blob: 03deacd83e613056c68f854cf886c6446da0b2bf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Realtek SMI subdriver for the Realtek RTL8366RB ethernet switch
*
* This is a sparsely documented chip, the only viable documentation seems
* to be a patched up code drop from the vendor that appear in various
* GPL source trees.
*
* Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
* Copyright (C) 2009-2010 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2010 Antti Seppälä <a.seppala@gmail.com>
* Copyright (C) 2010 Roman Yeryomin <roman@advem.lv>
* Copyright (C) 2011 Colin Leitner <colin.leitner@googlemail.com>
*/
#include <linux/bitops.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/of_irq.h>
#include <linux/regmap.h>
#include "realtek-smi-core.h"
#define RTL8366RB_PORT_NUM_CPU 5
#define RTL8366RB_NUM_PORTS 6
#define RTL8366RB_PHY_NO_MAX 4
#define RTL8366RB_PHY_ADDR_MAX 31
/* Switch Global Configuration register */
#define RTL8366RB_SGCR 0x0000
#define RTL8366RB_SGCR_EN_BC_STORM_CTRL BIT(0)
#define RTL8366RB_SGCR_MAX_LENGTH(a) ((a) << 4)
#define RTL8366RB_SGCR_MAX_LENGTH_MASK RTL8366RB_SGCR_MAX_LENGTH(0x3)
#define RTL8366RB_SGCR_MAX_LENGTH_1522 RTL8366RB_SGCR_MAX_LENGTH(0x0)
#define RTL8366RB_SGCR_MAX_LENGTH_1536 RTL8366RB_SGCR_MAX_LENGTH(0x1)
#define RTL8366RB_SGCR_MAX_LENGTH_1552 RTL8366RB_SGCR_MAX_LENGTH(0x2)
#define RTL8366RB_SGCR_MAX_LENGTH_16000 RTL8366RB_SGCR_MAX_LENGTH(0x3)
#define RTL8366RB_SGCR_EN_VLAN BIT(13)
#define RTL8366RB_SGCR_EN_VLAN_4KTB BIT(14)
/* Port Enable Control register */
#define RTL8366RB_PECR 0x0001
/* Switch per-port learning disablement register */
#define RTL8366RB_PORT_LEARNDIS_CTRL 0x0002
/* Security control, actually aging register */
#define RTL8366RB_SECURITY_CTRL 0x0003
#define RTL8366RB_SSCR2 0x0004
#define RTL8366RB_SSCR2_DROP_UNKNOWN_DA BIT(0)
/* Port Mode Control registers */
#define RTL8366RB_PMC0 0x0005
#define RTL8366RB_PMC0_SPI BIT(0)
#define RTL8366RB_PMC0_EN_AUTOLOAD BIT(1)
#define RTL8366RB_PMC0_PROBE BIT(2)
#define RTL8366RB_PMC0_DIS_BISR BIT(3)
#define RTL8366RB_PMC0_ADCTEST BIT(4)
#define RTL8366RB_PMC0_SRAM_DIAG BIT(5)
#define RTL8366RB_PMC0_EN_SCAN BIT(6)
#define RTL8366RB_PMC0_P4_IOMODE_SHIFT 7
#define RTL8366RB_PMC0_P4_IOMODE_MASK GENMASK(9, 7)
#define RTL8366RB_PMC0_P5_IOMODE_SHIFT 10
#define RTL8366RB_PMC0_P5_IOMODE_MASK GENMASK(12, 10)
#define RTL8366RB_PMC0_SDSMODE_SHIFT 13
#define RTL8366RB_PMC0_SDSMODE_MASK GENMASK(15, 13)
#define RTL8366RB_PMC1 0x0006
/* Port Mirror Control Register */
#define RTL8366RB_PMCR 0x0007
#define RTL8366RB_PMCR_SOURCE_PORT(a) (a)
#define RTL8366RB_PMCR_SOURCE_PORT_MASK 0x000f
#define RTL8366RB_PMCR_MONITOR_PORT(a) ((a) << 4)
#define RTL8366RB_PMCR_MONITOR_PORT_MASK 0x00f0
#define RTL8366RB_PMCR_MIRROR_RX BIT(8)
#define RTL8366RB_PMCR_MIRROR_TX BIT(9)
#define RTL8366RB_PMCR_MIRROR_SPC BIT(10)
#define RTL8366RB_PMCR_MIRROR_ISO BIT(11)
/* bits 0..7 = port 0, bits 8..15 = port 1 */
#define RTL8366RB_PAACR0 0x0010
/* bits 0..7 = port 2, bits 8..15 = port 3 */
#define RTL8366RB_PAACR1 0x0011
/* bits 0..7 = port 4, bits 8..15 = port 5 */
#define RTL8366RB_PAACR2 0x0012
#define RTL8366RB_PAACR_SPEED_10M 0
#define RTL8366RB_PAACR_SPEED_100M 1
#define RTL8366RB_PAACR_SPEED_1000M 2
#define RTL8366RB_PAACR_FULL_DUPLEX BIT(2)
#define RTL8366RB_PAACR_LINK_UP BIT(4)
#define RTL8366RB_PAACR_TX_PAUSE BIT(5)
#define RTL8366RB_PAACR_RX_PAUSE BIT(6)
#define RTL8366RB_PAACR_AN BIT(7)
#define RTL8366RB_PAACR_CPU_PORT (RTL8366RB_PAACR_SPEED_1000M | \
RTL8366RB_PAACR_FULL_DUPLEX | \
RTL8366RB_PAACR_LINK_UP | \
RTL8366RB_PAACR_TX_PAUSE | \
RTL8366RB_PAACR_RX_PAUSE)
/* bits 0..7 = port 0, bits 8..15 = port 1 */
#define RTL8366RB_PSTAT0 0x0014
/* bits 0..7 = port 2, bits 8..15 = port 3 */
#define RTL8366RB_PSTAT1 0x0015
/* bits 0..7 = port 4, bits 8..15 = port 5 */
#define RTL8366RB_PSTAT2 0x0016
#define RTL8366RB_POWER_SAVING_REG 0x0021
/* Spanning tree status (STP) control, two bits per port per FID */
#define RTL8366RB_STP_STATE_BASE 0x0050 /* 0x0050..0x0057 */
#define RTL8366RB_STP_STATE_DISABLED 0x0
#define RTL8366RB_STP_STATE_BLOCKING 0x1
