to monitor actual idle ratio. |
| */ |
| static void poll_pkg_cstate(struct work_struct *dummy); |
| static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); |
| static void poll_pkg_cstate(struct work_struct *dummy) |
| { |
| static u64 msr_last; |
| static u64 tsc_last; |
| static unsigned long jiffies_last; |
| |
| u64 msr_now; |
| unsigned long jiffies_now; |
| u64 tsc_now; |
| u64 val64; |
| |
| msr_now = pkg_state_counter(); |
| rdtscll(tsc_now); |
| jiffies_now = jiffies; |
| |
| /* calculate pkg cstate vs tsc ratio */ |
| if (!msr_last || !tsc_last) |
| pkg_cstate_ratio_cur = 1; |
| else { |
| if (tsc_now - tsc_last) { |
| val64 = 100 * (msr_now - msr_last); |
| do_div(val64, (tsc_now - tsc_last)); |
| pkg_cstate_ratio_cur = val64; |
| } |
| } |
| |
| /* update record */ |
| msr_last = msr_now; |
| jiffies_last = jiffies_now; |
| tsc_last = tsc_now; |
| |
| if (true == clamping) |
| schedule_delayed_work(&poll_pkg_cstate_work, HZ); |
| } |
| |
| static int start_power_clamp(void) |
| { |
| unsigned long cpu; |
| struct task_struct *thread; |
| |
| /* check if pkg cstate counter is completely 0, abort in this case */ |
| if (!has_pkg_state_counter()) { |
| pr_err("pkg cstate counter not functional, abort\n"); |
| return -EINVAL; |
| } |
| |
| set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1); |
| /* prevent cpu hotplug */ |
| get_online_cpus(); |
| |
| /* prefer BSP */ |
| control_cpu = 0; |
| if (!cpu_online(control_cpu)) |
| control_cpu = smp_processor_id(); |
| |
| clamping = true; |
| schedule_delayed_work(&poll_pkg_cstate_work, 0); |
| |
| /* start one thread per online cpu */ |
| for_each_online_cpu(cpu) { |
| struct task_struct **p = |
| per_cpu_ptr(powerclamp_thread, cpu); |
| |
| thread = kthread_create_on_node(clamp_thread, |
| (void *) cpu, |
| cpu_to_node(cpu), |
| "kidle_inject/%ld", cpu); |
| /* bind to cpu here */ |
| if (likely(!IS_ERR(thread))) { |
| kthread_bind(thread, cpu); |
| wake_up_process(thread); |
| *p = thread; |
| } |
| |
| } |
| put_online_cpus(); |
| |
| return 0; |
| } |
| |
| static void end_power_clamp(void) |
| { |
| int i; |
| struct task_struct *thread; |
| |
| clamping = false; |
| /* |
| * make clamping visible to other cpus and give per cpu clamping threads |
| * sometime to exit, or gets killed later. |
| */ |
| smp_mb(); |
| msleep(20); |
| if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { |
| for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { |
| pr_debug("clamping thread for cpu %d alive, kill\n", i); |
| thread = *per_cpu_ptr(powerclamp_thread, i); |
| kthread_stop(thread); |
| } |
| } |
| } |
| |
| static int powerclamp_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| unsigned long cpu = (unsigned long)hcpu; |
| struct task_struct *thread; |
| struct task_struct **percpu_thread = |
| per_cpu_ptr(powerclamp_thread, cpu); |
| |
| if (false == clamping) |
| goto exit_ok; |
| |
| switch (action) { |
| case CPU_ONLINE: |
| thread = kthread_create_on_node(clamp_thread, |
| (void *) cpu, |
| cpu_to_node(cpu), |
| "kidle_inject/%lu", cpu); |
| if (likely(!IS_ERR(thread))) { |
| kthread_bind(thread, cpu); |
| wake_up_process(thread); |
| *percpu_thread = thread; |
| } |
