| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Driver for the Nuvoton NAU7802 ADC |
| * |
| * Copyright 2013 Free Electrons |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/wait.h> |
| #include <linux/log2.h> |
| #include <linux/of.h> |
| |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| |
| #define NAU7802_REG_PUCTRL 0x00 |
| #define NAU7802_PUCTRL_RR(x) (x << 0) |
| #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1) |
| #define NAU7802_PUCTRL_PUD(x) (x << 1) |
| #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1) |
| #define NAU7802_PUCTRL_PUA(x) (x << 2) |
| #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1) |
| #define NAU7802_PUCTRL_PUR(x) (x << 3) |
| #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1) |
| #define NAU7802_PUCTRL_CS(x) (x << 4) |
| #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1) |
| #define NAU7802_PUCTRL_CR(x) (x << 5) |
| #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1) |
| #define NAU7802_PUCTRL_AVDDS(x) (x << 7) |
| #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1) |
| #define NAU7802_REG_CTRL1 0x01 |
| #define NAU7802_CTRL1_VLDO(x) (x << 3) |
| #define NAU7802_CTRL1_GAINS(x) (x) |
| #define NAU7802_CTRL1_GAINS_BITS 0x07 |
| #define NAU7802_REG_CTRL2 0x02 |
| #define NAU7802_CTRL2_CHS(x) (x << 7) |
| #define NAU7802_CTRL2_CRS(x) (x << 4) |
| #define NAU7802_SAMP_FREQ_320 0x07 |
| #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1) |
| #define NAU7802_REG_ADC_B2 0x12 |
| #define NAU7802_REG_ADC_B1 0x13 |
| #define NAU7802_REG_ADC_B0 0x14 |
| #define NAU7802_REG_ADC_CTRL 0x15 |
| |
| #define NAU7802_MIN_CONVERSIONS 6 |
| |
| struct nau7802_state { |
| struct i2c_client *client; |
| s32 last_value; |
| struct mutex lock; |
| struct mutex data_lock; |
| u32 vref_mv; |
| u32 conversion_count; |
| u32 min_conversions; |
| u8 sample_rate; |
| u32 scale_avail[8]; |
| struct completion value_ok; |
| }; |
| |
| #define NAU7802_CHANNEL(chan) { \ |
| .type = IIO_VOLTAGE, \ |
| .indexed = 1, \ |
| .channel = (chan), \ |
| .scan_index = (chan), \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_SAMP_FREQ) \ |
| } |
| |
| static const struct iio_chan_spec nau7802_chan_array[] = { |
| NAU7802_CHANNEL(0), |
| NAU7802_CHANNEL(1), |
| }; |
| |
| static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80, |
| 10, 10, 10, 320}; |
| |
| static ssize_t nau7802_show_scales(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev)); |
| int i, len = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) |
| len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ", |
| st->scale_avail[i]); |
| |
| buf[len-1] = '\n'; |
| |
| return len; |
| } |
| |
| static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320"); |
| |
| static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales, |
| NULL, 0); |
| |
| static struct attribute *nau7802_attributes[] = { |
| &iio_const_attr_sampling_frequency_available.dev_attr.attr, |
| &iio_dev_attr_in_voltage_scale_available.dev_attr.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group nau7802_attribute_group = { |
| .attrs = nau7802_attributes, |
| }; |
| |
| static int nau7802_set_gain(struct nau7802_state *st, int gain) |
| { |
| int ret; |
| |
| mutex_lock(&st->lock); |
| st->conversion_count = 0; |
| |
| ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1); |
| if (ret < 0) |
| goto nau7802_sysfs_set_gain_out; |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1, |
| (ret & (~NAU7802_CTRL1_GAINS_BITS)) | |
| gain); |
| |
| nau7802_sysfs_set_gain_out: |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| static int nau7802_read_conversion(struct nau7802_state *st) |
| { |
| int data; |
| |
| mutex_lock(&st->data_lock); |
| data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2); |
| if (data < 0) |
| goto nau7802_read_conversion_out; |
| st->last_value = data << 16; |
| |
| data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1); |
| if (data < 0) |
| goto nau7802_read_conversion_out; |
| st->last_value |= data << 8; |
| |
| data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0); |
| if (data < 0) |
| goto nau7802_read_conversion_out; |
| st->last_value |= data; |
| |
| st->last_value = sign_extend32(st->last_value, 23); |
| |
| nau7802_read_conversion_out: |
| mutex_unlock(&st->data_lock); |
| |
| return data; |
| } |
| |
| /* |
| * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT |
| */ |
| static int nau7802_sync(struct nau7802_state *st) |
| { |
| int ret; |
| |
| ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); |
| if (ret < 0) |
| return ret; |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, |
| ret | NAU7802_PUCTRL_CS_BIT); |
| |
| return ret; |
| } |
| |
| static irqreturn_t nau7802_eoc_trigger(int irq, void *private) |
| { |
| struct iio_dev *indio_dev = private; |