#define RTL8366RB_STP_STATE_LEARNING 0x2
#define RTL8366RB_STP_STATE_FORWARDING 0x3
#define RTL8366RB_STP_MASK GENMASK(1, 0)
#define RTL8366RB_STP_STATE(port, state) \
((state) << ((port) * 2))
#define RTL8366RB_STP_STATE_MASK(port) \
RTL8366RB_STP_STATE((port), RTL8366RB_STP_MASK)
/* CPU port control reg */
#define RTL8368RB_CPU_CTRL_REG 0x0061
#define RTL8368RB_CPU_PORTS_MSK 0x00FF
/* Disables inserting custom tag length/type 0x8899 */
#define RTL8368RB_CPU_NO_TAG BIT(15)
#define RTL8366RB_SMAR0 0x0070 /* bits 0..15 */
#define RTL8366RB_SMAR1 0x0071 /* bits 16..31 */
#define RTL8366RB_SMAR2 0x0072 /* bits 32..47 */
#define RTL8366RB_RESET_CTRL_REG 0x0100
#define RTL8366RB_CHIP_CTRL_RESET_HW BIT(0)
#define RTL8366RB_CHIP_CTRL_RESET_SW BIT(1)
#define RTL8366RB_CHIP_ID_REG 0x0509
#define RTL8366RB_CHIP_ID_8366 0x5937
#define RTL8366RB_CHIP_VERSION_CTRL_REG 0x050A
#define RTL8366RB_CHIP_VERSION_MASK 0xf
/* PHY registers control */
#define RTL8366RB_PHY_ACCESS_CTRL_REG 0x8000
#define RTL8366RB_PHY_CTRL_READ BIT(0)
#define RTL8366RB_PHY_CTRL_WRITE 0
#define RTL8366RB_PHY_ACCESS_BUSY_REG 0x8001
#define RTL8366RB_PHY_INT_BUSY BIT(0)
#define RTL8366RB_PHY_EXT_BUSY BIT(4)
#define RTL8366RB_PHY_ACCESS_DATA_REG 0x8002
#define RTL8366RB_PHY_EXT_CTRL_REG 0x8010
#define RTL8366RB_PHY_EXT_WRDATA_REG 0x8011
#define RTL8366RB_PHY_EXT_RDDATA_REG 0x8012
#define RTL8366RB_PHY_REG_MASK 0x1f
#define RTL8366RB_PHY_PAGE_OFFSET 5
#define RTL8366RB_PHY_PAGE_MASK (0xf << 5)
#define RTL8366RB_PHY_NO_OFFSET 9
#define RTL8366RB_PHY_NO_MASK (0x1f << 9)
/* VLAN Ingress Control Register 1, one bit per port.
* bit 0 .. 5 will make the switch drop ingress frames without
* VID such as untagged or priority-tagged frames for respective
* port.
* bit 6 .. 11 will make the switch drop ingress frames carrying
* a C-tag with VID != 0 for respective port.
*/
#define RTL8366RB_VLAN_INGRESS_CTRL1_REG 0x037E
#define RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port) (BIT((port)) | BIT((port) + 6))
/* VLAN Ingress Control Register 2, one bit per port.
* bit0 .. bit5 will make the switch drop all ingress frames with
* a VLAN classification that does not include the port is in its
* member set.
*/
#define RTL8366RB_VLAN_INGRESS_CTRL2_REG 0x037f
/* LED control registers */
#define RTL8366RB_LED_BLINKRATE_REG 0x0430
#define RTL8366RB_LED_BLINKRATE_MASK 0x0007
#define RTL8366RB_LED_BLINKRATE_28MS 0x0000
#define RTL8366RB_LED_BLINKRATE_56MS 0x0001
#define RTL8366RB_LED_BLINKRATE_84MS 0x0002
#define RTL8366RB_LED_BLINKRATE_111MS 0x0003
#define RTL8366RB_LED_BLINKRATE_222MS 0x0004
#define RTL8366RB_LED_BLINKRATE_446MS 0x0005
#define RTL8366RB_LED_CTRL_REG 0x0431
#define RTL8366RB_LED_OFF 0x0
#define RTL8366RB_LED_DUP_COL 0x1
#define RTL8366RB_LED_LINK_ACT 0x2
#define RTL8366RB_LED_SPD1000 0x3
#define RTL8366RB_LED_SPD100 0x4
#define RTL8366RB_LED_SPD10 0x5
#define RTL8366RB_LED_SPD1000_ACT 0x6
#define RTL8366RB_LED_SPD100_ACT 0x7
#define RTL8366RB_LED_SPD10_ACT 0x8
#define RTL8366RB_LED_SPD100_10_ACT 0x9
#define RTL8366RB_LED_FIBER 0xa
#define RTL8366RB_LED_AN_FAULT 0xb
#define RTL8366RB_LED_LINK_RX 0xc
#define RTL8366RB_LED_LINK_TX 0xd
#define RTL8366RB_LED_MASTER 0xe
#define RTL8366RB_LED_FORCE 0xf
#define RTL8366RB_LED_0_1_CTRL_REG 0x0432
#define RTL8366RB_LED_1_OFFSET 6
#define RTL8366RB_LED_2_3_CTRL_REG 0x0433
#define RTL8366RB_LED_3_OFFSET 6
#define RTL8366RB_MIB_COUNT 33
#define RTL8366RB_GLOBAL_MIB_COUNT 1
#define RTL8366RB_MIB_COUNTER_PORT_OFFSET 0x0050
#define RTL8366RB_MIB_COUNTER_BASE 0x1000
#define RTL8366RB_MIB_CTRL_REG 0x13F0
#define RTL8366RB_MIB_CTRL_USER_MASK 0x0FFC
#define RTL8366RB_MIB_CTRL_BUSY_MASK BIT(0)
#define RTL8366RB_MIB_CTRL_RESET_MASK BIT(1)
#define RTL8366RB_MIB_CTRL_PORT_RESET(_p) BIT(2 + (_p))
#define RTL8366RB_MIB_CTRL_GLOBAL_RESET BIT(11)
#define RTL8366RB_PORT_VLAN_CTRL_BASE 0x0063
#define RTL8366RB_PORT_VLAN_CTRL_REG(_p) \
(RTL8366RB_PORT_VLAN_CTRL_BASE + (_p) / 4)
#define RTL8366RB_PORT_VLAN_CTRL_MASK 0xf
#define RTL8366RB_PORT_VLAN_CTRL_SHIFT(_p) (4 * ((_p) % 4))
#define RTL8366RB_VLAN_TABLE_READ_BASE 0x018C
