|  | /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of version 2 of the GNU General Public | 
|  | * License as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | * General Public License for more details. | 
|  | */ | 
|  |  | 
|  | /* A BPF sock_map is used to store sock objects. This is primarly used | 
|  | * for doing socket redirect with BPF helper routines. | 
|  | * | 
|  | * A sock map may have BPF programs attached to it, currently a program | 
|  | * used to parse packets and a program to provide a verdict and redirect | 
|  | * decision on the packet are supported. Any programs attached to a sock | 
|  | * map are inherited by sock objects when they are added to the map. If | 
|  | * no BPF programs are attached the sock object may only be used for sock | 
|  | * redirect. | 
|  | * | 
|  | * A sock object may be in multiple maps, but can only inherit a single | 
|  | * parse or verdict program. If adding a sock object to a map would result | 
|  | * in having multiple parsing programs the update will return an EBUSY error. | 
|  | * | 
|  | * For reference this program is similar to devmap used in XDP context | 
|  | * reviewing these together may be useful. For an example please review | 
|  | * ./samples/bpf/sockmap/. | 
|  | */ | 
|  | #include <linux/bpf.h> | 
|  | #include <net/sock.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <net/strparser.h> | 
|  | #include <net/tcp.h> | 
|  | #include <linux/ptr_ring.h> | 
|  | #include <net/inet_common.h> | 
|  | #include <linux/sched/signal.h> | 
|  |  | 
|  | #define SOCK_CREATE_FLAG_MASK \ | 
|  | (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) | 
|  |  | 
|  | struct bpf_sock_progs { | 
|  | struct bpf_prog *bpf_tx_msg; | 
|  | struct bpf_prog *bpf_parse; | 
|  | struct bpf_prog *bpf_verdict; | 
|  | }; | 
|  |  | 
|  | struct bpf_stab { | 
|  | struct bpf_map map; | 
|  | struct sock **sock_map; | 
|  | struct bpf_sock_progs progs; | 
|  | }; | 
|  |  | 
|  | struct bucket { | 
|  | struct hlist_head head; | 
|  | raw_spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | struct bpf_htab { | 
|  | struct bpf_map map; | 
|  | struct bucket *buckets; | 
|  | atomic_t count; | 
|  | u32 n_buckets; | 
|  | u32 elem_size; | 
|  | struct bpf_sock_progs progs; | 
|  | struct rcu_head rcu; | 
|  | }; | 
|  |  | 
|  | struct htab_elem { | 
|  | struct rcu_head rcu; | 
|  | struct hlist_node hash_node; | 
|  | u32 hash; | 
|  | struct sock *sk; | 
|  | char key[0]; | 
|  | }; | 
|  |  | 
|  | enum smap_psock_state { | 
|  | SMAP_TX_RUNNING, | 
|  | }; | 
|  |  | 
|  | struct smap_psock_map_entry { | 
|  | struct list_head list; | 
|  | struct sock **entry; | 
|  | struct htab_elem __rcu *hash_link; | 
|  | struct bpf_htab __rcu *htab; | 
|  | }; | 
|  |  | 
|  | struct smap_psock { | 
|  | struct rcu_head	rcu; | 
|  | refcount_t refcnt; | 
|  |  | 
|  | /* datapath variables */ | 
|  | struct sk_buff_head rxqueue; | 
|  | bool strp_enabled; | 
|  |  | 
|  | /* datapath error path cache across tx work invocations */ | 
|  | int save_rem; | 
|  | int save_off; | 
|  | struct sk_buff *save_skb; | 
|  |  | 
|  | /* datapath variables for tx_msg ULP */ | 
|  | struct sock *sk_redir; | 
|  | int apply_bytes; | 
|  | int cork_bytes; | 
|  | int sg_size; | 
|  | int eval; | 
|  | struct sk_msg_buff *cork; | 
|  | struct list_head ingress; | 
|  |  | 
|  | struct strparser strp; | 
|  | struct bpf_prog *bpf_tx_msg; | 
|  | struct bpf_prog *bpf_parse; | 
|  | struct bpf_prog *bpf_verdict; | 
|  | struct list_head maps; | 
|  | spinlock_t maps_lock; | 
|  |  | 
|  | /* Back reference used when sock callback trigger sockmap operations */ | 
|  | struct sock *sock; | 
|  | unsigned long state; | 
|  |  | 
|  | struct work_struct tx_work; | 
|  | struct work_struct gc_work; | 
|  |  | 
|  | struct proto *sk_proto; | 
|  | void (*save_close)(struct sock *sk, long timeout); | 
|  | void (*save_data_ready)(struct sock *sk); | 
|  | void (*save_write_space)(struct sock *sk); | 
|  | }; | 
|  |  | 
|  | static void smap_release_sock(struct smap_psock *psock, struct sock *sock); | 
|  | static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, | 
|  | int nonblock, int flags, int *addr_len); | 
|  | static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); | 
|  | static int bpf_tcp_sendpage(struct sock *sk, struct page *page, | 
|  | int offset, size_t size, int flags); | 
|  | static void bpf_tcp_close(struct sock *sk, long timeout); | 
|  |  | 
|  | static inline struct smap_psock *smap_psock_sk(const struct sock *sk) | 
|  | { | 
|  | return rcu_dereference_sk_user_data(sk); | 
|  | } | 
|  |  | 
|  | static bool bpf_tcp_stream_read(const struct sock *sk) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  | bool empty = true; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) | 
|  | goto out; | 
|  | empty = list_empty(&psock->ingress); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return !empty; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | SOCKMAP_IPV4, | 
|  | SOCKMAP_IPV6, | 
|  | SOCKMAP_NUM_PROTS, | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | SOCKMAP_BASE, | 
|  | SOCKMAP_TX, | 
|  | SOCKMAP_NUM_CONFIGS, | 
|  | }; | 
|  |  | 
|  | static struct proto *saved_tcpv6_prot __read_mostly; | 
|  | static DEFINE_SPINLOCK(tcpv6_prot_lock); | 
|  | static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS]; | 
|  | static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS], | 
|  | struct proto *base) | 
|  | { | 
|  | prot[SOCKMAP_BASE]			= *base; | 
|  | prot[SOCKMAP_BASE].close		= bpf_tcp_close; | 
|  | prot[SOCKMAP_BASE].recvmsg		= bpf_tcp_recvmsg; | 
|  | prot[SOCKMAP_BASE].stream_memory_read	= bpf_tcp_stream_read; | 
|  |  | 
|  | prot[SOCKMAP_TX]			= prot[SOCKMAP_BASE]; | 
|  | prot[SOCKMAP_TX].sendmsg		= bpf_tcp_sendmsg; | 
|  | prot[SOCKMAP_TX].sendpage		= bpf_tcp_sendpage; | 
|  | } | 
|  |  | 
|  | static void update_sk_prot(struct sock *sk, struct smap_psock *psock) | 
|  | { | 
|  | int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4; | 
|  | int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE; | 
|  |  | 
|  | sk->sk_prot = &bpf_tcp_prots[family][conf]; | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_init(struct sock *sk) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) { | 
|  | rcu_read_unlock(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (unlikely(psock->sk_proto)) { | 
|  | rcu_read_unlock(); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | psock->save_close = sk->sk_prot->close; | 
|  | psock->sk_proto = sk->sk_prot; | 
|  |  | 
|  | /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */ | 
|  | if (sk->sk_family == AF_INET6 && | 
|  | unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { | 
|  | spin_lock_bh(&tcpv6_prot_lock); | 
|  | if (likely(sk->sk_prot != saved_tcpv6_prot)) { | 
|  | build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot); | 
|  | smp_store_release(&saved_tcpv6_prot, sk->sk_prot); | 
|  | } | 
|  | spin_unlock_bh(&tcpv6_prot_lock); | 
|  | } | 
|  | update_sk_prot(sk, psock); | 
|  | rcu_read_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void smap_release_sock(struct smap_psock *psock, struct sock *sock); | 
|  | static int free_start_sg(struct sock *sk, struct sk_msg_buff *md); | 
|  |  | 
|  | static void bpf_tcp_release(struct sock *sk) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) | 
|  | goto out; | 
|  |  | 
|  | if (psock->cork) { | 
|  | free_start_sg(psock->sock, psock->cork); | 
|  | kfree(psock->cork); | 
|  | psock->cork = NULL; | 
|  | } | 
|  |  | 
|  | if (psock->sk_proto) { | 
|  | sk->sk_prot = psock->sk_proto; | 
|  | psock->sk_proto = NULL; | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static struct htab_elem *lookup_elem_raw(struct hlist_head *head, | 
|  | u32 hash, void *key, u32 key_size) | 
|  | { | 
|  | struct htab_elem *l; | 
|  |  | 
|  | hlist_for_each_entry_rcu(l, head, hash_node) { | 
|  | if (l->hash == hash && !memcmp(&l->key, key, key_size)) | 
|  | return l; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) | 
|  | { | 
|  | return &htab->buckets[hash & (htab->n_buckets - 1)]; | 
|  | } | 
|  |  | 
|  | static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash) | 
|  | { | 
|  | return &__select_bucket(htab, hash)->head; | 
|  | } | 
|  |  | 
|  | static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) | 
|  | { | 
|  | atomic_dec(&htab->count); | 
|  | kfree_rcu(l, rcu); | 
|  | } | 
|  |  | 
|  | static struct smap_psock_map_entry *psock_map_pop(struct sock *sk, | 
|  | struct smap_psock *psock) | 
|  | { | 
|  | struct smap_psock_map_entry *e; | 
|  |  | 
|  | spin_lock_bh(&psock->maps_lock); | 
|  | e = list_first_entry_or_null(&psock->maps, | 
|  | struct smap_psock_map_entry, | 
|  | list); | 
|  | if (e) | 
|  | list_del(&e->list); | 
|  | spin_unlock_bh(&psock->maps_lock); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | static void bpf_tcp_close(struct sock *sk, long timeout) | 
|  | { | 
|  | void (*close_fun)(struct sock *sk, long timeout); | 
|  | struct smap_psock_map_entry *e; | 
|  | struct sk_msg_buff *md, *mtmp; | 
|  | struct smap_psock *psock; | 
|  | struct sock *osk; | 
|  |  | 
|  | lock_sock(sk); | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) { | 