| struct nau7802_state *st = iio_priv(indio_dev); |
| int status; |
| |
| status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); |
| if (status < 0) |
| return IRQ_HANDLED; |
| |
| if (!(status & NAU7802_PUCTRL_CR_BIT)) |
| return IRQ_NONE; |
| |
| if (nau7802_read_conversion(st) < 0) |
| return IRQ_HANDLED; |
| |
| /* |
| * Because there is actually only one ADC for both channels, we have to |
| * wait for enough conversions to happen before getting a significant |
| * value when changing channels and the values are far apart. |
| */ |
| if (st->conversion_count < NAU7802_MIN_CONVERSIONS) |
| st->conversion_count++; |
| if (st->conversion_count >= NAU7802_MIN_CONVERSIONS) |
| complete(&st->value_ok); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int nau7802_read_irq(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val) |
| { |
| struct nau7802_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| reinit_completion(&st->value_ok); |
| enable_irq(st->client->irq); |
| |
| nau7802_sync(st); |
| |
| /* read registers to ensure we flush everything */ |
| ret = nau7802_read_conversion(st); |
| if (ret < 0) |
| goto read_chan_info_failure; |
| |
| /* Wait for a conversion to finish */ |
| ret = wait_for_completion_interruptible_timeout(&st->value_ok, |
| msecs_to_jiffies(1000)); |
| if (ret == 0) |
| ret = -ETIMEDOUT; |
| |
| if (ret < 0) |
| goto read_chan_info_failure; |
| |
| disable_irq(st->client->irq); |
| |
| *val = st->last_value; |
| |
| return IIO_VAL_INT; |
| |
| read_chan_info_failure: |
| disable_irq(st->client->irq); |
| |
| return ret; |
| } |
| |
| static int nau7802_read_poll(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val) |
| { |
| struct nau7802_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| nau7802_sync(st); |
| |
| /* read registers to ensure we flush everything */ |
| ret = nau7802_read_conversion(st); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Because there is actually only one ADC for both channels, we have to |
| * wait for enough conversions to happen before getting a significant |
| * value when changing channels and the values are far appart. |
| */ |
| do { |
| ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); |
| if (ret < 0) |
| return ret; |
| |
| while (!(ret & NAU7802_PUCTRL_CR_BIT)) { |
| if (st->sample_rate != NAU7802_SAMP_FREQ_320) |
| msleep(20); |
| else |
| mdelay(4); |
| ret = i2c_smbus_read_byte_data(st->client, |
| NAU7802_REG_PUCTRL); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = nau7802_read_conversion(st); |
| if (ret < 0) |
| return ret; |
| if (st->conversion_count < NAU7802_MIN_CONVERSIONS) |
| st->conversion_count++; |
| } while (st->conversion_count < NAU7802_MIN_CONVERSIONS); |
| |
| *val = st->last_value; |
| |
| return IIO_VAL_INT; |
| } |
| |
| static int nau7802_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct nau7802_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| mutex_lock(&st->lock); |
| /* |
| * Select the channel to use |
| * - Channel 1 is value 0 in the CHS register |
| * - Channel 2 is value 1 in the CHS register |
| */ |
| ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2); |
| if (ret < 0) { |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| |
| if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) || |
| (!(ret & NAU7802_CTRL2_CHS_BIT) && |
| chan->channel)) { |
| st->conversion_count = 0; |
| ret = i2c_smbus_write_byte_data(st->client, |
| NAU7802_REG_CTRL2, |
| NAU7802_CTRL2_CHS(chan->channel) | |
| NAU7802_CTRL2_CRS(st->sample_rate)); |
| |
| if (ret < 0) { |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| } |
| |
| if (st->client->irq) |
| ret = nau7802_read_irq(indio_dev, chan, val); |
| else |
| ret = nau7802_read_poll(indio_dev, chan, val); |
| |
| mutex_unlock(&st->lock); |
| return ret; |
| |
| case IIO_CHAN_INFO_SCALE: |
| ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * We have 24 bits of signed data, that means 23 bits of data |
| * plus the sign bit |
| */ |
| *val = st->vref_mv; |
| *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS); |
| |
| return IIO_VAL_FRACTIONAL_LOG2; |
| |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| *val = nau7802_sample_freq_avail[st->sample_rate]; |
| *val2 = 0; |
| return IIO_VAL_INT; |
| |
| default: |
| break; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int nau7802_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct nau7802_state *st = iio_priv(indio_dev); |
| int i, ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SCALE: |
| for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) |
| if (val2 == st->scale_avail[i]) |
| return nau7802_set_gain(st, i); |
| |
| break; |
| |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++) |
| if (val == nau7802_sample_freq_avail[i]) { |
| mutex_lock(&st->lock); |
| st->sample_rate = i; |