#define RTL8366RB_VLAN_TABLE_WRITE_BASE 0x0185
#define RTL8366RB_TABLE_ACCESS_CTRL_REG 0x0180
#define RTL8366RB_TABLE_VLAN_READ_CTRL 0x0E01
#define RTL8366RB_TABLE_VLAN_WRITE_CTRL 0x0F01
#define RTL8366RB_VLAN_MC_BASE(_x) (0x0020 + (_x) * 3)
#define RTL8366RB_PORT_LINK_STATUS_BASE 0x0014
#define RTL8366RB_PORT_STATUS_SPEED_MASK 0x0003
#define RTL8366RB_PORT_STATUS_DUPLEX_MASK 0x0004
#define RTL8366RB_PORT_STATUS_LINK_MASK 0x0010
#define RTL8366RB_PORT_STATUS_TXPAUSE_MASK 0x0020
#define RTL8366RB_PORT_STATUS_RXPAUSE_MASK 0x0040
#define RTL8366RB_PORT_STATUS_AN_MASK 0x0080
#define RTL8366RB_NUM_VLANS 16
#define RTL8366RB_NUM_LEDGROUPS 4
#define RTL8366RB_NUM_VIDS 4096
#define RTL8366RB_PRIORITYMAX 7
#define RTL8366RB_NUM_FIDS 8
#define RTL8366RB_FIDMAX 7
#define RTL8366RB_PORT_1 BIT(0) /* In userspace port 0 */
#define RTL8366RB_PORT_2 BIT(1) /* In userspace port 1 */
#define RTL8366RB_PORT_3 BIT(2) /* In userspace port 2 */
#define RTL8366RB_PORT_4 BIT(3) /* In userspace port 3 */
#define RTL8366RB_PORT_5 BIT(4) /* In userspace port 4 */
#define RTL8366RB_PORT_CPU BIT(5) /* CPU port */
#define RTL8366RB_PORT_ALL (RTL8366RB_PORT_1 | \
RTL8366RB_PORT_2 | \
RTL8366RB_PORT_3 | \
RTL8366RB_PORT_4 | \
RTL8366RB_PORT_5 | \
RTL8366RB_PORT_CPU)
#define RTL8366RB_PORT_ALL_BUT_CPU (RTL8366RB_PORT_1 | \
RTL8366RB_PORT_2 | \
RTL8366RB_PORT_3 | \
RTL8366RB_PORT_4 | \
RTL8366RB_PORT_5)
#define RTL8366RB_PORT_ALL_EXTERNAL (RTL8366RB_PORT_1 | \
RTL8366RB_PORT_2 | \
RTL8366RB_PORT_3 | \
RTL8366RB_PORT_4)
#define RTL8366RB_PORT_ALL_INTERNAL RTL8366RB_PORT_CPU
/* First configuration word per member config, VID and prio */
#define RTL8366RB_VLAN_VID_MASK 0xfff
#define RTL8366RB_VLAN_PRIORITY_SHIFT 12
#define RTL8366RB_VLAN_PRIORITY_MASK 0x7
/* Second configuration word per member config, member and untagged */
#define RTL8366RB_VLAN_UNTAG_SHIFT 8
#define RTL8366RB_VLAN_UNTAG_MASK 0xff
#define RTL8366RB_VLAN_MEMBER_MASK 0xff
/* Third config word per member config, STAG currently unused */
#define RTL8366RB_VLAN_STAG_MBR_MASK 0xff
#define RTL8366RB_VLAN_STAG_MBR_SHIFT 8
#define RTL8366RB_VLAN_STAG_IDX_MASK 0x7
#define RTL8366RB_VLAN_STAG_IDX_SHIFT 5
#define RTL8366RB_VLAN_FID_MASK 0x7
/* Port ingress bandwidth control */
#define RTL8366RB_IB_BASE 0x0200
#define RTL8366RB_IB_REG(pnum) (RTL8366RB_IB_BASE + (pnum))
#define RTL8366RB_IB_BDTH_MASK 0x3fff
#define RTL8366RB_IB_PREIFG BIT(14)
/* Port egress bandwidth control */
#define RTL8366RB_EB_BASE 0x02d1
#define RTL8366RB_EB_REG(pnum) (RTL8366RB_EB_BASE + (pnum))
#define RTL8366RB_EB_BDTH_MASK 0x3fff
#define RTL8366RB_EB_PREIFG_REG 0x02f8
#define RTL8366RB_EB_PREIFG BIT(9)
#define RTL8366RB_BDTH_SW_MAX 1048512 /* 1048576? */
#define RTL8366RB_BDTH_UNIT 64
#define RTL8366RB_BDTH_REG_DEFAULT 16383
/* QOS */
#define RTL8366RB_QOS BIT(15)
/* Include/Exclude Preamble and IFG (20 bytes). 0:Exclude, 1:Include. */
#define RTL8366RB_QOS_DEFAULT_PREIFG 1
/* Interrupt handling */
#define RTL8366RB_INTERRUPT_CONTROL_REG 0x0440
#define RTL8366RB_INTERRUPT_POLARITY BIT(0)
#define RTL8366RB_P4_RGMII_LED BIT(2)
#define RTL8366RB_INTERRUPT_MASK_REG 0x0441
#define RTL8366RB_INTERRUPT_LINK_CHGALL GENMASK(11, 0)
#define RTL8366RB_INTERRUPT_ACLEXCEED BIT(8)
#define RTL8366RB_INTERRUPT_STORMEXCEED BIT(9)
#define RTL8366RB_INTERRUPT_P4_FIBER BIT(12)
#define RTL8366RB_INTERRUPT_P4_UTP BIT(13)
#define RTL8366RB_INTERRUPT_VALID (RTL8366RB_INTERRUPT_LINK_CHGALL | \
RTL8366RB_INTERRUPT_ACLEXCEED | \
RTL8366RB_INTERRUPT_STORMEXCEED | \
RTL8366RB_INTERRUPT_P4_FIBER | \
RTL8366RB_INTERRUPT_P4_UTP)
#define RTL8366RB_INTERRUPT_STATUS_REG 0x0442
#define RTL8366RB_NUM_INTERRUPT 14 /* 0..13 */
/* Port isolation registers */
#define RTL8366RB_PORT_ISO_BASE 0x0F08
#define RTL8366RB_PORT_ISO(pnum) (RTL8366RB_PORT_ISO_BASE + (pnum))
#define RTL8366RB_PORT_ISO_EN BIT(0)
#define RTL8366RB_PORT_ISO_PORTS_MASK GENMASK(7, 1)
#define RTL8366RB_PORT_ISO_PORTS(pmask) ((pmask) << 1)
/* bits 0..5 enable force when cleared */
#define RTL8366RB_MAC_FORCE_CTRL_REG 0x0F11
#define RTL8366RB_OAM_PARSER_REG 0x0F14
#define RTL8366RB_OAM_MULTIPLEXER_REG 0x0F15
