| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Intel Keem Bay OCS HCU Crypto Driver. |
| * |
| * Copyright (C) 2018-2020 Intel Corporation |
| */ |
| |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| |
| #include <crypto/engine.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/sha2.h> |
| #include <crypto/sm3.h> |
| #include <crypto/hmac.h> |
| #include <crypto/internal/hash.h> |
| |
| #include "ocs-hcu.h" |
| |
| #define DRV_NAME "keembay-ocs-hcu" |
| |
| /* Flag marking a final request. */ |
| #define REQ_FINAL BIT(0) |
| /* Flag marking a HMAC request. */ |
| #define REQ_FLAGS_HMAC BIT(1) |
| /* Flag set when HW HMAC is being used. */ |
| #define REQ_FLAGS_HMAC_HW BIT(2) |
| /* Flag set when SW HMAC is being used. */ |
| #define REQ_FLAGS_HMAC_SW BIT(3) |
| |
| /** |
| * struct ocs_hcu_ctx: OCS HCU Transform context. |
| * @engine_ctx: Crypto Engine context. |
| * @hcu_dev: The OCS HCU device used by the transformation. |
| * @key: The key (used only for HMAC transformations). |
| * @key_len: The length of the key. |
| * @is_sm3_tfm: Whether or not this is an SM3 transformation. |
| * @is_hmac_tfm: Whether or not this is a HMAC transformation. |
| */ |
| struct ocs_hcu_ctx { |
| struct crypto_engine_ctx engine_ctx; |
| struct ocs_hcu_dev *hcu_dev; |
| u8 key[SHA512_BLOCK_SIZE]; |
| size_t key_len; |
| bool is_sm3_tfm; |
| bool is_hmac_tfm; |
| }; |
| |
| /** |
| * struct ocs_hcu_rctx - Context for the request. |
| * @hcu_dev: OCS HCU device to be used to service the request. |
| * @flags: Flags tracking request status. |
| * @algo: Algorithm to use for the request. |
| * @blk_sz: Block size of the transformation / request. |
| * @dig_sz: Digest size of the transformation / request. |
| * @dma_list: OCS DMA linked list. |
| * @hash_ctx: OCS HCU hashing context. |
| * @buffer: Buffer to store: partial block of data and SW HMAC |
| * artifacts (ipad, opad, etc.). |
| * @buf_cnt: Number of bytes currently stored in the buffer. |
| * @buf_dma_addr: The DMA address of @buffer (when mapped). |
| * @buf_dma_count: The number of bytes in @buffer currently DMA-mapped. |
| * @sg: Head of the scatterlist entries containing data. |
| * @sg_data_total: Total data in the SG list at any time. |
| * @sg_data_offset: Offset into the data of the current individual SG node. |
| * @sg_dma_nents: Number of sg entries mapped in dma_list. |
| */ |
| struct ocs_hcu_rctx { |
| struct ocs_hcu_dev *hcu_dev; |
| u32 flags; |
| enum ocs_hcu_algo algo; |
| size_t blk_sz; |
| size_t dig_sz; |
| struct ocs_hcu_dma_list *dma_list; |
| struct ocs_hcu_hash_ctx hash_ctx; |
| /* |
| * Buffer is double the block size because we need space for SW HMAC |
| * artifacts, i.e: |
| * - ipad (1 block) + a possible partial block of data. |
| * - opad (1 block) + digest of H(k ^ ipad || m) |
| */ |
| u8 buffer[2 * SHA512_BLOCK_SIZE]; |
| size_t buf_cnt; |
| dma_addr_t buf_dma_addr; |
| size_t buf_dma_count; |
| struct scatterlist *sg; |
| unsigned int sg_data_total; |
| unsigned int sg_data_offset; |
| unsigned int sg_dma_nents; |
| }; |
| |
| /** |
| * struct ocs_hcu_drv - Driver data |
| * @dev_list: The list of HCU devices. |
| * @lock: The lock protecting dev_list. |
| */ |
| struct ocs_hcu_drv { |
| struct list_head dev_list; |
| spinlock_t lock; /* Protects dev_list. */ |
| }; |
| |
| static struct ocs_hcu_drv ocs_hcu = { |
| .dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list), |
| .lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock), |
| }; |
| |
| /* |
| * Return the total amount of data in the request; that is: the data in the |
| * request buffer + the data in the sg list. |
| */ |
| static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx) |
| { |
| return rctx->sg_data_total + rctx->buf_cnt; |
| } |
| |
| /* Move remaining content of scatter-gather list to context buffer. */ |