| st->conversion_count = 0; |
| ret = i2c_smbus_write_byte_data(st->client, |
| NAU7802_REG_CTRL2, |
| NAU7802_CTRL2_CRS(st->sample_rate)); |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| long mask) |
| { |
| return IIO_VAL_INT_PLUS_NANO; |
| } |
| |
| static const struct iio_info nau7802_info = { |
| .read_raw = &nau7802_read_raw, |
| .write_raw = &nau7802_write_raw, |
| .write_raw_get_fmt = nau7802_write_raw_get_fmt, |
| .attrs = &nau7802_attribute_group, |
| }; |
| |
| static int nau7802_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct iio_dev *indio_dev; |
| struct nau7802_state *st; |
| struct device_node *np = client->dev.of_node; |
| int i, ret; |
| u8 data; |
| u32 tmp = 0; |
| |
| if (!client->dev.of_node) { |
| dev_err(&client->dev, "No device tree node available.\n"); |
| return -EINVAL; |
| } |
| |
| indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st)); |
| if (indio_dev == NULL) |
| return -ENOMEM; |
| |
| st = iio_priv(indio_dev); |
| |
| indio_dev->name = dev_name(&client->dev); |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->info = &nau7802_info; |
| |
| st->client = client; |
| |
| /* Reset the device */ |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, |
| NAU7802_PUCTRL_RR_BIT); |
| if (ret < 0) |
| return ret; |
| |
| /* Enter normal operation mode */ |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, |
| NAU7802_PUCTRL_PUD_BIT); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * After about 200 usecs, the device should be ready and then |
| * the Power Up bit will be set to 1. If not, wait for it. |
| */ |
| udelay(210); |
| ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); |
| if (ret < 0) |
| return ret; |
| if (!(ret & NAU7802_PUCTRL_PUR_BIT)) |
| return ret; |
| |
| of_property_read_u32(np, "nuvoton,vldo", &tmp); |
| st->vref_mv = tmp; |
| |
| data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT | |
| NAU7802_PUCTRL_CS_BIT; |
| if (tmp >= 2400) |
| data |= NAU7802_PUCTRL_AVDDS_BIT; |
| |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data); |
| if (ret < 0) |
| return ret; |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30); |
| if (ret < 0) |
| return ret; |
| |
| if (tmp >= 2400) { |
| data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300); |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1, |
| data); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Populate available ADC input ranges */ |
| for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) |
| st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL) |
| >> (23 + i); |
| |
| init_completion(&st->value_ok); |
| |
| /* |
| * The ADC fires continuously and we can't do anything about |
| * it. So we need to have the IRQ disabled by default, and we |
| * will enable them back when we will need them.. |
| */ |
| if (client->irq) { |
| ret = devm_request_threaded_irq(&client->dev, client->irq, |
| NULL, |
| nau7802_eoc_trigger, |
| IRQF_TRIGGER_HIGH | IRQF_ONESHOT | |
| IRQF_NO_AUTOEN, |
| client->dev.driver->name, |
| indio_dev); |
| if (ret) { |
| /* |
| * What may happen here is that our IRQ controller is |
| * not able to get level interrupt but this is required |
| * by this ADC as when going over 40 sample per second, |
| * the interrupt line may stay high between conversions. |
| * So, we continue no matter what but we switch to |
| * polling mode. |
| */ |
| dev_info(&client->dev, |
| "Failed to allocate IRQ, using polling mode\n"); |
| client->irq = 0; |
| } |
| } |
| |
| if (!client->irq) { |
| /* |
| * We are polling, use the fastest sample rate by |
| * default |
| */ |
| st->sample_rate = NAU7802_SAMP_FREQ_320; |
| ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2, |
| NAU7802_CTRL2_CRS(st->sample_rate)); |
| if (ret) |
| return ret; |
| } |
| |
| /* Setup the ADC channels available on the board */ |
| indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array); |
| indio_dev->channels = nau7802_chan_array; |
| |
| mutex_init(&st->lock); |
| mutex_init(&st->data_lock); |
| |
| return devm_iio_device_register(&client->dev, indio_dev); |
| } |
| |
| static const struct i2c_device_id nau7802_i2c_id[] = { |
| { "nau7802", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id); |
| |
| static const struct of_device_id nau7802_dt_ids[] = { |
| { .compatible = "nuvoton,nau7802" }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, nau7802_dt_ids); |
| |
| static struct i2c_driver nau7802_driver = { |
| .probe = nau7802_probe, |
| .id_table = nau7802_i2c_id, |
| .driver = { |
| .name = "nau7802", |
| .of_match_table = nau7802_dt_ids, |
| }, |
| }; |
| |
| module_i2c_driver(nau7802_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver"); |
| MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); |
| MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>"); |