#define RTL8366RB_GREEN_FEATURE_REG 0x0F51
#define RTL8366RB_GREEN_FEATURE_MSK 0x0007
#define RTL8366RB_GREEN_FEATURE_TX BIT(0)
#define RTL8366RB_GREEN_FEATURE_RX BIT(2)
/**
* struct rtl8366rb - RTL8366RB-specific data
* @max_mtu: per-port max MTU setting
* @pvid_enabled: if PVID is set for respective port
*/
struct rtl8366rb {
unsigned int max_mtu[RTL8366RB_NUM_PORTS];
bool pvid_enabled[RTL8366RB_NUM_PORTS];
};
static struct rtl8366_mib_counter rtl8366rb_mib_counters[] = {
{ 0, 0, 4, "IfInOctets" },
{ 0, 4, 4, "EtherStatsOctets" },
{ 0, 8, 2, "EtherStatsUnderSizePkts" },
{ 0, 10, 2, "EtherFragments" },
{ 0, 12, 2, "EtherStatsPkts64Octets" },
{ 0, 14, 2, "EtherStatsPkts65to127Octets" },
{ 0, 16, 2, "EtherStatsPkts128to255Octets" },
{ 0, 18, 2, "EtherStatsPkts256to511Octets" },
{ 0, 20, 2, "EtherStatsPkts512to1023Octets" },
{ 0, 22, 2, "EtherStatsPkts1024to1518Octets" },
{ 0, 24, 2, "EtherOversizeStats" },
{ 0, 26, 2, "EtherStatsJabbers" },
{ 0, 28, 2, "IfInUcastPkts" },
{ 0, 30, 2, "EtherStatsMulticastPkts" },
{ 0, 32, 2, "EtherStatsBroadcastPkts" },
{ 0, 34, 2, "EtherStatsDropEvents" },
{ 0, 36, 2, "Dot3StatsFCSErrors" },
{ 0, 38, 2, "Dot3StatsSymbolErrors" },
{ 0, 40, 2, "Dot3InPauseFrames" },
{ 0, 42, 2, "Dot3ControlInUnknownOpcodes" },
{ 0, 44, 4, "IfOutOctets" },
{ 0, 48, 2, "Dot3StatsSingleCollisionFrames" },
{ 0, 50, 2, "Dot3StatMultipleCollisionFrames" },
{ 0, 52, 2, "Dot3sDeferredTransmissions" },
{ 0, 54, 2, "Dot3StatsLateCollisions" },
{ 0, 56, 2, "EtherStatsCollisions" },
{ 0, 58, 2, "Dot3StatsExcessiveCollisions" },
{ 0, 60, 2, "Dot3OutPauseFrames" },
{ 0, 62, 2, "Dot1dBasePortDelayExceededDiscards" },
{ 0, 64, 2, "Dot1dTpPortInDiscards" },
{ 0, 66, 2, "IfOutUcastPkts" },
{ 0, 68, 2, "IfOutMulticastPkts" },
{ 0, 70, 2, "IfOutBroadcastPkts" },
};
static int rtl8366rb_get_mib_counter(struct realtek_smi *smi,
int port,
struct rtl8366_mib_counter *mib,
u64 *mibvalue)
{
u32 addr, val;
int ret;
int i;
addr = RTL8366RB_MIB_COUNTER_BASE +
RTL8366RB_MIB_COUNTER_PORT_OFFSET * (port) +
mib->offset;
/* Writing access counter address first
* then ASIC will prepare 64bits counter wait for being retrived
*/
ret = regmap_write(smi->map, addr, 0); /* Write whatever */
if (ret)
return ret;
/* Read MIB control register */
ret = regmap_read(smi->map, RTL8366RB_MIB_CTRL_REG, &val);
if (ret)
return -EIO;
if (val & RTL8366RB_MIB_CTRL_BUSY_MASK)
return -EBUSY;
if (val & RTL8366RB_MIB_CTRL_RESET_MASK)
return -EIO;
/* Read each individual MIB 16 bits at the time */
*mibvalue = 0;
for (i = mib->length; i > 0; i--) {
ret = regmap_read(smi->map, addr + (i - 1), &val);
if (ret)
return ret;
*mibvalue = (*mibvalue << 16) | (val & 0xFFFF);
}
return 0;
}
static u32 rtl8366rb_get_irqmask(struct irq_data *d)
{
int line = irqd_to_hwirq(d);
u32 val;
/* For line interrupts we combine link down in bits
* 6..11 with link up in bits 0..5 into one interrupt.
*/
if (line < 12)
val = BIT(line) | BIT(line + 6);
else
val = BIT(line);
return val;
}
static void rtl8366rb_mask_irq(struct irq_data *d)
{
struct realtek_smi *smi = irq_data_get_irq_chip_data(d);
int ret;
ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_MASK_REG,
rtl8366rb_get_irqmask(d), 0);
if (ret)
dev_err(smi->dev, "could not mask IRQ\n");
}
static void rtl8366rb_unmask_irq(struct irq_data *d)
{
struct realtek_smi *smi = irq_data_get_irq_chip_data(d);
int ret;
ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_MASK_REG,
rtl8366rb_get_irqmask(d),
rtl8366rb_get_irqmask(d));
if (ret)
dev_err(smi->dev, "could not unmask IRQ\n");
}
static irqreturn_t rtl8366rb_irq(int irq, void *data)
{
struct realtek_smi *smi = data;
u32 stat;
int ret;
/* This clears the IRQ status register */
ret = regmap_read(smi->map, RTL8366RB_INTERRUPT_STATUS_REG,
&stat);
if (ret) {
dev_err(smi->dev, "can't read interrupt status\n");
return IRQ_NONE;
}
stat &= RTL8366RB_INTERRUPT_VALID;
if (!stat)
return IRQ_NONE;
while (stat) {
int line = __ffs(stat);
int child_irq;
stat &= ~BIT(line);
/* For line interrupts we combine link down in bits
* 6..11 with link up in bits 0..5 into one interrupt.