|  | rcu_read_unlock(); | 
|  | release_sock(sk); | 
|  | return sk->sk_prot->close(sk, timeout); | 
|  | } | 
|  |  | 
|  | /* The psock may be destroyed anytime after exiting the RCU critial | 
|  | * section so by the time we use close_fun the psock may no longer | 
|  | * be valid. However, bpf_tcp_close is called with the sock lock | 
|  | * held so the close hook and sk are still valid. | 
|  | */ | 
|  | close_fun = psock->save_close; | 
|  |  | 
|  | if (psock->cork) { | 
|  | free_start_sg(psock->sock, psock->cork); | 
|  | kfree(psock->cork); | 
|  | psock->cork = NULL; | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(md, mtmp, &psock->ingress, list) { | 
|  | list_del(&md->list); | 
|  | free_start_sg(psock->sock, md); | 
|  | kfree(md); | 
|  | } | 
|  |  | 
|  | e = psock_map_pop(sk, psock); | 
|  | while (e) { | 
|  | if (e->entry) { | 
|  | osk = cmpxchg(e->entry, sk, NULL); | 
|  | if (osk == sk) { | 
|  | smap_release_sock(psock, sk); | 
|  | } | 
|  | } else { | 
|  | struct htab_elem *link = rcu_dereference(e->hash_link); | 
|  | struct bpf_htab *htab = rcu_dereference(e->htab); | 
|  | struct hlist_head *head; | 
|  | struct htab_elem *l; | 
|  | struct bucket *b; | 
|  |  | 
|  | b = __select_bucket(htab, link->hash); | 
|  | head = &b->head; | 
|  | raw_spin_lock_bh(&b->lock); | 
|  | l = lookup_elem_raw(head, | 
|  | link->hash, link->key, | 
|  | htab->map.key_size); | 
|  | /* If another thread deleted this object skip deletion. | 
|  | * The refcnt on psock may or may not be zero. | 
|  | */ | 
|  | if (l) { | 
|  | hlist_del_rcu(&link->hash_node); | 
|  | smap_release_sock(psock, link->sk); | 
|  | free_htab_elem(htab, link); | 
|  | } | 
|  | raw_spin_unlock_bh(&b->lock); | 
|  | } | 
|  | e = psock_map_pop(sk, psock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | release_sock(sk); | 
|  | close_fun(sk, timeout); | 
|  | } | 
|  |  | 
|  | enum __sk_action { | 
|  | __SK_DROP = 0, | 
|  | __SK_PASS, | 
|  | __SK_REDIRECT, | 
|  | __SK_NONE, | 
|  | }; | 
|  |  | 
|  | static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = { | 
|  | .name		= "bpf_tcp", | 
|  | .uid		= TCP_ULP_BPF, | 
|  | .user_visible	= false, | 
|  | .owner		= NULL, | 
|  | .init		= bpf_tcp_init, | 
|  | .release	= bpf_tcp_release, | 
|  | }; | 
|  |  | 
|  | static int memcopy_from_iter(struct sock *sk, | 
|  | struct sk_msg_buff *md, | 
|  | struct iov_iter *from, int bytes) | 
|  | { | 
|  | struct scatterlist *sg = md->sg_data; | 
|  | int i = md->sg_curr, rc = -ENOSPC; | 
|  |  | 
|  | do { | 
|  | int copy; | 
|  | char *to; | 
|  |  | 
|  | if (md->sg_copybreak >= sg[i].length) { | 
|  | md->sg_copybreak = 0; | 
|  |  | 
|  | if (++i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  |  | 
|  | if (i == md->sg_end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | copy = sg[i].length - md->sg_copybreak; | 
|  | to = sg_virt(&sg[i]) + md->sg_copybreak; | 
|  | md->sg_copybreak += copy; | 
|  |  | 
|  | if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) | 
|  | rc = copy_from_iter_nocache(to, copy, from); | 
|  | else | 
|  | rc = copy_from_iter(to, copy, from); | 
|  |  | 
|  | if (rc != copy) { | 
|  | rc = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bytes -= copy; | 
|  | if (!bytes) | 
|  | break; | 
|  |  | 
|  | md->sg_copybreak = 0; | 
|  | if (++i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  | } while (i != md->sg_end); | 
|  | out: | 
|  | md->sg_curr = i; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_push(struct sock *sk, int apply_bytes, | 
|  | struct sk_msg_buff *md, | 
|  | int flags, bool uncharge) | 
|  | { | 
|  | bool apply = apply_bytes; | 
|  | struct scatterlist *sg; | 
|  | int offset, ret = 0; | 
|  | struct page *p; | 
|  | size_t size; | 
|  |  | 
|  | while (1) { | 
|  | sg = md->sg_data + md->sg_start; | 
|  | size = (apply && apply_bytes < sg->length) ? | 
|  | apply_bytes : sg->length; | 
|  | offset = sg->offset; | 
|  |  | 
|  | tcp_rate_check_app_limited(sk); | 
|  | p = sg_page(sg); | 
|  | retry: | 
|  | ret = do_tcp_sendpages(sk, p, offset, size, flags); | 
|  | if (ret != size) { | 
|  | if (ret > 0) { | 
|  | if (apply) | 
|  | apply_bytes -= ret; | 
|  |  | 
|  | sg->offset += ret; | 
|  | sg->length -= ret; | 
|  | size -= ret; | 
|  | offset += ret; | 
|  | if (uncharge) | 
|  | sk_mem_uncharge(sk, ret); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (apply) | 
|  | apply_bytes -= ret; | 
|  | sg->offset += ret; | 
|  | sg->length -= ret; | 
|  | if (uncharge) | 
|  | sk_mem_uncharge(sk, ret); | 
|  |  | 
|  | if (!sg->length) { | 
|  | put_page(p); | 
|  | md->sg_start++; | 
|  | if (md->sg_start == MAX_SKB_FRAGS) | 
|  | md->sg_start = 0; | 
|  | sg_init_table(sg, 1); | 
|  |  | 
|  | if (md->sg_start == md->sg_end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (apply && !apply_bytes) | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md) | 
|  | { | 
|  | struct scatterlist *sg = md->sg_data + md->sg_start; | 
|  |  | 
|  | if (md->sg_copy[md->sg_start]) { | 
|  | md->data = md->data_end = 0; | 
|  | } else { | 
|  | md->data = sg_virt(sg); | 
|  | md->data_end = md->data + sg->length; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md) | 
|  | { | 
|  | struct scatterlist *sg = md->sg_data; | 
|  | int i = md->sg_start; | 
|  |  | 
|  | do { | 
|  | int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length; | 
|  |  | 
|  | sk_mem_uncharge(sk, uncharge); | 
|  | bytes -= uncharge; | 
|  | if (!bytes) | 
|  | break; | 
|  | i++; | 
|  | if (i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  | } while (i != md->sg_end); | 
|  | } | 
|  |  | 
|  | static void free_bytes_sg(struct sock *sk, int bytes, | 
|  | struct sk_msg_buff *md, bool charge) | 
|  | { | 
|  | struct scatterlist *sg = md->sg_data; | 
|  | int i = md->sg_start, free; | 
|  |  | 
|  | while (bytes && sg[i].length) { | 
|  | free = sg[i].length; | 
|  | if (bytes < free) { | 
|  | sg[i].length -= bytes; | 
|  | sg[i].offset += bytes; | 
|  | if (charge) | 
|  | sk_mem_uncharge(sk, bytes); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (charge) | 
|  | sk_mem_uncharge(sk, sg[i].length); | 
|  | put_page(sg_page(&sg[i])); | 
|  | bytes -= sg[i].length; | 
|  | sg[i].length = 0; | 
|  | sg[i].page_link = 0; | 
|  | sg[i].offset = 0; | 
|  | i++; | 
|  |  | 
|  | if (i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  | } | 
|  | md->sg_start = i; | 
|  | } | 
|  |  | 
|  | static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md) | 
|  | { | 
|  | struct scatterlist *sg = md->sg_data; | 
|  | int i = start, free = 0; | 
|  |  | 
|  | while (sg[i].length) { | 
|  | free += sg[i].length; | 
|  | sk_mem_uncharge(sk, sg[i].length); | 
|  | if (!md->skb) | 
|  | put_page(sg_page(&sg[i])); | 
|  | sg[i].length = 0; | 
|  | sg[i].page_link = 0; | 
|  | sg[i].offset = 0; | 
|  | i++; | 
|  |  | 
|  | if (i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  | } | 
|  | if (md->skb) | 
|  | consume_skb(md->skb); | 
|  |  | 
|  | return free; | 
|  | } | 
|  |  | 
|  | static int free_start_sg(struct sock *sk, struct sk_msg_buff *md) | 
|  | { | 
|  | int free = free_sg(sk, md->sg_start, md); | 
|  |  | 
|  | md->sg_start = md->sg_end; | 
|  | return free; | 
|  | } | 
|  |  | 
|  | static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md) | 
|  | { | 
|  | return free_sg(sk, md->sg_curr, md); | 
|  | } | 
|  |  | 
|  | static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md) | 
|  | { | 
|  | return ((_rc == SK_PASS) ? | 
|  | (md->sk_redir ? __SK_REDIRECT : __SK_PASS) : | 
|  | __SK_DROP); | 
|  | } | 
|  |  | 
|  | static unsigned int smap_do_tx_msg(struct sock *sk, | 
|  | struct smap_psock *psock, | 
|  | struct sk_msg_buff *md) | 
|  | { | 
|  | struct bpf_prog *prog; | 
|  | unsigned int rc, _rc; | 
|  |  | 
|  | preempt_disable(); | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* If the policy was removed mid-send then default to 'accept' */ | 
|  | prog = READ_ONCE(psock->bpf_tx_msg); | 
|  | if (unlikely(!prog)) { | 
|  | _rc = SK_PASS; | 
|  | goto verdict; | 
|  | } | 
|  |  | 
|  | bpf_compute_data_pointers_sg(md); | 
|  | md->sk = sk; | 
|  | rc = (*prog->bpf_func)(md, prog->insnsi); | 
|  | psock->apply_bytes = md->apply_bytes; | 
|  |  | 
|  | /* Moving return codes from UAPI namespace into internal namespace */ | 
|  | _rc = bpf_map_msg_verdict(rc, md); | 
|  |  | 
|  | /* The psock has a refcount on the sock but not on the map and because | 
|  | * we need to drop rcu read lock here its possible the map could be | 
|  | * removed between here and when we need it to execute the sock | 
|  | * redirect. So do the map lookup now for future use. | 
|  | */ | 
|  | if (_rc == __SK_REDIRECT) { | 
|  | if (psock->sk_redir) | 
|  | sock_put(psock->sk_redir); | 
|  | psock->sk_redir = do_msg_redirect_map(md); | 
|  | if (!psock->sk_redir) { | 
|  | _rc = __SK_DROP; | 
|  | goto verdict; | 
|  | } | 
|  | sock_hold(psock->sk_redir); | 
|  | } | 
|  | verdict: | 
|  | rcu_read_unlock(); | 
|  | preempt_enable(); | 
|  |  | 
|  | return _rc; | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_ingress(struct sock *sk, int apply_bytes, | 
|  | struct smap_psock *psock, | 