| /* prefer BSP as controlling CPU */ |
| if (cpu == 0) { |
| control_cpu = 0; |
| smp_mb(); |
| } |
| break; |
| case CPU_DEAD: |
| if (test_bit(cpu, cpu_clamping_mask)) { |
| pr_err("cpu %lu dead but powerclamping thread is not\n", |
| cpu); |
| kthread_stop(*percpu_thread); |
| } |
| if (cpu == control_cpu) { |
| control_cpu = smp_processor_id(); |
| smp_mb(); |
| } |
| } |
| |
| exit_ok: |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block powerclamp_cpu_notifier = { |
| .notifier_call = powerclamp_cpu_callback, |
| }; |
| |
| static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, |
| unsigned long *state) |
| { |
| *state = MAX_TARGET_RATIO; |
| |
| return 0; |
| } |
| |
| static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, |
| unsigned long *state) |
| { |
| if (true == clamping) |
| *state = pkg_cstate_ratio_cur; |
| else |
| /* to save power, do not poll idle ratio while not clamping */ |
| *state = -1; /* indicates invalid state */ |
| |
| return 0; |
| } |
| |
| static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, |
| unsigned long new_target_ratio) |
| { |
| int ret = 0; |
| |
| new_target_ratio = clamp(new_target_ratio, 0UL, |
| (unsigned long) (MAX_TARGET_RATIO-1)); |
| if (set_target_ratio == 0 && new_target_ratio > 0) { |
| pr_info("Start idle injection to reduce power\n"); |
| set_target_ratio = new_target_ratio; |
| ret = start_power_clamp(); |
| goto exit_set; |
| } else if (set_target_ratio > 0 && new_target_ratio == 0) { |
| pr_info("Stop forced idle injection\n"); |
| set_target_ratio = 0; |
| end_power_clamp(); |
| } else /* adjust currently running */ { |
| set_target_ratio = new_target_ratio; |
| /* make new set_target_ratio visible to other cpus */ |
| smp_mb(); |
| } |
| |
| exit_set: |
| return ret; |
| } |
| |
| /* bind to generic thermal layer as cooling device*/ |
| static struct thermal_cooling_device_ops powerclamp_cooling_ops = { |
| .get_max_state = powerclamp_get_max_state, |
| .get_cur_state = powerclamp_get_cur_state, |
| .set_cur_state = powerclamp_set_cur_state, |
| }; |
| |
| /* runs on Nehalem and later */ |
| static const struct x86_cpu_id intel_powerclamp_ids[] = { |
| { X86_VENDOR_INTEL, 6, 0x1a}, |
| { X86_VENDOR_INTEL, 6, 0x1c}, |
| { X86_VENDOR_INTEL, 6, 0x1e}, |
| { X86_VENDOR_INTEL, 6, 0x1f}, |
| { X86_VENDOR_INTEL, 6, 0x25}, |
| { X86_VENDOR_INTEL, 6, 0x26}, |
| { X86_VENDOR_INTEL, 6, 0x2a}, |
| { X86_VENDOR_INTEL, 6, 0x2c}, |
| { X86_VENDOR_INTEL, 6, 0x2d}, |
| { X86_VENDOR_INTEL, 6, 0x2e}, |
| { X86_VENDOR_INTEL, 6, 0x2f}, |
| { X86_VENDOR_INTEL, 6, 0x37}, |
| { X86_VENDOR_INTEL, 6, 0x3a}, |
| { X86_VENDOR_INTEL, 6, 0x3c}, |
| { X86_VENDOR_INTEL, 6, 0x3d}, |
| { X86_VENDOR_INTEL, 6, 0x3e}, |
| { X86_VENDOR_INTEL, 6, 0x3f}, |
| { X86_VENDOR_INTEL, 6, 0x45}, |
| { X86_VENDOR_INTEL, 6, 0x46}, |
| { X86_VENDOR_INTEL, 6, 0x4c}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); |
| |
| static int powerclamp_probe(void) |
| { |
| if (!x86_match_cpu(intel_powerclamp_ids)) { |
| pr_err("Intel powerclamp does not run on family %d model %d\n", |
| boot_cpu_data.x86, boot_cpu_data.x86_model); |
| return -ENODEV; |
| } |
| if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || |
| !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) || |
| !boot_cpu_has(X86_FEATURE_MWAIT) || |
| !boot_cpu_has(X86_FEATURE_ARAT)) |
| return -ENODEV; |
| |
| /* find the deepest mwait value */ |
| find_target_mwait(); |
| |
| return 0; |
| } |
| |
| static int powerclamp_debug_show(struct seq_file *m, void *unused) |
| { |
| int i = 0; |
| |
| seq_printf(m, "controlling cpu: %d\n", control_cpu); |
| seq_printf(m, "pct confidence steady dynamic (compensation)\n"); |
| for (i = 0; i < MAX_TARGET_RATIO; i++) { |
| seq_printf(m, "%d\t%lu\t%lu\t%lu\n", |
| i, |
| cal_data[i].confidence, |
| cal_data[i].steady_comp, |
| cal_data[i].dynamic_comp); |
| } |
| |
| return 0; |
| } |
| |
| static int powerclamp_debug_open(struct inode *inode, |
| struct file *file) |
| { |
| return single_open(file, powerclamp_debug_show, inode->i_private); |
| } |
| |
| static const struct file_operations powerclamp_debug_fops = { |
| .open = powerclamp_debug_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| .owner = THIS_MODULE, |
| }; |
| |
| static inline void powerclamp_create_debug_files(void) |
| { |
| debug_dir = debugfs_create_dir("intel_powerclamp", NULL); |
| if (!debug_dir) |
| return; |
| |
| if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, |
| cal_data, &powerclamp_debug_fops)) |
| goto file_error; |
| |
| return; |
| |
| file_error: |
| debugfs_remove_recursive(debug_dir); |
| } |
| |
| static int powerclamp_init(void) |
| { |
| int retval; |
| int bitmap_size; |
| |
| bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); |
| cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!cpu_clamping_mask) |
| return -ENOMEM; |
| |
| /* probe cpu features and ids here */ |
| retval = powerclamp_probe(); |
| if (retval) |
| goto exit_free; |
| |
| /* set default limit, maybe adjusted during runtime based on feedback */ |
| window_size = 2; |
| register_hotcpu_notifier(&powerclamp_cpu_notifier); |
| |
| powerclamp_thread = alloc_percpu(struct task_struct *); |
| if (!powerclamp_thread) { |
| retval = -ENOMEM; |
| goto exit_unregister; |
| } |
| |
| cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, |
| &powerclamp_cooling_ops); |
| if (IS_ERR(cooling_dev)) { |
| retval = -ENODEV; |
| goto exit_free_thread; |
| } |
| |
| if (!duration) |
| duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); |
| |
| powerclamp_create_debug_files(); |
| |
| return 0; |
| |
| exit_free_thread: |
| free_percpu(powerclamp_thread); |
| exit_unregister: |
| unregister_hotcpu_notifier(&powerclamp_cpu_notifier); |
| exit_free: |
| kfree(cpu_clamping_mask); |
| return retval; |
| } |
| module_init(powerclamp_init); |
| |
| static void powerclamp_exit(void) |
| { |
| unregister_hotcpu_notifier(&powerclamp_cpu_notifier); |
| end_power_clamp(); |
| free_percpu(powerclamp_thread); |
| thermal_cooling_device_unregister(cooling_dev); |
| kfree(cpu_clamping_mask); |
| |
| cancel_delayed_work_sync(&poll_pkg_cstate_work); |
| debugfs_remove_recursive(debug_dir); |
| } |
| module_exit(powerclamp_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); |
| MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>"); |
| MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs"); |