*/
if (line < 12 && line > 5)
line -= 5;
child_irq = irq_find_mapping(smi->irqdomain, line);
handle_nested_irq(child_irq);
}
return IRQ_HANDLED;
}
static struct irq_chip rtl8366rb_irq_chip = {
.name = "RTL8366RB",
.irq_mask = rtl8366rb_mask_irq,
.irq_unmask = rtl8366rb_unmask_irq,
};
static int rtl8366rb_irq_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, domain->host_data);
irq_set_chip_and_handler(irq, &rtl8366rb_irq_chip, handle_simple_irq);
irq_set_nested_thread(irq, 1);
irq_set_noprobe(irq);
return 0;
}
static void rtl8366rb_irq_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_nested_thread(irq, 0);
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops rtl8366rb_irqdomain_ops = {
.map = rtl8366rb_irq_map,
.unmap = rtl8366rb_irq_unmap,
.xlate = irq_domain_xlate_onecell,
};
static int rtl8366rb_setup_cascaded_irq(struct realtek_smi *smi)
{
struct device_node *intc;
unsigned long irq_trig;
int irq;
int ret;
u32 val;
int i;
intc = of_get_child_by_name(smi->dev->of_node, "interrupt-controller");
if (!intc) {
dev_err(smi->dev, "missing child interrupt-controller node\n");
return -EINVAL;
}
/* RB8366RB IRQs cascade off this one */
irq = of_irq_get(intc, 0);
if (irq <= 0) {
dev_err(smi->dev, "failed to get parent IRQ\n");
ret = irq ? irq : -EINVAL;
goto out_put_node;
}
/* This clears the IRQ status register */
ret = regmap_read(smi->map, RTL8366RB_INTERRUPT_STATUS_REG,
&val);
if (ret) {
dev_err(smi->dev, "can't read interrupt status\n");
goto out_put_node;
}
/* Fetch IRQ edge information from the descriptor */
irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
switch (irq_trig) {
case IRQF_TRIGGER_RISING:
case IRQF_TRIGGER_HIGH:
dev_info(smi->dev, "active high/rising IRQ\n");
val = 0;
break;
case IRQF_TRIGGER_FALLING:
case IRQF_TRIGGER_LOW:
dev_info(smi->dev, "active low/falling IRQ\n");
val = RTL8366RB_INTERRUPT_POLARITY;
break;
}
ret = regmap_update_bits(smi->map, RTL8366RB_INTERRUPT_CONTROL_REG,
RTL8366RB_INTERRUPT_POLARITY,
val);
if (ret) {
dev_err(smi->dev, "could not configure IRQ polarity\n");
goto out_put_node;
}
ret = devm_request_threaded_irq(smi->dev, irq, NULL,
rtl8366rb_irq, IRQF_ONESHOT,
"RTL8366RB", smi);
if (ret) {
dev_err(smi->dev, "unable to request irq: %d\n", ret);
goto out_put_node;
}
smi->irqdomain = irq_domain_add_linear(intc,
RTL8366RB_NUM_INTERRUPT,
&rtl8366rb_irqdomain_ops,
smi);
if (!smi->irqdomain) {
dev_err(smi->dev, "failed to create IRQ domain\n");
ret = -EINVAL;
goto out_put_node;
}
for (i = 0; i < smi->num_ports; i++)
irq_set_parent(irq_create_mapping(smi->irqdomain, i), irq);
out_put_node:
of_node_put(intc);
return ret;
}
static int rtl8366rb_set_addr(struct realtek_smi *smi)
{
u8 addr[ETH_ALEN];
u16 val;
int ret;
eth_random_addr(addr);
dev_info(smi->dev, "set MAC: %02X:%02X:%02X:%02X:%02X:%02X\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
val = addr[0] << 8 | addr[1];
ret = regmap_write(smi->map, RTL8366RB_SMAR0, val);
if (ret)
return ret;
val = addr[2] << 8 | addr[3];
ret = regmap_write(smi->map, RTL8366RB_SMAR1, val);
if (ret)
return ret;
val = addr[4] << 8 | addr[5];
ret = regmap_write(smi->map, RTL8366RB_SMAR2, val);
if (ret)
return ret;
return 0;
}
/* Found in a vendor driver */
/* Struct for handling the jam tables' entries */
struct rtl8366rb_jam_tbl_entry {
u16 reg;
u16 val;
};
/* For the "version 0" early silicon, appear in most source releases */
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_0[] = {
{0x000B, 0x0001}, {0x03A6, 0x0100}, {0x03A7, 0x0001}, {0x02D1, 0x3FFF},
{0x02D2, 0x3FFF}, {0x02D3, 0x3FFF}, {0x02D4, 0x3FFF}, {0x02D5, 0x3FFF},
{0x02D6, 0x3FFF}, {0x02D7, 0x3FFF}, {0x02D8, 0x3FFF}, {0x022B, 0x0688},
{0x022C, 0x0FAC}, {0x03D0, 0x4688}, {0x03D1, 0x01F5}, {0x0000, 0x0830},
{0x02F9, 0x0200}, {0x02F7, 0x7FFF}, {0x02F8, 0x03FF}, {0x0080, 0x03E8},
{0x0081, 0x00CE}, {0x0082, 0x00DA}, {0x0083, 0x0230}, {0xBE0F, 0x2000},
{0x0231, 0x422A}, {0x0232, 0x422A}, {0x0233, 0x422A}, {0x0234, 0x422A},
{0x0235, 0x422A}, {0x0236, 0x422A}, {0x0237, 0x422A}, {0x0238, 0x422A},
{0x0239, 0x422A}, {0x023A, 0x422A}, {0x023B, 0x422A}, {0x023C, 0x422A},
{0x023D, 0x422A}, {0x023E, 0x422A}, {0x023F, 0x422A}, {0x0240, 0x422A},
{0x0241, 0x422A}, {0x0242, 0x422A}, {0x0243, 0x422A}, {0x0244, 0x422A},
{0x0245, 0x422A}, {0x0246, 0x422A}, {0x0247, 0x422A}, {0x0248, 0x422A},
{0x0249, 0x0146}, {0x024A, 0x0146}, {0x024B, 0x0146}, {0xBE03, 0xC961},
{0x024D, 0x0146}, {0x024E, 0x0146}, {0x024F, 0x0146}, {0x0250, 0x0146},
{0xBE64, 0x0226}, {0x0252, 0x0146}, {0x0253, 0x0146}, {0x024C, 0x0146},
{0x0251, 0x0146}, {0x0254, 0x0146}, {0xBE62, 0x3FD0}, {0x0084, 0x0320},
{0x0255, 0x0146}, {0x0256, 0x0146}, {0x0257, 0x0146}, {0x0258, 0x0146},
{0x0259, 0x0146}, {0x025A, 0x0146}, {0x025B, 0x0146}, {0x025C, 0x0146},
{0x025D, 0x0146}, {0x025E, 0x0146}, {0x025F, 0x0146}, {0x0260, 0x0146},
{0x0261, 0xA23F}, {0x0262, 0x0294}, {0x0263, 0xA23F}, {0x0264, 0x0294},
{0x0265, 0xA23F}, {0x0266, 0x0294}, {0x0267, 0xA23F}, {0x0268, 0x0294},
{0x0269, 0xA23F}, {0x026A, 0x0294}, {0x026B, 0xA23F}, {0x026C, 0x0294},