|  | struct sk_msg_buff *md, int flags) | 
|  | { | 
|  | bool apply = apply_bytes; | 
|  | size_t size, copied = 0; | 
|  | struct sk_msg_buff *r; | 
|  | int err = 0, i; | 
|  |  | 
|  | r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL); | 
|  | if (unlikely(!r)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | lock_sock(sk); | 
|  | r->sg_start = md->sg_start; | 
|  | i = md->sg_start; | 
|  |  | 
|  | do { | 
|  | size = (apply && apply_bytes < md->sg_data[i].length) ? | 
|  | apply_bytes : md->sg_data[i].length; | 
|  |  | 
|  | if (!sk_wmem_schedule(sk, size)) { | 
|  | if (!copied) | 
|  | err = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | sk_mem_charge(sk, size); | 
|  | r->sg_data[i] = md->sg_data[i]; | 
|  | r->sg_data[i].length = size; | 
|  | md->sg_data[i].length -= size; | 
|  | md->sg_data[i].offset += size; | 
|  | copied += size; | 
|  |  | 
|  | if (md->sg_data[i].length) { | 
|  | get_page(sg_page(&r->sg_data[i])); | 
|  | r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1; | 
|  | } else { | 
|  | i++; | 
|  | if (i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  | r->sg_end = i; | 
|  | } | 
|  |  | 
|  | if (apply) { | 
|  | apply_bytes -= size; | 
|  | if (!apply_bytes) | 
|  | break; | 
|  | } | 
|  | } while (i != md->sg_end); | 
|  |  | 
|  | md->sg_start = i; | 
|  |  | 
|  | if (!err) { | 
|  | list_add_tail(&r->list, &psock->ingress); | 
|  | sk->sk_data_ready(sk); | 
|  | } else { | 
|  | free_start_sg(sk, r); | 
|  | kfree(r); | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send, | 
|  | struct sk_msg_buff *md, | 
|  | int flags) | 
|  | { | 
|  | bool ingress = !!(md->flags & BPF_F_INGRESS); | 
|  | struct smap_psock *psock; | 
|  | struct scatterlist *sg; | 
|  | int err = 0; | 
|  |  | 
|  | sg = md->sg_data; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) | 
|  | goto out_rcu; | 
|  |  | 
|  | if (!refcount_inc_not_zero(&psock->refcnt)) | 
|  | goto out_rcu; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (ingress) { | 
|  | err = bpf_tcp_ingress(sk, send, psock, md, flags); | 
|  | } else { | 
|  | lock_sock(sk); | 
|  | err = bpf_tcp_push(sk, send, md, flags, false); | 
|  | release_sock(sk); | 
|  | } | 
|  | smap_release_sock(psock, sk); | 
|  | if (unlikely(err)) | 
|  | goto out; | 
|  | return 0; | 
|  | out_rcu: | 
|  | rcu_read_unlock(); | 
|  | out: | 
|  | free_bytes_sg(NULL, send, md, false); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline void bpf_md_init(struct smap_psock *psock) | 
|  | { | 
|  | if (!psock->apply_bytes) { | 
|  | psock->eval =  __SK_NONE; | 
|  | if (psock->sk_redir) { | 
|  | sock_put(psock->sk_redir); | 
|  | psock->sk_redir = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void apply_bytes_dec(struct smap_psock *psock, int i) | 
|  | { | 
|  | if (psock->apply_bytes) { | 
|  | if (psock->apply_bytes < i) | 
|  | psock->apply_bytes = 0; | 
|  | else | 
|  | psock->apply_bytes -= i; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bpf_exec_tx_verdict(struct smap_psock *psock, | 
|  | struct sk_msg_buff *m, | 
|  | struct sock *sk, | 
|  | int *copied, int flags) | 
|  | { | 
|  | bool cork = false, enospc = (m->sg_start == m->sg_end); | 
|  | struct sock *redir; | 
|  | int err = 0; | 
|  | int send; | 
|  |  | 
|  | more_data: | 
|  | if (psock->eval == __SK_NONE) | 
|  | psock->eval = smap_do_tx_msg(sk, psock, m); | 
|  |  | 
|  | if (m->cork_bytes && | 
|  | m->cork_bytes > psock->sg_size && !enospc) { | 
|  | psock->cork_bytes = m->cork_bytes - psock->sg_size; | 
|  | if (!psock->cork) { | 
|  | psock->cork = kcalloc(1, | 
|  | sizeof(struct sk_msg_buff), | 
|  | GFP_ATOMIC | __GFP_NOWARN); | 
|  |  | 
|  | if (!psock->cork) { | 
|  | err = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  | memcpy(psock->cork, m, sizeof(*m)); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | send = psock->sg_size; | 
|  | if (psock->apply_bytes && psock->apply_bytes < send) | 
|  | send = psock->apply_bytes; | 
|  |  | 
|  | switch (psock->eval) { | 
|  | case __SK_PASS: | 
|  | err = bpf_tcp_push(sk, send, m, flags, true); | 
|  | if (unlikely(err)) { | 
|  | *copied -= free_start_sg(sk, m); | 
|  | break; | 
|  | } | 
|  |  | 
|  | apply_bytes_dec(psock, send); | 
|  | psock->sg_size -= send; | 
|  | break; | 
|  | case __SK_REDIRECT: | 
|  | redir = psock->sk_redir; | 
|  | apply_bytes_dec(psock, send); | 
|  |  | 
|  | if (psock->cork) { | 
|  | cork = true; | 
|  | psock->cork = NULL; | 
|  | } | 
|  |  | 
|  | return_mem_sg(sk, send, m); | 
|  | release_sock(sk); | 
|  |  | 
|  | err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags); | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (unlikely(err < 0)) { | 
|  | free_start_sg(sk, m); | 
|  | psock->sg_size = 0; | 
|  | if (!cork) | 
|  | *copied -= send; | 
|  | } else { | 
|  | psock->sg_size -= send; | 
|  | } | 
|  |  | 
|  | if (cork) { | 
|  | free_start_sg(sk, m); | 
|  | psock->sg_size = 0; | 
|  | kfree(m); | 
|  | m = NULL; | 
|  | err = 0; | 
|  | } | 
|  | break; | 
|  | case __SK_DROP: | 
|  | default: | 
|  | free_bytes_sg(sk, send, m, true); | 
|  | apply_bytes_dec(psock, send); | 
|  | *copied -= send; | 
|  | psock->sg_size -= send; | 
|  | err = -EACCES; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (likely(!err)) { | 
|  | bpf_md_init(psock); | 
|  | if (m && | 
|  | m->sg_data[m->sg_start].page_link && | 
|  | m->sg_data[m->sg_start].length) | 
|  | goto more_data; | 
|  | } | 
|  |  | 
|  | out_err: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int bpf_wait_data(struct sock *sk, | 
|  | struct smap_psock *psk, int flags, | 
|  | long timeo, int *err) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
|  |  | 
|  | add_wait_queue(sk_sleep(sk), &wait); | 
|  | sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
|  | rc = sk_wait_event(sk, &timeo, | 
|  | !list_empty(&psk->ingress) || | 
|  | !skb_queue_empty(&sk->sk_receive_queue), | 
|  | &wait); | 
|  | sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, | 
|  | int nonblock, int flags, int *addr_len) | 
|  | { | 
|  | struct iov_iter *iter = &msg->msg_iter; | 
|  | struct smap_psock *psock; | 
|  | int copied = 0; | 
|  |  | 
|  | if (unlikely(flags & MSG_ERRQUEUE)) | 
|  | return inet_recv_error(sk, msg, len, addr_len); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) | 
|  | goto out; | 
|  |  | 
|  | if (unlikely(!refcount_inc_not_zero(&psock->refcnt))) | 
|  | goto out; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!skb_queue_empty(&sk->sk_receive_queue)) | 
|  | return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); | 
|  |  | 
|  | lock_sock(sk); | 
|  | bytes_ready: | 
|  | while (copied != len) { | 
|  | struct scatterlist *sg; | 
|  | struct sk_msg_buff *md; | 
|  | int i; | 
|  |  | 
|  | md = list_first_entry_or_null(&psock->ingress, | 
|  | struct sk_msg_buff, list); | 
|  | if (unlikely(!md)) | 
|  | break; | 
|  | i = md->sg_start; | 
|  | do { | 
|  | struct page *page; | 
|  | int n, copy; | 
|  |  | 
|  | sg = &md->sg_data[i]; | 
|  | copy = sg->length; | 
|  | page = sg_page(sg); | 
|  |  | 
|  | if (copied + copy > len) | 
|  | copy = len - copied; | 
|  |  | 
|  | n = copy_page_to_iter(page, sg->offset, copy, iter); | 
|  | if (n != copy) { | 
|  | md->sg_start = i; | 
|  | release_sock(sk); | 
|  | smap_release_sock(psock, sk); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | copied += copy; | 
|  | sg->offset += copy; | 
|  | sg->length -= copy; | 
|  | sk_mem_uncharge(sk, copy); | 
|  |  | 
|  | if (!sg->length) { | 
|  | i++; | 
|  | if (i == MAX_SKB_FRAGS) | 
|  | i = 0; | 
|  | if (!md->skb) | 
|  | put_page(page); | 
|  | } | 
|  | if (copied == len) | 
|  | break; | 
|  | } while (i != md->sg_end); | 
|  | md->sg_start = i; | 
|  |  | 
|  | if (!sg->length && md->sg_start == md->sg_end) { | 
|  | list_del(&md->list); | 
|  | if (md->skb) | 
|  | consume_skb(md->skb); | 
|  | kfree(md); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!copied) { | 
|  | long timeo; | 
|  | int data; | 
|  | int err = 0; | 
|  |  | 
|  | timeo = sock_rcvtimeo(sk, nonblock); | 
|  | data = bpf_wait_data(sk, psock, flags, timeo, &err); | 
|  |  | 
|  | if (data) { | 
|  | if (!skb_queue_empty(&sk->sk_receive_queue)) { | 
|  | release_sock(sk); | 
|  | smap_release_sock(psock, sk); | 
|  | copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); | 
|  | return copied; | 
|  | } | 
|  | goto bytes_ready; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | copied = err; | 
|  | } | 
|  |  | 
|  | release_sock(sk); | 
|  | smap_release_sock(psock, sk); | 
|  | return copied; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) | 
|  | { | 
|  | int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS; | 
|  | struct sk_msg_buff md = {0}; | 
|  | unsigned int sg_copy = 0; | 
|  | struct smap_psock *psock; | 
|  | int copied = 0, err = 0; | 
|  | struct scatterlist *sg; | 
|  | long timeo; | 
|  |  | 
|  | /* Its possible a sock event or user removed the psock _but_ the ops | 
|  | * have not been reprogrammed yet so we get here. In this case fallback | 
|  | * to tcp_sendmsg. Note this only works because we _only_ ever allow | 
|  | * a single ULP there is no hierarchy here. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) { | 