| static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx) |
| { |
| size_t count; |
| |
| if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) { |
| WARN(1, "%s: sg data does not fit in buffer\n", __func__); |
| return -EINVAL; |
| } |
| |
| while (rctx->sg_data_total) { |
| if (!rctx->sg) { |
| WARN(1, "%s: unexpected NULL sg\n", __func__); |
| return -EINVAL; |
| } |
| /* |
| * If current sg has been fully processed, skip to the next |
| * one. |
| */ |
| if (rctx->sg_data_offset == rctx->sg->length) { |
| rctx->sg = sg_next(rctx->sg); |
| rctx->sg_data_offset = 0; |
| continue; |
| } |
| /* |
| * Determine the maximum data available to copy from the node. |
| * Minimum of the length left in the sg node, or the total data |
| * in the request. |
| */ |
| count = min(rctx->sg->length - rctx->sg_data_offset, |
| rctx->sg_data_total); |
| /* Copy from scatter-list entry to context buffer. */ |
| scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt], |
| rctx->sg, rctx->sg_data_offset, |
| count, 0); |
| |
| rctx->sg_data_offset += count; |
| rctx->sg_data_total -= count; |
| rctx->buf_cnt += count; |
| } |
| |
| return 0; |
| } |
| |
| static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); |
| |
| /* If the HCU device for the request was previously set, return it. */ |
| if (tctx->hcu_dev) |
| return tctx->hcu_dev; |
| |
| /* |
| * Otherwise, get the first HCU device available (there should be one |
| * and only one device). |
| */ |
| spin_lock_bh(&ocs_hcu.lock); |
| tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list, |
| struct ocs_hcu_dev, |
| list); |
| spin_unlock_bh(&ocs_hcu.lock); |
| |
| return tctx->hcu_dev; |
| } |
| |
| /* Free OCS DMA linked list and DMA-able context buffer. */ |
| static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req, |
| struct ocs_hcu_rctx *rctx) |
| { |
| struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev; |
| struct device *dev = hcu_dev->dev; |
| |
| /* Unmap rctx->buffer (if mapped). */ |
| if (rctx->buf_dma_count) { |
| dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count, |
| DMA_TO_DEVICE); |
| rctx->buf_dma_count = 0; |
| } |
| |
| /* Unmap req->src (if mapped). */ |
| if (rctx->sg_dma_nents) { |
| dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE); |
| rctx->sg_dma_nents = 0; |
| } |
| |
| /* Free dma_list (if allocated). */ |
| if (rctx->dma_list) { |
| ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list); |
| rctx->dma_list = NULL; |
| } |
| } |
| |
| /* |
| * Prepare for DMA operation: |
| * - DMA-map request context buffer (if needed) |
| * - DMA-map SG list (only the entries to be processed, see note below) |
| * - Allocate OCS HCU DMA linked list (number of elements = SG entries to |
| * process + context buffer (if not empty)). |
| * - Add DMA-mapped request context buffer to OCS HCU DMA list. |
| * - Add SG entries to DMA list. |
| * |
| * Note: if this is a final request, we process all the data in the SG list, |
| * otherwise we can only process up to the maximum amount of block-aligned data |
| * (the remainder will be put into the context buffer and processed in the next |
| * request). |
| */ |
| static int kmb_ocs_dma_prepare(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| struct device *dev = rctx->hcu_dev->dev; |
| unsigned int remainder = 0; |
| unsigned int total; |
| size_t nents; |
| size_t count; |
| int rc; |
| int i; |
| |
| /* This function should be called only when there is data to process. */ |
| total = kmb_get_total_data(rctx); |
| if (!total) |
| return -EINVAL; |
| |
| /* |
| * If this is not a final DMA (terminated DMA), the data passed to the |
| * HCU must be aligned to the block size; compute the remainder data to |
| * be processed in the next request. |
| */ |
| if (!(rctx->flags & REQ_FINAL)) |
| remainder = total % rctx->blk_sz; |
| |