{0x026D, 0xA23F}, {0x026E, 0x0294}, {0x026F, 0xA23F}, {0x0270, 0x0294},
{0x02F5, 0x0048}, {0xBE09, 0x0E00}, {0xBE1E, 0x0FA0}, {0xBE14, 0x8448},
{0xBE15, 0x1007}, {0xBE4A, 0xA284}, {0xC454, 0x3F0B}, {0xC474, 0x3F0B},
{0xBE48, 0x3672}, {0xBE4B, 0x17A7}, {0xBE4C, 0x0B15}, {0xBE52, 0x0EDD},
{0xBE49, 0x8C00}, {0xBE5B, 0x785C}, {0xBE5C, 0x785C}, {0xBE5D, 0x785C},
{0xBE61, 0x368A}, {0xBE63, 0x9B84}, {0xC456, 0xCC13}, {0xC476, 0xCC13},
{0xBE65, 0x307D}, {0xBE6D, 0x0005}, {0xBE6E, 0xE120}, {0xBE2E, 0x7BAF},
};
/* This v1 init sequence is from Belkin F5D8235 U-Boot release */
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_1[] = {
{0x0000, 0x0830}, {0x0001, 0x8000}, {0x0400, 0x8130}, {0xBE78, 0x3C3C},
{0x0431, 0x5432}, {0xBE37, 0x0CE4}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0},
{0xC44C, 0x1585}, {0xC44C, 0x1185}, {0xC44C, 0x1585}, {0xC46C, 0x1585},
{0xC46C, 0x1185}, {0xC46C, 0x1585}, {0xC451, 0x2135}, {0xC471, 0x2135},
{0xBE10, 0x8140}, {0xBE15, 0x0007}, {0xBE6E, 0xE120}, {0xBE69, 0xD20F},
{0xBE6B, 0x0320}, {0xBE24, 0xB000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF20},
{0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800}, {0xBE24, 0x0000},
{0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60}, {0xBE21, 0x0140},
{0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000}, {0xBE2E, 0x7B7A},
{0xBE36, 0x0CE4}, {0x02F5, 0x0048}, {0xBE77, 0x2940}, {0x000A, 0x83E0},
{0xBE79, 0x3C3C}, {0xBE00, 0x1340},
};
/* This v2 init sequence is from Belkin F5D8235 U-Boot release */
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_2[] = {
{0x0450, 0x0000}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432},
{0xC44F, 0x6250}, {0xC46F, 0x6250}, {0xC456, 0x0C14}, {0xC476, 0x0C14},
{0xC44C, 0x1C85}, {0xC44C, 0x1885}, {0xC44C, 0x1C85}, {0xC46C, 0x1C85},
{0xC46C, 0x1885}, {0xC46C, 0x1C85}, {0xC44C, 0x0885}, {0xC44C, 0x0881},
{0xC44C, 0x0885}, {0xC46C, 0x0885}, {0xC46C, 0x0881}, {0xC46C, 0x0885},
{0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001},
{0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6E, 0x0320},
{0xBE77, 0x2940}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120},
{0x8000, 0x0001}, {0xBE15, 0x1007}, {0x8000, 0x0000}, {0xBE15, 0x1007},
{0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160}, {0xBE10, 0x8140},
{0xBE00, 0x1340}, {0x0F51, 0x0010},
};
/* Appears in a DDWRT code dump */
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_3[] = {
{0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432},
{0x0F51, 0x0017}, {0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0},
{0xC456, 0x0C14}, {0xC476, 0x0C14}, {0xC454, 0x3F8B}, {0xC474, 0x3F8B},
{0xC450, 0x2071}, {0xC470, 0x2071}, {0xC451, 0x226B}, {0xC471, 0x226B},
{0xC452, 0xA293}, {0xC472, 0xA293}, {0xC44C, 0x1585}, {0xC44C, 0x1185},
{0xC44C, 0x1585}, {0xC46C, 0x1585}, {0xC46C, 0x1185}, {0xC46C, 0x1585},
{0xC44C, 0x0185}, {0xC44C, 0x0181}, {0xC44C, 0x0185}, {0xC46C, 0x0185},
{0xC46C, 0x0181}, {0xC46C, 0x0185}, {0xBE24, 0xB000}, {0xBE23, 0xFF51},
{0xBE22, 0xDF20}, {0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800},
{0xBE24, 0x0000}, {0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60},
{0xBE21, 0x0140}, {0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000},
{0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001},
{0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6B, 0x0320},
{0xBE77, 0x2800}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120},
{0x8000, 0x0001}, {0xBE10, 0x8140}, {0x8000, 0x0000}, {0xBE10, 0x8140},
{0xBE15, 0x1007}, {0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160},
{0xBE10, 0x8140}, {0xBE00, 0x1340}, {0x0450, 0x0000}, {0x0401, 0x0000},
};
/* Belkin F5D8235 v1, "belkin,f5d8235-v1" */
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_f5d8235[] = {
{0x0242, 0x02BF}, {0x0245, 0x02BF}, {0x0248, 0x02BF}, {0x024B, 0x02BF},
{0x024E, 0x02BF}, {0x0251, 0x02BF}, {0x0254, 0x0A3F}, {0x0256, 0x0A3F},
{0x0258, 0x0A3F}, {0x025A, 0x0A3F}, {0x025C, 0x0A3F}, {0x025E, 0x0A3F},
{0x0263, 0x007C}, {0x0100, 0x0004}, {0xBE5B, 0x3500}, {0x800E, 0x200F},
{0xBE1D, 0x0F00}, {0x8001, 0x5011}, {0x800A, 0xA2F4}, {0x800B, 0x17A3},
{0xBE4B, 0x17A3}, {0xBE41, 0x5011}, {0xBE17, 0x2100}, {0x8000, 0x8304},
{0xBE40, 0x8304}, {0xBE4A, 0xA2F4}, {0x800C, 0xA8D5}, {0x8014, 0x5500},
{0x8015, 0x0004}, {0xBE4C, 0xA8D5}, {0xBE59, 0x0008}, {0xBE09, 0x0E00},
{0xBE36, 0x1036}, {0xBE37, 0x1036}, {0x800D, 0x00FF}, {0xBE4D, 0x00FF},
};
/* DGN3500, "netgear,dgn3500", "netgear,dgn3500b" */
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_dgn3500[] = {
{0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0F51, 0x0017},
{0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0}, {0x0450, 0x0000},
{0x0401, 0x0000}, {0x0431, 0x0960},
};
/* This jam table activates "green ethernet", which means low power mode
* and is claimed to detect the cable length and not use more power than
* necessary, and the ports should enter power saving mode 10 seconds after
* a cable is disconnected. Seems to always be the same.