|  | rcu_read_unlock(); | 
|  | return tcp_sendmsg(sk, msg, size); | 
|  | } | 
|  |  | 
|  | /* Increment the psock refcnt to ensure its not released while sending a | 
|  | * message. Required because sk lookup and bpf programs are used in | 
|  | * separate rcu critical sections. Its OK if we lose the map entry | 
|  | * but we can't lose the sock reference. | 
|  | */ | 
|  | if (!refcount_inc_not_zero(&psock->refcnt)) { | 
|  | rcu_read_unlock(); | 
|  | return tcp_sendmsg(sk, msg, size); | 
|  | } | 
|  |  | 
|  | sg = md.sg_data; | 
|  | sg_init_marker(sg, MAX_SKB_FRAGS); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | lock_sock(sk); | 
|  | timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); | 
|  |  | 
|  | while (msg_data_left(msg)) { | 
|  | struct sk_msg_buff *m; | 
|  | bool enospc = false; | 
|  | int copy; | 
|  |  | 
|  | if (sk->sk_err) { | 
|  | err = sk->sk_err; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | copy = msg_data_left(msg); | 
|  | if (!sk_stream_memory_free(sk)) | 
|  | goto wait_for_sndbuf; | 
|  |  | 
|  | m = psock->cork_bytes ? psock->cork : &md; | 
|  | m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end; | 
|  | err = sk_alloc_sg(sk, copy, m->sg_data, | 
|  | m->sg_start, &m->sg_end, &sg_copy, | 
|  | m->sg_end - 1); | 
|  | if (err) { | 
|  | if (err != -ENOSPC) | 
|  | goto wait_for_memory; | 
|  | enospc = true; | 
|  | copy = sg_copy; | 
|  | } | 
|  |  | 
|  | err = memcopy_from_iter(sk, m, &msg->msg_iter, copy); | 
|  | if (err < 0) { | 
|  | free_curr_sg(sk, m); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | psock->sg_size += copy; | 
|  | copied += copy; | 
|  | sg_copy = 0; | 
|  |  | 
|  | /* When bytes are being corked skip running BPF program and | 
|  | * applying verdict unless there is no more buffer space. In | 
|  | * the ENOSPC case simply run BPF prorgram with currently | 
|  | * accumulated data. We don't have much choice at this point | 
|  | * we could try extending the page frags or chaining complex | 
|  | * frags but even in these cases _eventually_ we will hit an | 
|  | * OOM scenario. More complex recovery schemes may be | 
|  | * implemented in the future, but BPF programs must handle | 
|  | * the case where apply_cork requests are not honored. The | 
|  | * canonical method to verify this is to check data length. | 
|  | */ | 
|  | if (psock->cork_bytes) { | 
|  | if (copy > psock->cork_bytes) | 
|  | psock->cork_bytes = 0; | 
|  | else | 
|  | psock->cork_bytes -= copy; | 
|  |  | 
|  | if (psock->cork_bytes && !enospc) | 
|  | goto out_cork; | 
|  |  | 
|  | /* All cork bytes accounted for re-run filter */ | 
|  | psock->eval = __SK_NONE; | 
|  | psock->cork_bytes = 0; | 
|  | } | 
|  |  | 
|  | err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags); | 
|  | if (unlikely(err < 0)) | 
|  | goto out_err; | 
|  | continue; | 
|  | wait_for_sndbuf: | 
|  | set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); | 
|  | wait_for_memory: | 
|  | err = sk_stream_wait_memory(sk, &timeo); | 
|  | if (err) | 
|  | goto out_err; | 
|  | } | 
|  | out_err: | 
|  | if (err < 0) | 
|  | err = sk_stream_error(sk, msg->msg_flags, err); | 
|  | out_cork: | 
|  | release_sock(sk); | 
|  | smap_release_sock(psock, sk); | 
|  | return copied ? copied : err; | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_sendpage(struct sock *sk, struct page *page, | 
|  | int offset, size_t size, int flags) | 
|  | { | 
|  | struct sk_msg_buff md = {0}, *m = NULL; | 
|  | int err = 0, copied = 0; | 
|  | struct smap_psock *psock; | 
|  | struct scatterlist *sg; | 
|  | bool enospc = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (unlikely(!psock)) | 
|  | goto accept; | 
|  |  | 
|  | if (!refcount_inc_not_zero(&psock->refcnt)) | 
|  | goto accept; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (psock->cork_bytes) { | 
|  | m = psock->cork; | 
|  | sg = &m->sg_data[m->sg_end]; | 
|  | } else { | 
|  | m = &md; | 
|  | sg = m->sg_data; | 
|  | sg_init_marker(sg, MAX_SKB_FRAGS); | 
|  | } | 
|  |  | 
|  | /* Catch case where ring is full and sendpage is stalled. */ | 
|  | if (unlikely(m->sg_end == m->sg_start && | 
|  | m->sg_data[m->sg_end].length)) | 
|  | goto out_err; | 
|  |  | 
|  | psock->sg_size += size; | 
|  | sg_set_page(sg, page, size, offset); | 
|  | get_page(page); | 
|  | m->sg_copy[m->sg_end] = true; | 
|  | sk_mem_charge(sk, size); | 
|  | m->sg_end++; | 
|  | copied = size; | 
|  |  | 
|  | if (m->sg_end == MAX_SKB_FRAGS) | 
|  | m->sg_end = 0; | 
|  |  | 
|  | if (m->sg_end == m->sg_start) | 
|  | enospc = true; | 
|  |  | 
|  | if (psock->cork_bytes) { | 
|  | if (size > psock->cork_bytes) | 
|  | psock->cork_bytes = 0; | 
|  | else | 
|  | psock->cork_bytes -= size; | 
|  |  | 
|  | if (psock->cork_bytes && !enospc) | 
|  | goto out_err; | 
|  |  | 
|  | /* All cork bytes accounted for re-run filter */ | 
|  | psock->eval = __SK_NONE; | 
|  | psock->cork_bytes = 0; | 
|  | } | 
|  |  | 
|  | err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags); | 
|  | out_err: | 
|  | release_sock(sk); | 
|  | smap_release_sock(psock, sk); | 
|  | return copied ? copied : err; | 
|  | accept: | 
|  | rcu_read_unlock(); | 
|  | return tcp_sendpage(sk, page, offset, size, flags); | 
|  | } | 
|  |  | 
|  | static void bpf_tcp_msg_add(struct smap_psock *psock, | 
|  | struct sock *sk, | 
|  | struct bpf_prog *tx_msg) | 
|  | { | 
|  | struct bpf_prog *orig_tx_msg; | 
|  |  | 
|  | orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg); | 
|  | if (orig_tx_msg) | 
|  | bpf_prog_put(orig_tx_msg); | 
|  | } | 
|  |  | 
|  | static int bpf_tcp_ulp_register(void) | 
|  | { | 
|  | build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot); | 
|  | /* Once BPF TX ULP is registered it is never unregistered. It | 
|  | * will be in the ULP list for the lifetime of the system. Doing | 
|  | * duplicate registers is not a problem. | 
|  | */ | 
|  | return tcp_register_ulp(&bpf_tcp_ulp_ops); | 
|  | } | 
|  |  | 
|  | static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb) | 
|  | { | 
|  | struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict); | 
|  | int rc; | 
|  |  | 
|  | if (unlikely(!prog)) | 
|  | return __SK_DROP; | 
|  |  | 
|  | skb_orphan(skb); | 
|  | /* We need to ensure that BPF metadata for maps is also cleared | 
|  | * when we orphan the skb so that we don't have the possibility | 
|  | * to reference a stale map. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->bpf.sk_redir = NULL; | 
|  | skb->sk = psock->sock; | 
|  | bpf_compute_data_end_sk_skb(skb); | 
|  | preempt_disable(); | 
|  | rc = (*prog->bpf_func)(skb, prog->insnsi); | 
|  | preempt_enable(); | 
|  | skb->sk = NULL; | 
|  |  | 
|  | /* Moving return codes from UAPI namespace into internal namespace */ | 
|  | return rc == SK_PASS ? | 
|  | (TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) : | 
|  | __SK_DROP; | 
|  | } | 
|  |  | 
|  | static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = psock->sock; | 
|  | int copied = 0, num_sg; | 
|  | struct sk_msg_buff *r; | 
|  |  | 
|  | r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC); | 
|  | if (unlikely(!r)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (!sk_rmem_schedule(sk, skb, skb->len)) { | 
|  | kfree(r); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | sg_init_table(r->sg_data, MAX_SKB_FRAGS); | 
|  | num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len); | 
|  | if (unlikely(num_sg < 0)) { | 
|  | kfree(r); | 
|  | return num_sg; | 
|  | } | 
|  | sk_mem_charge(sk, skb->len); | 
|  | copied = skb->len; | 
|  | r->sg_start = 0; | 
|  | r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg; | 
|  | r->skb = skb; | 
|  | list_add_tail(&r->list, &psock->ingress); | 
|  | sk->sk_data_ready(sk); | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb) | 
|  | { | 
|  | struct smap_psock *peer; | 
|  | struct sock *sk; | 
|  | __u32 in; | 
|  | int rc; | 
|  |  | 
|  | rc = smap_verdict_func(psock, skb); | 
|  | switch (rc) { | 
|  | case __SK_REDIRECT: | 
|  | sk = do_sk_redirect_map(skb); | 
|  | if (!sk) { | 
|  | kfree_skb(skb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | peer = smap_psock_sk(sk); | 
|  | in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS; | 
|  |  | 
|  | if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) || | 
|  | !test_bit(SMAP_TX_RUNNING, &peer->state))) { | 
|  | kfree_skb(skb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!in && sock_writeable(sk)) { | 
|  | skb_set_owner_w(skb, sk); | 
|  | skb_queue_tail(&peer->rxqueue, skb); | 
|  | schedule_work(&peer->tx_work); | 
|  | break; | 
|  | } else if (in && | 
|  | atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { | 
|  | skb_queue_tail(&peer->rxqueue, skb); | 
|  | schedule_work(&peer->tx_work); | 
|  | break; | 
|  | } | 
|  | /* Fall through and free skb otherwise */ | 
|  | case __SK_DROP: | 
|  | default: | 
|  | kfree_skb(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void smap_report_sk_error(struct smap_psock *psock, int err) | 
|  | { | 
|  | struct sock *sk = psock->sock; | 
|  |  | 
|  | sk->sk_err = err; | 
|  | sk->sk_error_report(sk); | 
|  | } | 
|  |  | 