| /* Determine the number of scatter gather list entries to process. */ |
| nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder); |
| |
| /* If there are entries to process, map them. */ |
| if (nents) { |
| rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents, |
| DMA_TO_DEVICE); |
| if (!rctx->sg_dma_nents) { |
| dev_err(dev, "Failed to MAP SG\n"); |
| rc = -ENOMEM; |
| goto cleanup; |
| } |
| /* |
| * The value returned by dma_map_sg() can be < nents; so update |
| * nents accordingly. |
| */ |
| nents = rctx->sg_dma_nents; |
| } |
| |
| /* |
| * If context buffer is not empty, map it and add extra DMA entry for |
| * it. |
| */ |
| if (rctx->buf_cnt) { |
| rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer, |
| rctx->buf_cnt, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, rctx->buf_dma_addr)) { |
| dev_err(dev, "Failed to map request context buffer\n"); |
| rc = -ENOMEM; |
| goto cleanup; |
| } |
| rctx->buf_dma_count = rctx->buf_cnt; |
| /* Increase number of dma entries. */ |
| nents++; |
| } |
| |
| /* Allocate OCS HCU DMA list. */ |
| rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents); |
| if (!rctx->dma_list) { |
| rc = -ENOMEM; |
| goto cleanup; |
| } |
| |
| /* Add request context buffer (if previously DMA-mapped) */ |
| if (rctx->buf_dma_count) { |
| rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list, |
| rctx->buf_dma_addr, |
| rctx->buf_dma_count); |
| if (rc) |
| goto cleanup; |
| } |
| |
| /* Add the SG nodes to be processed to the DMA linked list. */ |
| for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) { |
| /* |
| * The number of bytes to add to the list entry is the minimum |
| * between: |
| * - The DMA length of the SG entry. |
| * - The data left to be processed. |
| */ |
| count = min(rctx->sg_data_total - remainder, |
| sg_dma_len(rctx->sg) - rctx->sg_data_offset); |
| /* |
| * Do not create a zero length DMA descriptor. Check in case of |
| * zero length SG node. |
| */ |
| if (count == 0) |
| continue; |
| /* Add sg to HCU DMA list. */ |
| rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, |
| rctx->dma_list, |
| rctx->sg->dma_address, |
| count); |
| if (rc) |
| goto cleanup; |
| |
| /* Update amount of data remaining in SG list. */ |
| rctx->sg_data_total -= count; |
| |
| /* |
| * If remaining data is equal to remainder (note: 'less than' |
| * case should never happen in practice), we are done: update |
| * offset and exit the loop. |
| */ |
| if (rctx->sg_data_total <= remainder) { |
| WARN_ON(rctx->sg_data_total < remainder); |
| rctx->sg_data_offset += count; |
| break; |
| } |
| |
| /* |
| * If we get here is because we need to process the next sg in |
| * the list; set offset within the sg to 0. |
| */ |
| rctx->sg_data_offset = 0; |
| } |
| |
| return 0; |
| cleanup: |
| dev_err(dev, "Failed to prepare DMA.\n"); |
| kmb_ocs_hcu_dma_cleanup(req, rctx); |
| |
| return rc; |
| } |
| |
| static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| |
| /* Clear buffer of any data. */ |
| memzero_explicit(rctx->buffer, sizeof(rctx->buffer)); |
| } |
| |
| static int kmb_ocs_hcu_handle_queue(struct ahash_request *req) |
| { |
| struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); |
| |
| if (!hcu_dev) |
| return -ENOENT; |
| |
| return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req); |
| } |
| |
| static int prepare_ipad(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); |
| int i; |
| |
| WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__); |
| WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW), |
| "%s: HMAC_SW flag is not set\n", __func__); |
| /* |
| * Key length must be equal to block size. If key is shorter, |
| * we pad it with zero (note: key cannot be longer, since |
| * longer keys are hashed by kmb_ocs_hcu_setkey()). |
| */ |
| if (ctx->key_len > rctx->blk_sz) { |
