| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_EFI_H |
| #define _ASM_EFI_H |
| |
| #include <asm/boot.h> |
| #include <asm/cpufeature.h> |
| #include <asm/fpsimd.h> |
| #include <asm/io.h> |
| #include <asm/memory.h> |
| #include <asm/mmu_context.h> |
| #include <asm/neon.h> |
| #include <asm/ptrace.h> |
| #include <asm/tlbflush.h> |
| |
| #ifdef CONFIG_EFI |
| extern void efi_init(void); |
| |
| bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg); |
| #else |
| #define efi_init() |
| |
| static inline |
| bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg) |
| { |
| return false; |
| } |
| #endif |
| |
| int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md); |
| int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md); |
| |
| #define arch_efi_call_virt_setup() \ |
| ({ \ |
| efi_virtmap_load(); \ |
| __efi_fpsimd_begin(); \ |
| spin_lock(&efi_rt_lock); \ |
| }) |
| |
| #undef arch_efi_call_virt |
| #define arch_efi_call_virt(p, f, args...) \ |
| __efi_rt_asm_wrapper((p)->f, #f, args) |
| |
| #define arch_efi_call_virt_teardown() \ |
| ({ \ |
| spin_unlock(&efi_rt_lock); \ |
| __efi_fpsimd_end(); \ |
| efi_virtmap_unload(); \ |
| }) |
| |
| extern spinlock_t efi_rt_lock; |
| extern u64 *efi_rt_stack_top; |
| efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...); |
| |
| /* |
| * efi_rt_stack_top[-1] contains the value the stack pointer had before |
| * switching to the EFI runtime stack. |
| */ |
| #define current_in_efi() \ |
| (!preemptible() && efi_rt_stack_top != NULL && \ |
| on_task_stack(current, READ_ONCE(efi_rt_stack_top[-1]), 1)) |
| |
| #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT) |
| |
| /* |
| * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not. |
| * And EFI shouldn't really play around with priority masking as it is not aware |
| * which priorities the OS has assigned to its interrupts. |
| */ |
| #define arch_efi_save_flags(state_flags) \ |
| ((void)((state_flags) = read_sysreg(daif))) |
| |
| #define arch_efi_restore_flags(state_flags) write_sysreg(state_flags, daif) |
| |
| |
| /* arch specific definitions used by the stub code */ |
| |
| /* |
| * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the |
| * kernel need greater alignment than we require the segments to be padded to. |
| */ |
| #define EFI_KIMG_ALIGN \ |
| (SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN) |
| |
| /* |
| * On arm64, we have to ensure that the initrd ends up in the linear region, |
| * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is |
| * guaranteed to cover the kernel Image. |
| * |
| * Since the EFI stub is part of the kernel Image, we can relax the |
| * usual requirements in Documentation/arm64/booting.rst, which still |
| * apply to other bootloaders, and are required for some kernel |
| * configurations. |
| */ |
| static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr) |
| { |
| return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1)); |
| } |
| |
| static inline unsigned long efi_get_kimg_min_align(void) |
| { |
| extern bool efi_nokaslr; |
| |
| /* |
| * Although relocatable kernels can fix up the misalignment with |
| * respect to MIN_KIMG_ALIGN, the resulting virtual text addresses are |
| * subtly out of sync with those recorded in the vmlinux when kaslr is |
| * disabled but the image required relocation anyway. Therefore retain |
| * 2M alignment if KASLR was explicitly disabled, even if it was not |
| * going to be activated to begin with. |
| */ |
| return efi_nokaslr ? MIN_KIMG_ALIGN : EFI_KIMG_ALIGN; |
| } |
| |
| #define EFI_ALLOC_ALIGN SZ_64K |
| #define EFI_ALLOC_LIMIT ((1UL << 48) - 1) |
| |
| /* |
| * On ARM systems, virtually remapped UEFI runtime services are set up in two |
| * distinct stages: |
| * - The stub retrieves the final version of the memory map from UEFI, populates |
| * the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime |
| * service to communicate the new mapping to the firmware (Note that the new |
| * mapping is not live at this time) |
| * - During an early initcall(), the EFI system table is permanently remapped |
| * and the virtual remapping of the UEFI Runtime Services regions is loaded |
| * into a private set of page tables. If this all succeeds, the Runtime |
| * Services are enabled and the EFI_RUNTIME_SERVICES bit set. |
| */ |
| |
| static inline void efi_set_pgd(struct mm_struct *mm) |
| { |
| __switch_mm(mm); |
| |
| if (system_uses_ttbr0_pan()) { |
| if (mm != current->active_mm) { |
| /* |
| * Update the current thread's saved ttbr0 since it is |
| * restored as part of a return from exception. Enable |
| * access to the valid TTBR0_EL1 and invoke the errata |
| * workaround directly since there is no return from |
| * exception when invoking the EFI run-time services. |
| */ |
| update_saved_ttbr0(current, mm); |
| uaccess_ttbr0_enable(); |
| post_ttbr_update_workaround(); |
| } else { |
| /* |
| * Defer the switch to the current thread's TTBR0_EL1 |
| * until uaccess_enable(). Restore the current |
| * thread's saved ttbr0 corresponding to its active_mm |
| */ |
| uaccess_ttbr0_disable(); |
| update_saved_ttbr0(current, current->active_mm); |
| } |
| } |
| } |
| |
| void efi_virtmap_load(void); |
| void efi_virtmap_unload(void); |
| |
| static inline void efi_capsule_flush_cache_range(void *addr, int size) |
| { |
| dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size); |
| } |
| |
| #endif /* _ASM_EFI_H */ |