|  | static void smap_read_sock_strparser(struct strparser *strp, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = container_of(strp, struct smap_psock, strp); | 
|  | smap_do_verdict(psock, skb); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* Called with lock held on socket */ | 
|  | static void smap_data_ready(struct sock *sk) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (likely(psock)) { | 
|  | write_lock_bh(&sk->sk_callback_lock); | 
|  | strp_data_ready(&psock->strp); | 
|  | write_unlock_bh(&sk->sk_callback_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void smap_tx_work(struct work_struct *w) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  | struct sk_buff *skb; | 
|  | int rem, off, n; | 
|  |  | 
|  | psock = container_of(w, struct smap_psock, tx_work); | 
|  |  | 
|  | /* lock sock to avoid losing sk_socket at some point during loop */ | 
|  | lock_sock(psock->sock); | 
|  | if (psock->save_skb) { | 
|  | skb = psock->save_skb; | 
|  | rem = psock->save_rem; | 
|  | off = psock->save_off; | 
|  | psock->save_skb = NULL; | 
|  | goto start; | 
|  | } | 
|  |  | 
|  | while ((skb = skb_dequeue(&psock->rxqueue))) { | 
|  | __u32 flags; | 
|  |  | 
|  | rem = skb->len; | 
|  | off = 0; | 
|  | start: | 
|  | flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS; | 
|  | do { | 
|  | if (likely(psock->sock->sk_socket)) { | 
|  | if (flags) | 
|  | n = smap_do_ingress(psock, skb); | 
|  | else | 
|  | n = skb_send_sock_locked(psock->sock, | 
|  | skb, off, rem); | 
|  | } else { | 
|  | n = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (n <= 0) { | 
|  | if (n == -EAGAIN) { | 
|  | /* Retry when space is available */ | 
|  | psock->save_skb = skb; | 
|  | psock->save_rem = rem; | 
|  | psock->save_off = off; | 
|  | goto out; | 
|  | } | 
|  | /* Hard errors break pipe and stop xmit */ | 
|  | smap_report_sk_error(psock, n ? -n : EPIPE); | 
|  | clear_bit(SMAP_TX_RUNNING, &psock->state); | 
|  | kfree_skb(skb); | 
|  | goto out; | 
|  | } | 
|  | rem -= n; | 
|  | off += n; | 
|  | } while (rem); | 
|  |  | 
|  | if (!flags) | 
|  | kfree_skb(skb); | 
|  | } | 
|  | out: | 
|  | release_sock(psock->sock); | 
|  | } | 
|  |  | 
|  | static void smap_write_space(struct sock *sk) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = smap_psock_sk(sk); | 
|  | if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state))) | 
|  | schedule_work(&psock->tx_work); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void smap_stop_sock(struct smap_psock *psock, struct sock *sk) | 
|  | { | 
|  | if (!psock->strp_enabled) | 
|  | return; | 
|  | sk->sk_data_ready = psock->save_data_ready; | 
|  | sk->sk_write_space = psock->save_write_space; | 
|  | psock->save_data_ready = NULL; | 
|  | psock->save_write_space = NULL; | 
|  | strp_stop(&psock->strp); | 
|  | psock->strp_enabled = false; | 
|  | } | 
|  |  | 
|  | static void smap_destroy_psock(struct rcu_head *rcu) | 
|  | { | 
|  | struct smap_psock *psock = container_of(rcu, | 
|  | struct smap_psock, rcu); | 
|  |  | 
|  | /* Now that a grace period has passed there is no longer | 
|  | * any reference to this sock in the sockmap so we can | 
|  | * destroy the psock, strparser, and bpf programs. But, | 
|  | * because we use workqueue sync operations we can not | 
|  | * do it in rcu context | 
|  | */ | 
|  | schedule_work(&psock->gc_work); | 
|  | } | 
|  |  | 
|  | static void smap_release_sock(struct smap_psock *psock, struct sock *sock) | 
|  | { | 
|  | if (refcount_dec_and_test(&psock->refcnt)) { | 
|  | tcp_cleanup_ulp(sock); | 
|  | write_lock_bh(&sock->sk_callback_lock); | 
|  | smap_stop_sock(psock, sock); | 
|  | write_unlock_bh(&sock->sk_callback_lock); | 
|  | clear_bit(SMAP_TX_RUNNING, &psock->state); | 
|  | rcu_assign_sk_user_data(sock, NULL); | 
|  | call_rcu_sched(&psock->rcu, smap_destroy_psock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int smap_parse_func_strparser(struct strparser *strp, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  | struct bpf_prog *prog; | 
|  | int rc; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | psock = container_of(strp, struct smap_psock, strp); | 
|  | prog = READ_ONCE(psock->bpf_parse); | 
|  |  | 
|  | if (unlikely(!prog)) { | 
|  | rcu_read_unlock(); | 
|  | return skb->len; | 
|  | } | 
|  |  | 
|  | /* Attach socket for bpf program to use if needed we can do this | 
|  | * because strparser clones the skb before handing it to a upper | 
|  | * layer, meaning skb_orphan has been called. We NULL sk on the | 
|  | * way out to ensure we don't trigger a BUG_ON in skb/sk operations | 
|  | * later and because we are not charging the memory of this skb to | 
|  | * any socket yet. | 
|  | */ | 
|  | skb->sk = psock->sock; | 
|  | bpf_compute_data_end_sk_skb(skb); | 
|  | rc = (*prog->bpf_func)(skb, prog->insnsi); | 
|  | skb->sk = NULL; | 
|  | rcu_read_unlock(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int smap_read_sock_done(struct strparser *strp, int err) | 
|  | { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int smap_init_sock(struct smap_psock *psock, | 
|  | struct sock *sk) | 
|  | { | 
|  | static const struct strp_callbacks cb = { | 
|  | .rcv_msg = smap_read_sock_strparser, | 
|  | .parse_msg = smap_parse_func_strparser, | 
|  | .read_sock_done = smap_read_sock_done, | 
|  | }; | 
|  |  | 
|  | return strp_init(&psock->strp, sk, &cb); | 
|  | } | 
|  |  | 
|  | static void smap_init_progs(struct smap_psock *psock, | 
|  | struct bpf_prog *verdict, | 
|  | struct bpf_prog *parse) | 
|  | { | 
|  | struct bpf_prog *orig_parse, *orig_verdict; | 
|  |  | 
|  | orig_parse = xchg(&psock->bpf_parse, parse); | 
|  | orig_verdict = xchg(&psock->bpf_verdict, verdict); | 
|  |  | 
|  | if (orig_verdict) | 
|  | bpf_prog_put(orig_verdict); | 
|  | if (orig_parse) | 
|  | bpf_prog_put(orig_parse); | 
|  | } | 
|  |  | 
|  | static void smap_start_sock(struct smap_psock *psock, struct sock *sk) | 
|  | { | 
|  | if (sk->sk_data_ready == smap_data_ready) | 
|  | return; | 
|  | psock->save_data_ready = sk->sk_data_ready; | 
|  | psock->save_write_space = sk->sk_write_space; | 
|  | sk->sk_data_ready = smap_data_ready; | 
|  | sk->sk_write_space = smap_write_space; | 
|  | psock->strp_enabled = true; | 
|  | } | 
|  |  | 
|  | static void sock_map_remove_complete(struct bpf_stab *stab) | 
|  | { | 
|  | bpf_map_area_free(stab->sock_map); | 
|  | kfree(stab); | 
|  | } | 
|  |  | 
|  | static void smap_gc_work(struct work_struct *w) | 
|  | { | 
|  | struct smap_psock_map_entry *e, *tmp; | 
|  | struct sk_msg_buff *md, *mtmp; | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | psock = container_of(w, struct smap_psock, gc_work); | 
|  |  | 
|  | /* no callback lock needed because we already detached sockmap ops */ | 
|  | if (psock->strp_enabled) | 
|  | strp_done(&psock->strp); | 
|  |  | 
|  | cancel_work_sync(&psock->tx_work); | 
|  | __skb_queue_purge(&psock->rxqueue); | 
|  |  | 
|  | /* At this point all strparser and xmit work must be complete */ | 
|  | if (psock->bpf_parse) | 
|  | bpf_prog_put(psock->bpf_parse); | 
|  | if (psock->bpf_verdict) | 
|  | bpf_prog_put(psock->bpf_verdict); | 
|  | if (psock->bpf_tx_msg) | 
|  | bpf_prog_put(psock->bpf_tx_msg); | 
|  |  | 
|  | if (psock->cork) { | 
|  | free_start_sg(psock->sock, psock->cork); | 
|  | kfree(psock->cork); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(md, mtmp, &psock->ingress, list) { | 
|  | list_del(&md->list); | 
|  | free_start_sg(psock->sock, md); | 
|  | kfree(md); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(e, tmp, &psock->maps, list) { | 
|  | list_del(&e->list); | 
|  | kfree(e); | 
|  | } | 
|  |  | 
|  | if (psock->sk_redir) | 
|  | sock_put(psock->sk_redir); | 
|  |  | 
|  | sock_put(psock->sock); | 
|  | kfree(psock); | 
|  | } | 
|  |  | 
|  | static struct smap_psock *smap_init_psock(struct sock *sock, int node) | 
|  | { | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | psock = kzalloc_node(sizeof(struct smap_psock), | 
|  | GFP_ATOMIC | __GFP_NOWARN, | 
|  | node); | 
|  | if (!psock) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | psock->eval =  __SK_NONE; | 
|  | psock->sock = sock; | 
|  | skb_queue_head_init(&psock->rxqueue); | 
|  | INIT_WORK(&psock->tx_work, smap_tx_work); | 
|  | INIT_WORK(&psock->gc_work, smap_gc_work); | 
|  | INIT_LIST_HEAD(&psock->maps); | 
|  | INIT_LIST_HEAD(&psock->ingress); | 
|  | refcount_set(&psock->refcnt, 1); | 
|  | spin_lock_init(&psock->maps_lock); | 
|  |  | 
|  | rcu_assign_sk_user_data(sock, psock); | 
|  | sock_hold(sock); | 
|  | return psock; | 
|  | } | 
|  |  | 
|  | static struct bpf_map *sock_map_alloc(union bpf_attr *attr) | 
|  | { | 
|  | struct bpf_stab *stab; | 
|  | u64 cost; | 
|  | int err; | 
|  |  | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return ERR_PTR(-EPERM); | 
|  |  | 
|  | /* check sanity of attributes */ | 
|  | if (attr->max_entries == 0 || attr->key_size != 4 || | 
|  | attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | err = bpf_tcp_ulp_register(); | 
|  | if (err && err != -EEXIST) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | stab = kzalloc(sizeof(*stab), GFP_USER); | 
|  | if (!stab) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | bpf_map_init_from_attr(&stab->map, attr); | 