| WARN(1, "%s: Invalid key length in tfm context\n", __func__); |
| return -EINVAL; |
| } |
| memzero_explicit(&ctx->key[ctx->key_len], |
| rctx->blk_sz - ctx->key_len); |
| ctx->key_len = rctx->blk_sz; |
| /* |
| * Prepare IPAD for HMAC. Only done for first block. |
| * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m)) |
| * k ^ ipad will be first hashed block. |
| * k ^ opad will be calculated in the final request. |
| * Only needed if not using HW HMAC. |
| */ |
| for (i = 0; i < rctx->blk_sz; i++) |
| rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE; |
| rctx->buf_cnt = rctx->blk_sz; |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq) |
| { |
| struct ahash_request *req = container_of(areq, struct ahash_request, |
| base); |
| struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); |
| int rc; |
| int i; |
| |
| if (!hcu_dev) { |
| rc = -ENOENT; |
| goto error; |
| } |
| |
| /* |
| * If hardware HMAC flag is set, perform HMAC in hardware. |
| * |
| * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx) |
| */ |
| if (rctx->flags & REQ_FLAGS_HMAC_HW) { |
| /* Map input data into the HCU DMA linked list. */ |
| rc = kmb_ocs_dma_prepare(req); |
| if (rc) |
| goto error; |
| |
| rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len, |
| rctx->dma_list, req->result, rctx->dig_sz); |
| |
| /* Unmap data and free DMA list regardless of return code. */ |
| kmb_ocs_hcu_dma_cleanup(req, rctx); |
| |
| /* Process previous return code. */ |
| if (rc) |
| goto error; |
| |
| goto done; |
| } |
| |
| /* Handle update request case. */ |
| if (!(rctx->flags & REQ_FINAL)) { |
| /* Update should always have input data. */ |
| if (!kmb_get_total_data(rctx)) |
| return -EINVAL; |
| |
| /* Map input data into the HCU DMA linked list. */ |
| rc = kmb_ocs_dma_prepare(req); |
| if (rc) |
| goto error; |
| |
| /* Do hashing step. */ |
| rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx, |
| rctx->dma_list); |
| |
| /* Unmap data and free DMA list regardless of return code. */ |
| kmb_ocs_hcu_dma_cleanup(req, rctx); |
| |
| /* Process previous return code. */ |
| if (rc) |
| goto error; |
| |
| /* |
| * Reset request buffer count (data in the buffer was just |
| * processed). |
| */ |
| rctx->buf_cnt = 0; |
| /* |
| * Move remaining sg data into the request buffer, so that it |
| * will be processed during the next request. |
| * |
| * NOTE: we have remaining data if kmb_get_total_data() was not |
| * a multiple of block size. |
| */ |
| rc = flush_sg_to_ocs_buffer(rctx); |
| if (rc) |
| goto error; |
| |
| goto done; |
| } |
| |
| /* If we get here, this is a final request. */ |
| |
| /* If there is data to process, use finup. */ |
| if (kmb_get_total_data(rctx)) { |
| /* Map input data into the HCU DMA linked list. */ |
| rc = kmb_ocs_dma_prepare(req); |
| if (rc) |
| goto error; |
| |
| /* Do hashing step. */ |
| rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx, |
| rctx->dma_list, |
| req->result, rctx->dig_sz); |
| /* Free DMA list regardless of return code. */ |
| kmb_ocs_hcu_dma_cleanup(req, rctx); |
| |
| /* Process previous return code. */ |
| if (rc) |
| goto error; |
| |
| } else { /* Otherwise (if we have no data), use final. */ |
| rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result, |
| rctx->dig_sz); |
| if (rc) |
| goto error; |
| } |
| |
| /* |
| * If we are finalizing a SW HMAC request, we just computed the result |
| * of: H(k ^ ipad || m). |
| * |
| * We now need to complete the HMAC calculation with the OPAD step, |
| * that is, we need to compute H(k ^ opad || digest), where digest is |
| * the digest we just obtained, i.e., H(k ^ ipad || m). |
| */ |
| if (rctx->flags & REQ_FLAGS_HMAC_SW) { |
| /* |
| * Compute k ^ opad and store it in the request buffer (which |
| * is not used anymore at this point). |
| * Note: key has been padded / hashed already (so keylen == |