*/
static const struct rtl8366rb_jam_tbl_entry rtl8366rb_green_jam[] = {
{0xBE78, 0x323C}, {0xBE77, 0x5000}, {0xBE2E, 0x7BA7},
{0xBE59, 0x3459}, {0xBE5A, 0x745A}, {0xBE5B, 0x785C},
{0xBE5C, 0x785C}, {0xBE6E, 0xE120}, {0xBE79, 0x323C},
};
/* Function that jams the tables in the proper registers */
static int rtl8366rb_jam_table(const struct rtl8366rb_jam_tbl_entry *jam_table,
int jam_size, struct realtek_smi *smi,
bool write_dbg)
{
u32 val;
int ret;
int i;
for (i = 0; i < jam_size; i++) {
if ((jam_table[i].reg & 0xBE00) == 0xBE00) {
ret = regmap_read(smi->map,
RTL8366RB_PHY_ACCESS_BUSY_REG,
&val);
if (ret)
return ret;
if (!(val & RTL8366RB_PHY_INT_BUSY)) {
ret = regmap_write(smi->map,
RTL8366RB_PHY_ACCESS_CTRL_REG,
RTL8366RB_PHY_CTRL_WRITE);
if (ret)
return ret;
}
}
if (write_dbg)
dev_dbg(smi->dev, "jam %04x into register %04x\n",
jam_table[i].val,
jam_table[i].reg);
ret = regmap_write(smi->map,
jam_table[i].reg,
jam_table[i].val);
if (ret)
return ret;
}
return 0;
}
static int rtl8366rb_setup(struct dsa_switch *ds)
{
struct realtek_smi *smi = ds->priv;
const struct rtl8366rb_jam_tbl_entry *jam_table;
struct rtl8366rb *rb;
u32 chip_ver = 0;
u32 chip_id = 0;
int jam_size;
u32 val;
int ret;
int i;
rb = smi->chip_data;
ret = regmap_read(smi->map, RTL8366RB_CHIP_ID_REG, &chip_id);
if (ret) {
dev_err(smi->dev, "unable to read chip id\n");
return ret;
}
switch (chip_id) {
case RTL8366RB_CHIP_ID_8366:
break;
default:
dev_err(smi->dev, "unknown chip id (%04x)\n", chip_id);
return -ENODEV;
}
ret = regmap_read(smi->map, RTL8366RB_CHIP_VERSION_CTRL_REG,
&chip_ver);
if (ret) {
dev_err(smi->dev, "unable to read chip version\n");
return ret;
}
dev_info(smi->dev, "RTL%04x ver %u chip found\n",
chip_id, chip_ver & RTL8366RB_CHIP_VERSION_MASK);
/* Do the init dance using the right jam table */
switch (chip_ver) {
case 0:
jam_table = rtl8366rb_init_jam_ver_0;
jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_0);
break;
case 1:
jam_table = rtl8366rb_init_jam_ver_1;
jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_1);
break;
case 2:
jam_table = rtl8366rb_init_jam_ver_2;
jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_2);
break;
default:
jam_table = rtl8366rb_init_jam_ver_3;
jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_3);
break;
}
/* Special jam tables for special routers
* TODO: are these necessary? Maintainers, please test
* without them, using just the off-the-shelf tables.
*/
if (of_machine_is_compatible("belkin,f5d8235-v1")) {
jam_table = rtl8366rb_init_jam_f5d8235;
jam_size = ARRAY_SIZE(rtl8366rb_init_jam_f5d8235);
}
if (of_machine_is_compatible("netgear,dgn3500") ||
of_machine_is_compatible("netgear,dgn3500b")) {
jam_table = rtl8366rb_init_jam_dgn3500;
jam_size = ARRAY_SIZE(rtl8366rb_init_jam_dgn3500);
}
ret = rtl8366rb_jam_table(jam_table, jam_size, smi, true);
if (ret)
return ret;
/* Isolate all user ports so they can only send packets to itself and the CPU port */
for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) {
ret = regmap_write(smi->map, RTL8366RB_PORT_ISO(i),
RTL8366RB_PORT_ISO_PORTS(BIT(RTL8366RB_PORT_NUM_CPU)) |
RTL8366RB_PORT_ISO_EN);
if (ret)
return ret;
}
/* CPU port can send packets to all ports */
ret = regmap_write(smi->map, RTL8366RB_PORT_ISO(RTL8366RB_PORT_NUM_CPU),
RTL8366RB_PORT_ISO_PORTS(dsa_user_ports(ds)) |
RTL8366RB_PORT_ISO_EN);
if (ret)
return ret;
/* Set up the "green ethernet" feature */
ret = rtl8366rb_jam_table(rtl8366rb_green_jam,
ARRAY_SIZE(rtl8366rb_green_jam), smi, false);
if (ret)
return ret;
ret = regmap_write(smi->map,
RTL8366RB_GREEN_FEATURE_REG,
(chip_ver == 1) ? 0x0007 : 0x0003);
if (ret)
return ret;
/* Vendor driver sets 0x240 in registers 0xc and 0xd (undocumented) */
ret = regmap_write(smi->map, 0x0c, 0x240);
if (ret)
return ret;
ret = regmap_write(smi->map, 0x0d, 0x240);
if (ret)
return ret;
/* Set some random MAC address */
ret = rtl8366rb_set_addr(smi);
if (ret)
return ret;
/* Enable CPU port with custom DSA tag 8899.
*
* If you set RTL8368RB_CPU_NO_TAG (bit 15) in this registers
* the custom tag is turned off.
*/
ret = regmap_update_bits(smi->map, RTL8368RB_CPU_CTRL_REG,
0xFFFF,
BIT(smi->cpu_port));
if (ret)
return ret;
/* Make sure we default-enable the fixed CPU port */
ret = regmap_update_bits(smi->map, RTL8366RB_PECR,
BIT(smi->cpu_port),
0);
if (ret)
return ret;
/* Set maximum packet length to 1536 bytes */
ret = regmap_update_bits(smi->map, RTL8366RB_SGCR,
RTL8366RB_SGCR_MAX_LENGTH_MASK,
RTL8366RB_SGCR_MAX_LENGTH_1536);
if (ret)
return ret;
for (i = 0; i < RTL8366RB_NUM_PORTS; i++)
/* layer 2 size, see rtl8366rb_change_mtu() */
rb->max_mtu[i] = 1532;
/* Disable learning for all ports */
ret = regmap_write(smi->map, RTL8366RB_PORT_LEARNDIS_CTRL,
RTL8366RB_PORT_ALL);
if (ret)
return ret;
/* Enable auto ageing for all ports */
ret = regmap_write(smi->map, RTL8366RB_SECURITY_CTRL, 0);
if (ret)
return ret;
/* Port 4 setup: this enables Port 4, usually the WAN port,
* common PHY IO mode is apparently mode 0, and this is not what
* the port is initialized to. There is no explanation of the
* IO modes in the Realtek source code, if your WAN port is
* connected to something exotic such as fiber, then this might
* be worth experimenting with.
*/
ret = regmap_update_bits(smi->map, RTL8366RB_PMC0,
RTL8366RB_PMC0_P4_IOMODE_MASK,
0 << RTL8366RB_PMC0_P4_IOMODE_SHIFT);
if (ret)
return ret;
/* Accept all packets by default, we enable filtering on-demand */
ret = regmap_write(smi->map, RTL8366RB_VLAN_INGRESS_CTRL1_REG,
0);
if (ret)
return ret;
ret = regmap_write(smi->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG,
0);
if (ret)
return ret;
/* Don't drop packets whose DA has not been learned */
ret = regmap_update_bits(smi->map, RTL8366RB_SSCR2,
RTL8366RB_SSCR2_DROP_UNKNOWN_DA, 0);
if (ret)
return ret;
/* Set blinking, TODO: make this configurable */
ret = regmap_update_bits(smi->map, RTL8366RB_LED_BLINKRATE_REG,
RTL8366RB_LED_BLINKRATE_MASK,
RTL8366RB_LED_BLINKRATE_56MS);
if (ret)
return ret;
/* Set up LED activity:
* Each port has 4 LEDs, we configure all ports to the same
* behaviour (no individual config) but we can set up each
* LED separately.