|  |  | 
|  | /* make sure page count doesn't overflow */ | 
|  | cost = (u64) stab->map.max_entries * sizeof(struct sock *); | 
|  | err = -EINVAL; | 
|  | if (cost >= U32_MAX - PAGE_SIZE) | 
|  | goto free_stab; | 
|  |  | 
|  | stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; | 
|  |  | 
|  | /* if map size is larger than memlock limit, reject it early */ | 
|  | err = bpf_map_precharge_memlock(stab->map.pages); | 
|  | if (err) | 
|  | goto free_stab; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | stab->sock_map = bpf_map_area_alloc(stab->map.max_entries * | 
|  | sizeof(struct sock *), | 
|  | stab->map.numa_node); | 
|  | if (!stab->sock_map) | 
|  | goto free_stab; | 
|  |  | 
|  | return &stab->map; | 
|  | free_stab: | 
|  | kfree(stab); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void smap_list_map_remove(struct smap_psock *psock, | 
|  | struct sock **entry) | 
|  | { | 
|  | struct smap_psock_map_entry *e, *tmp; | 
|  |  | 
|  | spin_lock_bh(&psock->maps_lock); | 
|  | list_for_each_entry_safe(e, tmp, &psock->maps, list) { | 
|  | if (e->entry == entry) | 
|  | list_del(&e->list); | 
|  | } | 
|  | spin_unlock_bh(&psock->maps_lock); | 
|  | } | 
|  |  | 
|  | static void smap_list_hash_remove(struct smap_psock *psock, | 
|  | struct htab_elem *hash_link) | 
|  | { | 
|  | struct smap_psock_map_entry *e, *tmp; | 
|  |  | 
|  | spin_lock_bh(&psock->maps_lock); | 
|  | list_for_each_entry_safe(e, tmp, &psock->maps, list) { | 
|  | struct htab_elem *c = rcu_dereference(e->hash_link); | 
|  |  | 
|  | if (c == hash_link) | 
|  | list_del(&e->list); | 
|  | } | 
|  | spin_unlock_bh(&psock->maps_lock); | 
|  | } | 
|  |  | 
|  | static void sock_map_free(struct bpf_map *map) | 
|  | { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  | int i; | 
|  |  | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* At this point no update, lookup or delete operations can happen. | 
|  | * However, be aware we can still get a socket state event updates, | 
|  | * and data ready callabacks that reference the psock from sk_user_data | 
|  | * Also psock worker threads are still in-flight. So smap_release_sock | 
|  | * will only free the psock after cancel_sync on the worker threads | 
|  | * and a grace period expire to ensure psock is really safe to remove. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < stab->map.max_entries; i++) { | 
|  | struct smap_psock *psock; | 
|  | struct sock *sock; | 
|  |  | 
|  | sock = xchg(&stab->sock_map[i], NULL); | 
|  | if (!sock) | 
|  | continue; | 
|  |  | 
|  | psock = smap_psock_sk(sock); | 
|  | /* This check handles a racing sock event that can get the | 
|  | * sk_callback_lock before this case but after xchg happens | 
|  | * causing the refcnt to hit zero and sock user data (psock) | 
|  | * to be null and queued for garbage collection. | 
|  | */ | 
|  | if (likely(psock)) { | 
|  | smap_list_map_remove(psock, &stab->sock_map[i]); | 
|  | smap_release_sock(psock, sock); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | sock_map_remove_complete(stab); | 
|  | } | 
|  |  | 
|  | static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key) | 
|  | { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  | u32 i = key ? *(u32 *)key : U32_MAX; | 
|  | u32 *next = (u32 *)next_key; | 
|  |  | 
|  | if (i >= stab->map.max_entries) { | 
|  | *next = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (i == stab->map.max_entries - 1) | 
|  | return -ENOENT; | 
|  |  | 
|  | *next = i + 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct sock  *__sock_map_lookup_elem(struct bpf_map *map, u32 key) | 
|  | { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  |  | 
|  | if (key >= map->max_entries) | 
|  | return NULL; | 
|  |  | 
|  | return READ_ONCE(stab->sock_map[key]); | 
|  | } | 
|  |  | 
|  | static int sock_map_delete_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  | struct smap_psock *psock; | 
|  | int k = *(u32 *)key; | 
|  | struct sock *sock; | 
|  |  | 
|  | if (k >= map->max_entries) | 
|  | return -EINVAL; | 
|  |  | 
|  | sock = xchg(&stab->sock_map[k], NULL); | 
|  | if (!sock) | 
|  | return -EINVAL; | 
|  |  | 
|  | psock = smap_psock_sk(sock); | 
|  | if (!psock) | 
|  | goto out; | 
|  |  | 
|  | if (psock->bpf_parse) | 
|  | smap_stop_sock(psock, sock); | 
|  | smap_list_map_remove(psock, &stab->sock_map[k]); | 
|  | smap_release_sock(psock, sock); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are | 
|  | * done inside rcu critical sections. This ensures on updates that the psock | 
|  | * will not be released via smap_release_sock() until concurrent updates/deletes | 
|  | * complete. All operations operate on sock_map using cmpxchg and xchg | 
|  | * operations to ensure we do not get stale references. Any reads into the | 
|  | * map must be done with READ_ONCE() because of this. | 
|  | * | 
|  | * A psock is destroyed via call_rcu and after any worker threads are cancelled | 
|  | * and syncd so we are certain all references from the update/lookup/delete | 
|  | * operations as well as references in the data path are no longer in use. | 
|  | * | 
|  | * Psocks may exist in multiple maps, but only a single set of parse/verdict | 
|  | * programs may be inherited from the maps it belongs to. A reference count | 
|  | * is kept with the total number of references to the psock from all maps. The | 
|  | * psock will not be released until this reaches zero. The psock and sock | 
|  | * user data data use the sk_callback_lock to protect critical data structures | 
|  | * from concurrent access. This allows us to avoid two updates from modifying | 
|  | * the user data in sock and the lock is required anyways for modifying | 
|  | * callbacks, we simply increase its scope slightly. | 
|  | * | 
|  | * Rules to follow, | 
|  | *  - psock must always be read inside RCU critical section | 
|  | *  - sk_user_data must only be modified inside sk_callback_lock and read | 
|  | *    inside RCU critical section. | 
|  | *  - psock->maps list must only be read & modified inside sk_callback_lock | 
|  | *  - sock_map must use READ_ONCE and (cmp)xchg operations | 
|  | *  - BPF verdict/parse programs must use READ_ONCE and xchg operations | 
|  | */ | 
|  |  | 
|  | static int __sock_map_ctx_update_elem(struct bpf_map *map, | 
|  | struct bpf_sock_progs *progs, | 
|  | struct sock *sock, | 
|  | struct sock **map_link, | 
|  | void *key) | 
|  | { | 
|  | struct bpf_prog *verdict, *parse, *tx_msg; | 
|  | struct smap_psock_map_entry *e = NULL; | 
|  | struct smap_psock *psock; | 
|  | bool new = false; | 
|  | int err = 0; | 
|  |  | 
|  | /* 1. If sock map has BPF programs those will be inherited by the | 
|  | * sock being added. If the sock is already attached to BPF programs | 
|  | * this results in an error. | 
|  | */ | 
|  | verdict = READ_ONCE(progs->bpf_verdict); | 
|  | parse = READ_ONCE(progs->bpf_parse); | 
|  | tx_msg = READ_ONCE(progs->bpf_tx_msg); | 
|  |  | 
|  | if (parse && verdict) { | 
|  | /* bpf prog refcnt may be zero if a concurrent attach operation | 
|  | * removes the program after the above READ_ONCE() but before | 
|  | * we increment the refcnt. If this is the case abort with an | 
|  | * error. | 
|  | */ | 
|  | verdict = bpf_prog_inc_not_zero(verdict); | 
|  | if (IS_ERR(verdict)) | 
|  | return PTR_ERR(verdict); | 
|  |  | 
|  | parse = bpf_prog_inc_not_zero(parse); | 
|  | if (IS_ERR(parse)) { | 
|  | bpf_prog_put(verdict); | 
|  | return PTR_ERR(parse); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tx_msg) { | 
|  | tx_msg = bpf_prog_inc_not_zero(tx_msg); | 
|  | if (IS_ERR(tx_msg)) { | 
|  | if (parse && verdict) { | 
|  | bpf_prog_put(parse); | 
|  | bpf_prog_put(verdict); | 
|  | } | 
|  | return PTR_ERR(tx_msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | psock = smap_psock_sk(sock); | 
|  |  | 
|  | /* 2. Do not allow inheriting programs if psock exists and has | 
|  | * already inherited programs. This would create confusion on | 
|  | * which parser/verdict program is running. If no psock exists | 
|  | * create one. Inside sk_callback_lock to ensure concurrent create | 
|  | * doesn't update user data. | 
|  | */ | 
|  | if (psock) { | 
|  | if (READ_ONCE(psock->bpf_parse) && parse) { | 
|  | err = -EBUSY; | 
|  | goto out_progs; | 
|  | } | 
|  | if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) { | 
|  | err = -EBUSY; | 
|  | goto out_progs; | 
|  | } | 
|  | if (!refcount_inc_not_zero(&psock->refcnt)) { | 
|  | err = -EAGAIN; | 
|  | goto out_progs; | 
|  | } | 
|  | } else { | 
|  | psock = smap_init_psock(sock, map->numa_node); | 
|  | if (IS_ERR(psock)) { | 
|  | err = PTR_ERR(psock); | 
|  | goto out_progs; | 
|  | } | 
|  |  | 
|  | set_bit(SMAP_TX_RUNNING, &psock->state); | 
|  | new = true; | 
|  | } | 
|  |  | 
|  | if (map_link) { | 
|  | e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); | 
|  | if (!e) { | 
|  | err = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 3. At this point we have a reference to a valid psock that is | 
|  | * running. Attach any BPF programs needed. | 
|  | */ | 
|  | if (tx_msg) | 
|  | bpf_tcp_msg_add(psock, sock, tx_msg); | 
|  | if (new) { | 