| * blksz) . |
| */ |
| WARN_ON(tctx->key_len != rctx->blk_sz); |
| for (i = 0; i < rctx->blk_sz; i++) |
| rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE; |
| /* Now append the digest to the rest of the buffer. */ |
| for (i = 0; (i < rctx->dig_sz); i++) |
| rctx->buffer[rctx->blk_sz + i] = req->result[i]; |
| |
| /* Now hash the buffer to obtain the final HMAC. */ |
| rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer, |
| rctx->blk_sz + rctx->dig_sz, req->result, |
| rctx->dig_sz); |
| if (rc) |
| goto error; |
| } |
| |
| /* Perform secure clean-up. */ |
| kmb_ocs_hcu_secure_cleanup(req); |
| done: |
| crypto_finalize_hash_request(hcu_dev->engine, req, 0); |
| |
| return 0; |
| |
| error: |
| kmb_ocs_hcu_secure_cleanup(req); |
| return rc; |
| } |
| |
| static int kmb_ocs_hcu_init(struct ahash_request *req) |
| { |
| struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| if (!hcu_dev) |
| return -ENOENT; |
| |
| /* Initialize entire request context to zero. */ |
| memset(rctx, 0, sizeof(*rctx)); |
| |
| rctx->hcu_dev = hcu_dev; |
| rctx->dig_sz = crypto_ahash_digestsize(tfm); |
| |
| switch (rctx->dig_sz) { |
| #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 |
| case SHA224_DIGEST_SIZE: |
| rctx->blk_sz = SHA224_BLOCK_SIZE; |
| rctx->algo = OCS_HCU_ALGO_SHA224; |
| break; |
| #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ |
| case SHA256_DIGEST_SIZE: |
| rctx->blk_sz = SHA256_BLOCK_SIZE; |
| /* |
| * SHA256 and SM3 have the same digest size: use info from tfm |
| * context to find out which one we should use. |
| */ |
| rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 : |
| OCS_HCU_ALGO_SHA256; |
| break; |
| case SHA384_DIGEST_SIZE: |
| rctx->blk_sz = SHA384_BLOCK_SIZE; |
| rctx->algo = OCS_HCU_ALGO_SHA384; |
| break; |
| case SHA512_DIGEST_SIZE: |
| rctx->blk_sz = SHA512_BLOCK_SIZE; |
| rctx->algo = OCS_HCU_ALGO_SHA512; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Initialize intermediate data. */ |
| ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo); |
| |
| /* If this a HMAC request, set HMAC flag. */ |
| if (ctx->is_hmac_tfm) |
| rctx->flags |= REQ_FLAGS_HMAC; |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_update(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| int rc; |
| |
| if (!req->nbytes) |
| return 0; |
| |
| rctx->sg_data_total = req->nbytes; |
| rctx->sg_data_offset = 0; |
| rctx->sg = req->src; |
| |
| /* |
| * If we are doing HMAC, then we must use SW-assisted HMAC, since HW |
| * HMAC does not support context switching (there it can only be used |
| * with finup() or digest()). |
| */ |
| if (rctx->flags & REQ_FLAGS_HMAC && |
| !(rctx->flags & REQ_FLAGS_HMAC_SW)) { |
| rctx->flags |= REQ_FLAGS_HMAC_SW; |
| rc = prepare_ipad(req); |
| if (rc) |
| return rc; |
| } |
| |
| /* |
| * If remaining sg_data fits into ctx buffer, just copy it there; we'll |
| * process it at the next update() or final(). |
| */ |
| if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt)) |
| return flush_sg_to_ocs_buffer(rctx); |
| |
| return kmb_ocs_hcu_handle_queue(req); |
| } |
| |
| /* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */ |
| static int kmb_ocs_hcu_fin_common(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); |
| int rc; |
| |
| rctx->flags |= REQ_FINAL; |
| |
| /* |
| * If this is a HMAC request and, so far, we didn't have to switch to |
| * SW HMAC, check if we can use HW HMAC. |
| */ |
| if (rctx->flags & REQ_FLAGS_HMAC && |
| !(rctx->flags & REQ_FLAGS_HMAC_SW)) { |
| /* |
| * If we are here, it means we never processed any data so far, |
| * so we can use HW HMAC, but only if there is some data to |
| * process (since OCS HW MAC does not support zero-length |
| * messages) and the key length is supported by the hardware |
| * (OCS HCU HW only supports length <= 64); if HW HMAC cannot |
| * be used, fall back to SW-assisted HMAC. |
| */ |
| if (kmb_get_total_data(rctx) && |
| ctx->key_len <= OCS_HCU_HW_KEY_LEN) { |
| rctx->flags |= REQ_FLAGS_HMAC_HW; |
| } else { |
| rctx->flags |= REQ_FLAGS_HMAC_SW; |
| rc = prepare_ipad(req); |
| if (rc) |
| return rc; |
| } |
| } |
| |
| return kmb_ocs_hcu_handle_queue(req); |
| } |
| |
| static int kmb_ocs_hcu_final(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| |
| rctx->sg_data_total = 0; |
| rctx->sg_data_offset = 0; |
| rctx->sg = NULL; |
| |
| return kmb_ocs_hcu_fin_common(req); |
| } |
| |
| static int kmb_ocs_hcu_finup(struct ahash_request *req) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| |
| rctx->sg_data_total = req->nbytes; |
| rctx->sg_data_offset = 0; |
| rctx->sg = req->src; |
| |
| return kmb_ocs_hcu_fin_common(req); |
| } |
| |
| static int kmb_ocs_hcu_digest(struct ahash_request *req) |
| { |
| int rc = 0; |
| struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); |
| |
| if (!hcu_dev) |
| return -ENOENT; |
| |
| rc = kmb_ocs_hcu_init(req); |
| if (rc) |
| return rc; |
| |
| rc = kmb_ocs_hcu_finup(req); |
| |
| return rc; |
| } |
| |
| static int kmb_ocs_hcu_export(struct ahash_request *req, void *out) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| |
| /* Intermediate data is always stored and applied per request. */ |
| memcpy(out, rctx, sizeof(*rctx)); |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in) |
| { |
| struct ocs_hcu_rctx *rctx = ahash_request_ctx(req); |
| |
| /* Intermediate data is always stored and applied per request. */ |
| memcpy(rctx, in, sizeof(*rctx)); |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| unsigned int digestsize = crypto_ahash_digestsize(tfm); |
| struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); |
| size_t blk_sz = crypto_ahash_blocksize(tfm); |
| struct crypto_ahash *ahash_tfm; |
| struct ahash_request *req; |
| struct crypto_wait wait; |
| struct scatterlist sg; |
| const char *alg_name; |
| int rc; |
| |
| /* |
| * Key length must be equal to block size: |
| * - If key is shorter, we are done for now (the key will be padded |
| * later on); this is to maximize the use of HW HMAC (which works |
| * only for keys <= 64 bytes). |
| * - If key is longer, we hash it. |
| */ |
| if (keylen <= blk_sz) { |
| memcpy(ctx->key, key, keylen); |
| ctx->key_len = keylen; |
| return 0; |
| } |
| |
| switch (digestsize) { |
| #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 |
| case SHA224_DIGEST_SIZE: |
| alg_name = "sha224-keembay-ocs"; |
| break; |
| #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ |
| case SHA256_DIGEST_SIZE: |
| alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" : |
| "sha256-keembay-ocs"; |
| break; |
| case SHA384_DIGEST_SIZE: |
| alg_name = "sha384-keembay-ocs"; |
| break; |
| case SHA512_DIGEST_SIZE: |
| alg_name = "sha512-keembay-ocs"; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0); |
| if (IS_ERR(ahash_tfm)) |
| return PTR_ERR(ahash_tfm); |
| |
| req = ahash_request_alloc(ahash_tfm, GFP_KERNEL); |
| if (!req) { |
| rc = -ENOMEM; |
| goto err_free_ahash; |
| } |
| |
| crypto_init_wait(&wait); |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &wait); |
| crypto_ahash_clear_flags(ahash_tfm, ~0); |
| |
| sg_init_one(&sg, key, keylen); |
| ahash_request_set_crypt(req, &sg, ctx->key, keylen); |
| |
| rc = crypto_wait_req(crypto_ahash_digest(req), &wait); |
| if (rc == 0) |
| ctx->key_len = digestsize; |
| |
| ahash_request_free(req); |
| err_free_ahash: |
| crypto_free_ahash(ahash_tfm); |
| |
| return rc; |
| } |
| |
| /* Set request size and initialize tfm context. */ |
| static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx) |
| { |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct ocs_hcu_rctx)); |
| |
| /* Init context to 0. */ |
| memzero_explicit(ctx, sizeof(*ctx)); |