|  | err = tcp_set_ulp_id(sock, TCP_ULP_BPF); | 
|  | if (err) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if (parse && verdict && !psock->strp_enabled) { | 
|  | err = smap_init_sock(psock, sock); | 
|  | if (err) | 
|  | goto out_free; | 
|  | smap_init_progs(psock, verdict, parse); | 
|  | write_lock_bh(&sock->sk_callback_lock); | 
|  | smap_start_sock(psock, sock); | 
|  | write_unlock_bh(&sock->sk_callback_lock); | 
|  | } | 
|  |  | 
|  | /* 4. Place psock in sockmap for use and stop any programs on | 
|  | * the old sock assuming its not the same sock we are replacing | 
|  | * it with. Because we can only have a single set of programs if | 
|  | * old_sock has a strp we can stop it. | 
|  | */ | 
|  | if (map_link) { | 
|  | e->entry = map_link; | 
|  | spin_lock_bh(&psock->maps_lock); | 
|  | list_add_tail(&e->list, &psock->maps); | 
|  | spin_unlock_bh(&psock->maps_lock); | 
|  | } | 
|  | return err; | 
|  | out_free: | 
|  | smap_release_sock(psock, sock); | 
|  | out_progs: | 
|  | if (parse && verdict) { | 
|  | bpf_prog_put(parse); | 
|  | bpf_prog_put(verdict); | 
|  | } | 
|  | if (tx_msg) | 
|  | bpf_prog_put(tx_msg); | 
|  | kfree(e); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops, | 
|  | struct bpf_map *map, | 
|  | void *key, u64 flags) | 
|  | { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  | struct bpf_sock_progs *progs = &stab->progs; | 
|  | struct sock *osock, *sock; | 
|  | u32 i = *(u32 *)key; | 
|  | int err; | 
|  |  | 
|  | if (unlikely(flags > BPF_EXIST)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(i >= stab->map.max_entries)) | 
|  | return -E2BIG; | 
|  |  | 
|  | sock = READ_ONCE(stab->sock_map[i]); | 
|  | if (flags == BPF_EXIST && !sock) | 
|  | return -ENOENT; | 
|  | else if (flags == BPF_NOEXIST && sock) | 
|  | return -EEXIST; | 
|  |  | 
|  | sock = skops->sk; | 
|  | err = __sock_map_ctx_update_elem(map, progs, sock, &stab->sock_map[i], | 
|  | key); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | osock = xchg(&stab->sock_map[i], sock); | 
|  | if (osock) { | 
|  | struct smap_psock *opsock = smap_psock_sk(osock); | 
|  |  | 
|  | smap_list_map_remove(opsock, &stab->sock_map[i]); | 
|  | smap_release_sock(opsock, osock); | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type) | 
|  | { | 
|  | struct bpf_sock_progs *progs; | 
|  | struct bpf_prog *orig; | 
|  |  | 
|  | if (map->map_type == BPF_MAP_TYPE_SOCKMAP) { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  |  | 
|  | progs = &stab->progs; | 
|  | } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  |  | 
|  | progs = &htab->progs; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case BPF_SK_MSG_VERDICT: | 
|  | orig = xchg(&progs->bpf_tx_msg, prog); | 
|  | break; | 
|  | case BPF_SK_SKB_STREAM_PARSER: | 
|  | orig = xchg(&progs->bpf_parse, prog); | 
|  | break; | 
|  | case BPF_SK_SKB_STREAM_VERDICT: | 
|  | orig = xchg(&progs->bpf_verdict, prog); | 
|  | break; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (orig) | 
|  | bpf_prog_put(orig); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sockmap_get_from_fd(const union bpf_attr *attr, int type, | 
|  | struct bpf_prog *prog) | 
|  | { | 
|  | int ufd = attr->target_fd; | 
|  | struct bpf_map *map; | 
|  | struct fd f; | 
|  | int err; | 
|  |  | 
|  | f = fdget(ufd); | 
|  | map = __bpf_map_get(f); | 
|  | if (IS_ERR(map)) | 
|  | return PTR_ERR(map); | 
|  |  | 
|  | err = sock_map_prog(map, prog, attr->attach_type); | 
|  | fdput(f); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void *sock_map_lookup(struct bpf_map *map, void *key) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int sock_map_update_elem(struct bpf_map *map, | 
|  | void *key, void *value, u64 flags) | 
|  | { | 
|  | struct bpf_sock_ops_kern skops; | 
|  | u32 fd = *(u32 *)value; | 
|  | struct socket *socket; | 
|  | int err; | 
|  |  | 
|  | socket = sockfd_lookup(fd, &err); | 
|  | if (!socket) | 
|  | return err; | 
|  |  | 
|  | skops.sk = socket->sk; | 
|  | if (!skops.sk) { | 
|  | fput(socket->file); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (skops.sk->sk_type != SOCK_STREAM || | 
|  | skops.sk->sk_protocol != IPPROTO_TCP) { | 
|  | fput(socket->file); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | lock_sock(skops.sk); | 
|  | preempt_disable(); | 
|  | rcu_read_lock(); | 
|  | err = sock_map_ctx_update_elem(&skops, map, key, flags); | 
|  | rcu_read_unlock(); | 
|  | preempt_enable(); | 
|  | release_sock(skops.sk); | 
|  | fput(socket->file); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void sock_map_release(struct bpf_map *map) | 
|  | { | 
|  | struct bpf_sock_progs *progs; | 
|  | struct bpf_prog *orig; | 
|  |  | 
|  | if (map->map_type == BPF_MAP_TYPE_SOCKMAP) { | 
|  | struct bpf_stab *stab = container_of(map, struct bpf_stab, map); | 
|  |  | 
|  | progs = &stab->progs; | 
|  | } else { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  |  | 
|  | progs = &htab->progs; | 
|  | } | 
|  |  | 
|  | orig = xchg(&progs->bpf_parse, NULL); | 
|  | if (orig) | 
|  | bpf_prog_put(orig); | 
|  | orig = xchg(&progs->bpf_verdict, NULL); | 
|  | if (orig) | 
|  | bpf_prog_put(orig); | 
|  |  | 
|  | orig = xchg(&progs->bpf_tx_msg, NULL); | 
|  | if (orig) | 
|  | bpf_prog_put(orig); | 
|  | } | 
|  |  | 
|  | static struct bpf_map *sock_hash_alloc(union bpf_attr *attr) | 
|  | { | 
|  | struct bpf_htab *htab; | 
|  | int i, err; | 
|  | u64 cost; | 
|  |  | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return ERR_PTR(-EPERM); | 
|  |  | 
|  | /* check sanity of attributes */ | 
|  | if (attr->max_entries == 0 || attr->value_size != 4 || | 
|  | attr->map_flags & ~SOCK_CREATE_FLAG_MASK) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (attr->key_size > MAX_BPF_STACK) | 
|  | /* eBPF programs initialize keys on stack, so they cannot be | 
|  | * larger than max stack size | 
|  | */ | 
|  | return ERR_PTR(-E2BIG); | 
|  |  | 
|  | err = bpf_tcp_ulp_register(); | 
|  | if (err && err != -EEXIST) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | htab = kzalloc(sizeof(*htab), GFP_USER); | 
|  | if (!htab) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | bpf_map_init_from_attr(&htab->map, attr); | 
|  |  | 
|  | htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); | 
|  | htab->elem_size = sizeof(struct htab_elem) + | 
|  | round_up(htab->map.key_size, 8); | 
|  | err = -EINVAL; | 
|  | if (htab->n_buckets == 0 || | 
|  | htab->n_buckets > U32_MAX / sizeof(struct bucket)) | 
|  | goto free_htab; | 
|  |  | 
|  | cost = (u64) htab->n_buckets * sizeof(struct bucket) + | 
|  | (u64) htab->elem_size * htab->map.max_entries; | 
|  |  | 
|  | if (cost >= U32_MAX - PAGE_SIZE) | 
|  | goto free_htab; | 
|  |  | 
|  | htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; | 
|  | err = bpf_map_precharge_memlock(htab->map.pages); | 
|  | if (err) | 
|  | goto free_htab; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | htab->buckets = bpf_map_area_alloc( | 
|  | htab->n_buckets * sizeof(struct bucket), | 
|  | htab->map.numa_node); | 
|  | if (!htab->buckets) | 
|  | goto free_htab; | 
|  |  | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | INIT_HLIST_HEAD(&htab->buckets[i].head); | 
|  | raw_spin_lock_init(&htab->buckets[i].lock); | 
|  | } | 
|  |  | 
|  | return &htab->map; | 
|  | free_htab: | 
|  | kfree(htab); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void __bpf_htab_free(struct rcu_head *rcu) | 
|  | { | 
|  | struct bpf_htab *htab; | 
|  |  | 
|  | htab = container_of(rcu, struct bpf_htab, rcu); | 
|  | bpf_map_area_free(htab->buckets); | 
|  | kfree(htab); | 
|  | } | 
|  |  | 
|  | static void sock_hash_free(struct bpf_map *map) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | int i; | 
|  |  | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* At this point no update, lookup or delete operations can happen. | 
|  | * However, be aware we can still get a socket state event updates, | 
|  | * and data ready callabacks that reference the psock from sk_user_data | 
|  | * Also psock worker threads are still in-flight. So smap_release_sock | 
|  | * will only free the psock after cancel_sync on the worker threads | 
|  | * and a grace period expire to ensure psock is really safe to remove. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | struct bucket *b = __select_bucket(htab, i); | 
|  | struct hlist_head *head; | 
|  | struct hlist_node *n; | 
|  | struct htab_elem *l; | 
|  |  | 
|  | raw_spin_lock_bh(&b->lock); | 
|  | head = &b->head; | 
|  | hlist_for_each_entry_safe(l, n, head, hash_node) { | 
|  | struct sock *sock = l->sk; | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | hlist_del_rcu(&l->hash_node); | 
|  | psock = smap_psock_sk(sock); | 
|  | /* This check handles a racing sock event that can get | 
|  | * the sk_callback_lock before this case but after xchg | 
|  | * causing the refcnt to hit zero and sock user data | 
|  | * (psock) to be null and queued for garbage collection. | 
|  | */ | 
|  | if (likely(psock)) { | 
|  | smap_list_hash_remove(psock, l); | 
|  | smap_release_sock(psock, sock); | 
|  | } | 
|  | free_htab_elem(htab, l); | 
|  | } | 
|  | raw_spin_unlock_bh(&b->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | call_rcu(&htab->rcu, __bpf_htab_free); | 