| /* Set engine ops. */ |
| ctx->engine_ctx.op.do_one_request = kmb_ocs_hcu_do_one_request; |
| } |
| |
| static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| __cra_init(tfm, ctx); |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| __cra_init(tfm, ctx); |
| |
| ctx->is_sm3_tfm = true; |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| __cra_init(tfm, ctx); |
| |
| ctx->is_sm3_tfm = true; |
| ctx->is_hmac_tfm = true; |
| |
| return 0; |
| } |
| |
| static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm) |
| { |
| struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| __cra_init(tfm, ctx); |
| |
| ctx->is_hmac_tfm = true; |
| |
| return 0; |
| } |
| |
| /* Function called when 'tfm' is de-initialized. */ |
| static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| /* Clear the key. */ |
| memzero_explicit(ctx->key, sizeof(ctx->key)); |
| } |
| |
| static struct ahash_alg ocs_hcu_algs[] = { |
| #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .halg = { |
| .digestsize = SHA224_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "sha224", |
| .cra_driver_name = "sha224-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA224_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_sha_cra_init, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .setkey = kmb_ocs_hcu_setkey, |
| .halg = { |
| .digestsize = SHA224_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "hmac(sha224)", |
| .cra_driver_name = "hmac-sha224-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA224_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_hmac_cra_init, |
| .cra_exit = kmb_ocs_hcu_hmac_cra_exit, |
| } |
| } |
| }, |
| #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .halg = { |
| .digestsize = SHA256_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_sha_cra_init, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .setkey = kmb_ocs_hcu_setkey, |
| .halg = { |
| .digestsize = SHA256_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "hmac(sha256)", |
| .cra_driver_name = "hmac-sha256-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_hmac_cra_init, |
| .cra_exit = kmb_ocs_hcu_hmac_cra_exit, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .halg = { |
| .digestsize = SM3_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "sm3", |
| .cra_driver_name = "sm3-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SM3_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_sm3_cra_init, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .setkey = kmb_ocs_hcu_setkey, |
| .halg = { |
| .digestsize = SM3_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "hmac(sm3)", |
| .cra_driver_name = "hmac-sm3-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SM3_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_hmac_sm3_cra_init, |
| .cra_exit = kmb_ocs_hcu_hmac_cra_exit, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .halg = { |
| .digestsize = SHA384_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "sha384", |
| .cra_driver_name = "sha384-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA384_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_sha_cra_init, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .setkey = kmb_ocs_hcu_setkey, |
| .halg = { |
| .digestsize = SHA384_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "hmac(sha384)", |
| .cra_driver_name = "hmac-sha384-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA384_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_hmac_cra_init, |
| .cra_exit = kmb_ocs_hcu_hmac_cra_exit, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .halg = { |
| .digestsize = SHA512_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "sha512", |
| .cra_driver_name = "sha512-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA512_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_sha_cra_init, |
| } |
| } |
| }, |
| { |
| .init = kmb_ocs_hcu_init, |
| .update = kmb_ocs_hcu_update, |
| .final = kmb_ocs_hcu_final, |
| .finup = kmb_ocs_hcu_finup, |
| .digest = kmb_ocs_hcu_digest, |
| .export = kmb_ocs_hcu_export, |
| .import = kmb_ocs_hcu_import, |
| .setkey = kmb_ocs_hcu_setkey, |
| .halg = { |
| .digestsize = SHA512_DIGEST_SIZE, |
| .statesize = sizeof(struct ocs_hcu_rctx), |
| .base = { |
| .cra_name = "hmac(sha512)", |
| .cra_driver_name = "hmac-sha512-keembay-ocs", |
| .cra_priority = 255, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA512_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct ocs_hcu_ctx), |
| .cra_alignmask = 0, |
| .cra_module = THIS_MODULE, |
| .cra_init = kmb_ocs_hcu_hmac_cra_init, |
| .cra_exit = kmb_ocs_hcu_hmac_cra_exit, |
| } |
| } |
| }, |
| }; |
| |
| /* Device tree driver match. */ |
| static const struct of_device_id kmb_ocs_hcu_of_match[] = { |
| { |
| .compatible = "intel,keembay-ocs-hcu", |
| }, |
| {} |
| }; |
| |
| static int kmb_ocs_hcu_remove(struct platform_device *pdev) |
| { |
| struct ocs_hcu_dev *hcu_dev; |
| int rc; |
| |
| hcu_dev = platform_get_drvdata(pdev); |
| if (!hcu_dev) |
| return -ENODEV; |
| |
| crypto_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); |
| |
| rc = crypto_engine_exit(hcu_dev->engine); |
| |
| spin_lock_bh(&ocs_hcu.lock); |
| list_del(&hcu_dev->list); |
| spin_unlock_bh(&ocs_hcu.lock); |
| |
| return rc; |
| } |
| |
| static int kmb_ocs_hcu_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct ocs_hcu_dev *hcu_dev; |
| struct resource *hcu_mem; |
| int rc; |
| |
| hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL); |
| if (!hcu_dev) |
| return -ENOMEM; |
| |
| hcu_dev->dev = dev; |
| |
| platform_set_drvdata(pdev, hcu_dev); |
| rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK); |
| if (rc) |
| return rc; |
| |
| /* Get the memory address and remap. */ |
| hcu_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!hcu_mem) { |
| dev_err(dev, "Could not retrieve io mem resource.\n"); |
| return -ENODEV; |
| } |
| |
| hcu_dev->io_base = devm_ioremap_resource(dev, hcu_mem); |
| if (IS_ERR(hcu_dev->io_base)) |
| return PTR_ERR(hcu_dev->io_base); |
| |
| init_completion(&hcu_dev->irq_done); |
| |
| /* Get and request IRQ. */ |
| hcu_dev->irq = platform_get_irq(pdev, 0); |
| if (hcu_dev->irq < 0) |
| return hcu_dev->irq; |
| |
| rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq, |
| ocs_hcu_irq_handler, NULL, 0, |
| "keembay-ocs-hcu", hcu_dev); |
| if (rc < 0) { |
| dev_err(dev, "Could not request IRQ.\n"); |
| return rc; |
| } |
| |
| INIT_LIST_HEAD(&hcu_dev->list); |
| |
| spin_lock_bh(&ocs_hcu.lock); |
| list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list); |
| spin_unlock_bh(&ocs_hcu.lock); |
| |
| /* Initialize crypto engine */ |
| hcu_dev->engine = crypto_engine_alloc_init(dev, 1); |
| if (!hcu_dev->engine) { |
| rc = -ENOMEM; |
| goto list_del; |
| } |
| |
| rc = crypto_engine_start(hcu_dev->engine); |
| if (rc) { |
| dev_err(dev, "Could not start engine.\n"); |
| goto cleanup; |
| } |
| |
| /* Security infrastructure guarantees OCS clock is enabled. */ |
| |
| rc = crypto_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); |
| if (rc) { |
| dev_err(dev, "Could not register algorithms.\n"); |
| goto cleanup; |
| } |
| |
| return 0; |
| |
| cleanup: |
| crypto_engine_exit(hcu_dev->engine); |
| list_del: |
| spin_lock_bh(&ocs_hcu.lock); |
| list_del(&hcu_dev->list); |
| spin_unlock_bh(&ocs_hcu.lock); |
| |
| return rc; |
| } |
| |
| /* The OCS driver is a platform device. */ |
| static struct platform_driver kmb_ocs_hcu_driver = { |
| .probe = kmb_ocs_hcu_probe, |
| .remove = kmb_ocs_hcu_remove, |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = kmb_ocs_hcu_of_match, |
| }, |
| }; |
| |
| module_platform_driver(kmb_ocs_hcu_driver); |
| |
| MODULE_LICENSE("GPL"); |