|  | } | 
|  |  | 
|  | static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab, | 
|  | void *key, u32 key_size, u32 hash, | 
|  | struct sock *sk, | 
|  | struct htab_elem *old_elem) | 
|  | { | 
|  | struct htab_elem *l_new; | 
|  |  | 
|  | if (atomic_inc_return(&htab->count) > htab->map.max_entries) { | 
|  | if (!old_elem) { | 
|  | atomic_dec(&htab->count); | 
|  | return ERR_PTR(-E2BIG); | 
|  | } | 
|  | } | 
|  | l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, | 
|  | htab->map.numa_node); | 
|  | if (!l_new) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | memcpy(l_new->key, key, key_size); | 
|  | l_new->sk = sk; | 
|  | l_new->hash = hash; | 
|  | return l_new; | 
|  | } | 
|  |  | 
|  | static inline u32 htab_map_hash(const void *key, u32 key_len) | 
|  | { | 
|  | return jhash(key, key_len, 0); | 
|  | } | 
|  |  | 
|  | static int sock_hash_get_next_key(struct bpf_map *map, | 
|  | void *key, void *next_key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct htab_elem *l, *next_l; | 
|  | struct hlist_head *h; | 
|  | u32 hash, key_size; | 
|  | int i = 0; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  | if (!key) | 
|  | goto find_first_elem; | 
|  | hash = htab_map_hash(key, key_size); | 
|  | h = select_bucket(htab, hash); | 
|  |  | 
|  | l = lookup_elem_raw(h, hash, key, key_size); | 
|  | if (!l) | 
|  | goto find_first_elem; | 
|  | next_l = hlist_entry_safe( | 
|  | rcu_dereference_raw(hlist_next_rcu(&l->hash_node)), | 
|  | struct htab_elem, hash_node); | 
|  | if (next_l) { | 
|  | memcpy(next_key, next_l->key, key_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* no more elements in this hash list, go to the next bucket */ | 
|  | i = hash & (htab->n_buckets - 1); | 
|  | i++; | 
|  |  | 
|  | find_first_elem: | 
|  | /* iterate over buckets */ | 
|  | for (; i < htab->n_buckets; i++) { | 
|  | h = select_bucket(htab, i); | 
|  |  | 
|  | /* pick first element in the bucket */ | 
|  | next_l = hlist_entry_safe( | 
|  | rcu_dereference_raw(hlist_first_rcu(h)), | 
|  | struct htab_elem, hash_node); | 
|  | if (next_l) { | 
|  | /* if it's not empty, just return it */ | 
|  | memcpy(next_key, next_l->key, key_size); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* iterated over all buckets and all elements */ | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops, | 
|  | struct bpf_map *map, | 
|  | void *key, u64 map_flags) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct bpf_sock_progs *progs = &htab->progs; | 
|  | struct htab_elem *l_new = NULL, *l_old; | 
|  | struct smap_psock_map_entry *e = NULL; | 
|  | struct hlist_head *head; | 
|  | struct smap_psock *psock; | 
|  | u32 key_size, hash; | 
|  | struct sock *sock; | 
|  | struct bucket *b; | 
|  | int err; | 
|  |  | 
|  | sock = skops->sk; | 
|  |  | 
|  | if (sock->sk_type != SOCK_STREAM || | 
|  | sock->sk_protocol != IPPROTO_TCP) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (unlikely(map_flags > BPF_EXIST)) | 
|  | return -EINVAL; | 
|  |  | 
|  | e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); | 
|  | if (!e) | 
|  | return -ENOMEM; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | key_size = map->key_size; | 
|  | hash = htab_map_hash(key, key_size); | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | err = __sock_map_ctx_update_elem(map, progs, sock, NULL, key); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | /* psock is valid here because otherwise above *ctx_update_elem would | 
|  | * have thrown an error. It is safe to skip error check. | 
|  | */ | 
|  | psock = smap_psock_sk(sock); | 
|  | raw_spin_lock_bh(&b->lock); | 
|  | l_old = lookup_elem_raw(head, hash, key, key_size); | 
|  | if (l_old && map_flags == BPF_NOEXIST) { | 
|  | err = -EEXIST; | 
|  | goto bucket_err; | 
|  | } | 
|  | if (!l_old && map_flags == BPF_EXIST) { | 
|  | err = -ENOENT; | 
|  | goto bucket_err; | 
|  | } | 
|  |  | 
|  | l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old); | 
|  | if (IS_ERR(l_new)) { | 
|  | err = PTR_ERR(l_new); | 
|  | goto bucket_err; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(e->hash_link, l_new); | 
|  | rcu_assign_pointer(e->htab, | 
|  | container_of(map, struct bpf_htab, map)); | 
|  | spin_lock_bh(&psock->maps_lock); | 
|  | list_add_tail(&e->list, &psock->maps); | 
|  | spin_unlock_bh(&psock->maps_lock); | 
|  |  | 
|  | /* add new element to the head of the list, so that | 
|  | * concurrent search will find it before old elem | 
|  | */ | 
|  | hlist_add_head_rcu(&l_new->hash_node, head); | 
|  | if (l_old) { | 
|  | psock = smap_psock_sk(l_old->sk); | 
|  |  | 
|  | hlist_del_rcu(&l_old->hash_node); | 
|  | smap_list_hash_remove(psock, l_old); | 
|  | smap_release_sock(psock, l_old->sk); | 
|  | free_htab_elem(htab, l_old); | 
|  | } | 
|  | raw_spin_unlock_bh(&b->lock); | 
|  | return 0; | 
|  | bucket_err: | 
|  | smap_release_sock(psock, sock); | 
|  | raw_spin_unlock_bh(&b->lock); | 
|  | err: | 
|  | kfree(e); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sock_hash_update_elem(struct bpf_map *map, | 
|  | void *key, void *value, u64 flags) | 
|  | { | 
|  | struct bpf_sock_ops_kern skops; | 
|  | u32 fd = *(u32 *)value; | 
|  | struct socket *socket; | 
|  | int err; | 
|  |  | 
|  | socket = sockfd_lookup(fd, &err); | 
|  | if (!socket) | 
|  | return err; | 
|  |  | 
|  | skops.sk = socket->sk; | 
|  | if (!skops.sk) { | 
|  | fput(socket->file); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | lock_sock(skops.sk); | 
|  | preempt_disable(); | 
|  | rcu_read_lock(); | 
|  | err = sock_hash_ctx_update_elem(&skops, map, key, flags); | 
|  | rcu_read_unlock(); | 
|  | preempt_enable(); | 
|  | release_sock(skops.sk); | 
|  | fput(socket->file); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sock_hash_delete_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_head *head; | 
|  | struct bucket *b; | 
|  | struct htab_elem *l; | 
|  | u32 hash, key_size; | 
|  | int ret = -ENOENT; | 
|  |  | 
|  | key_size = map->key_size; | 
|  | hash = htab_map_hash(key, key_size); | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | raw_spin_lock_bh(&b->lock); | 
|  | l = lookup_elem_raw(head, hash, key, key_size); | 
|  | if (l) { | 
|  | struct sock *sock = l->sk; | 
|  | struct smap_psock *psock; | 
|  |  | 
|  | hlist_del_rcu(&l->hash_node); | 
|  | psock = smap_psock_sk(sock); | 
|  | /* This check handles a racing sock event that can get the | 
|  | * sk_callback_lock before this case but after xchg happens | 
|  | * causing the refcnt to hit zero and sock user data (psock) | 
|  | * to be null and queued for garbage collection. | 
|  | */ | 
|  | if (likely(psock)) { | 
|  | smap_list_hash_remove(psock, l); | 
|  | smap_release_sock(psock, sock); | 
|  | } | 
|  | free_htab_elem(htab, l); | 
|  | ret = 0; | 
|  | } | 
|  | raw_spin_unlock_bh(&b->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct sock  *__sock_hash_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_head *head; | 
|  | struct htab_elem *l; | 
|  | u32 key_size, hash; | 
|  | struct bucket *b; | 
|  | struct sock *sk; | 
|  |  | 
|  | key_size = map->key_size; | 
|  | hash = htab_map_hash(key, key_size); | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | l = lookup_elem_raw(head, hash, key, key_size); | 
|  | sk = l ? l->sk : NULL; | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | const struct bpf_map_ops sock_map_ops = { | 
|  | .map_alloc = sock_map_alloc, | 
|  | .map_free = sock_map_free, | 
|  | .map_lookup_elem = sock_map_lookup, | 
|  | .map_get_next_key = sock_map_get_next_key, | 
|  | .map_update_elem = sock_map_update_elem, | 
|  | .map_delete_elem = sock_map_delete_elem, | 
|  | .map_release_uref = sock_map_release, | 
|  | }; | 
|  |  | 
|  | const struct bpf_map_ops sock_hash_ops = { | 
|  | .map_alloc = sock_hash_alloc, | 
|  | .map_free = sock_hash_free, | 
|  | .map_lookup_elem = sock_map_lookup, | 
|  | .map_get_next_key = sock_hash_get_next_key, | 
|  | .map_update_elem = sock_hash_update_elem, | 
|  | .map_delete_elem = sock_hash_delete_elem, | 
|  | .map_release_uref = sock_map_release, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock, | 
|  | struct bpf_map *, map, void *, key, u64, flags) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | return sock_map_ctx_update_elem(bpf_sock, map, key, flags); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_sock_map_update_proto = { | 
|  | .func		= bpf_sock_map_update, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_CTX, | 
|  | .arg2_type	= ARG_CONST_MAP_PTR, | 
|  | .arg3_type	= ARG_PTR_TO_MAP_KEY, | 
|  | .arg4_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock, | 
|  | struct bpf_map *, map, void *, key, u64, flags) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | return sock_hash_ctx_update_elem(bpf_sock, map, key, flags); | 
|  | } | 
|  |  | 
|  | const struct bpf_func_proto bpf_sock_hash_update_proto = { | 
|  | .func		= bpf_sock_hash_update, | 
|  | .gpl_only	= false, | 
|  | .pkt_access	= true, | 
|  | .ret_type	= RET_INTEGER, | 
|  | .arg1_type	= ARG_PTR_TO_CTX, | 
|  | .arg2_type	= ARG_CONST_MAP_PTR, | 
|  | .arg3_type	= ARG_PTR_TO_MAP_KEY, | 
|  | .arg4_type	= ARG_ANYTHING, | 
|  | }; |