*/
if (smi->leds_disabled) {
/* Turn everything off */
regmap_update_bits(smi->map,
RTL8366RB_LED_0_1_CTRL_REG,
0x0FFF, 0);
regmap_update_bits(smi->map,
RTL8366RB_LED_2_3_CTRL_REG,
0x0FFF, 0);
regmap_update_bits(smi->map,
RTL8366RB_INTERRUPT_CONTROL_REG,
RTL8366RB_P4_RGMII_LED,
0);
val = RTL8366RB_LED_OFF;
} else {
/* TODO: make this configurable per LED */
val = RTL8366RB_LED_FORCE;
}
for (i = 0; i < 4; i++) {
ret = regmap_update_bits(smi->map,
RTL8366RB_LED_CTRL_REG,
0xf << (i * 4),
val << (i * 4));
if (ret)
return ret;
}
ret = rtl8366_reset_vlan(smi);
if (ret)
return ret;
ret = rtl8366rb_setup_cascaded_irq(smi);
if (ret)
dev_info(smi->dev, "no interrupt support\n");
ret = realtek_smi_setup_mdio(smi);
if (ret) {
dev_info(smi->dev, "could not set up MDIO bus\n");
return -ENODEV;
}
return 0;
}
static enum dsa_tag_protocol rtl8366_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
/* This switch uses the 4 byte protocol A Realtek DSA tag */
return DSA_TAG_PROTO_RTL4_A;
}
static void
rtl8366rb_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface, struct phy_device *phydev,
int speed, int duplex, bool tx_pause, bool rx_pause)
{
struct realtek_smi *smi = ds->priv;
int ret;
if (port != smi->cpu_port)
return;
dev_dbg(smi->dev, "MAC link up on CPU port (%d)\n", port);
/* Force the fixed CPU port into 1Gbit mode, no autonegotiation */
ret = regmap_update_bits(smi->map, RTL8366RB_MAC_FORCE_CTRL_REG,
BIT(port), BIT(port));
if (ret) {
dev_err(smi->dev, "failed to force 1Gbit on CPU port\n");
return;
}
ret = regmap_update_bits(smi->map, RTL8366RB_PAACR2,
0xFF00U,
RTL8366RB_PAACR_CPU_PORT << 8);
if (ret) {
dev_err(smi->dev, "failed to set PAACR on CPU port\n");
return;
}
/* Enable the CPU port */
ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
0);
if (ret) {
dev_err(smi->dev, "failed to enable the CPU port\n");
return;
}
}
static void
rtl8366rb_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct realtek_smi *smi = ds->priv;
int ret;
if (port != smi->cpu_port)
return;
dev_dbg(smi->dev, "MAC link down on CPU port (%d)\n", port);
/* Disable the CPU port */
ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
BIT(port));
if (ret) {
dev_err(smi->dev, "failed to disable the CPU port\n");
return;
}
}
static void rb8366rb_set_port_led(struct realtek_smi *smi,
int port, bool enable)
{
u16 val = enable ? 0x3f : 0;
int ret;
if (smi->leds_disabled)
return;
switch (port) {
case 0:
ret = regmap_update_bits(smi->map,
RTL8366RB_LED_0_1_CTRL_REG,
0x3F, val);
break;
case 1:
ret = regmap_update_bits(smi->map,
RTL8366RB_LED_0_1_CTRL_REG,
0x3F << RTL8366RB_LED_1_OFFSET,
val << RTL8366RB_LED_1_OFFSET);
break;
case 2:
ret = regmap_update_bits(smi->map,
RTL8366RB_LED_2_3_CTRL_REG,
0x3F, val);
break;
case 3:
ret = regmap_update_bits(smi->map,
RTL8366RB_LED_2_3_CTRL_REG,
0x3F << RTL8366RB_LED_3_OFFSET,
val << RTL8366RB_LED_3_OFFSET);
break;
case 4:
ret = regmap_update_bits(smi->map,
RTL8366RB_INTERRUPT_CONTROL_REG,
RTL8366RB_P4_RGMII_LED,
enable ? RTL8366RB_P4_RGMII_LED : 0);
break;
default:
dev_err(smi->dev, "no LED for port %d\n", port);
return;
}
if (ret)
dev_err(smi->dev, "error updating LED on port %d\n", port);
}
static int
rtl8366rb_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct realtek_smi *smi = ds->priv;
int ret;
dev_dbg(smi->dev, "enable port %d\n", port);
ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
0);
if (ret)
return ret;
rb8366rb_set_port_led(smi, port, true);
return 0;
}
static void
rtl8366rb_port_disable(struct dsa_switch *ds, int port)
{
struct realtek_smi *smi = ds->priv;
int ret;
dev_dbg(smi->dev, "disable port %d\n", port);
ret = regmap_update_bits(smi->map, RTL8366RB_PECR, BIT(port),
BIT(port));
if (ret)
return;
rb8366rb_set_port_led(smi, port, false);
}
static int
rtl8366rb_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct realtek_smi *smi = ds->priv;
unsigned int port_bitmap = 0;
int ret, i;
/* Loop over all other ports than the current one */
for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) {
/* Current port handled last */
if (i == port)
continue;
/* Not on this bridge */
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
/* Join this port to each other port on the bridge */
ret = regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(i),
RTL8366RB_PORT_ISO_PORTS(BIT(port)),
RTL8366RB_PORT_ISO_PORTS(BIT(port)));
if (ret)
dev_err(smi->dev, "failed to join port %d\n", port);
port_bitmap |= BIT(i);
}
/* Set the bits for the ports we can access */
return regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(port),
RTL8366RB_PORT_ISO_PORTS(port_bitmap),
RTL8366RB_PORT_ISO_PORTS(port_bitmap));
}
static void
rtl8366rb_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct realtek_smi *smi = ds->priv;
unsigned int port_bitmap = 0;
int ret, i;
/* Loop over all other ports than this one */
for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) {
/* Current port handled last */
if (i == port)
continue;
/* Not on this bridge */
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
/* Remove this port from any other port on the bridge */
ret = regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(i),
RTL8366RB_PORT_ISO_PORTS(BIT(port)), 0);
if (ret)
dev_err(smi->dev, "failed to leave port %d\n", port);
port_bitmap |= BIT(i);
}
/* Clear the bits for the ports we can not access, leave ourselves */
regmap_update_bits(smi->map, RTL8366RB_PORT_ISO(port),
RTL8366RB_PORT_ISO_PORTS(port_bitmap), 0);
}
/**
* rtl8366rb_drop_untagged() - make the switch drop untagged and C-tagged frames
* @smi: SMI state container
* @port: the port to drop untagged and C-tagged frames on
* @drop: whether to drop or pass untagged and C-tagged frames
*/
static int rtl8366rb_drop_untagged(struct realtek_smi *smi, int port, bool drop)
{
return regmap_update_bits(smi->map, RTL8366RB_VLAN_INGRESS_CTRL1_REG,
RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port),
drop ? RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port) : 0);
}
static int rtl8366rb_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct realtek_smi *smi = ds->priv;
struct rtl8366rb *rb;
int ret;
rb = smi->chip_data;
dev_dbg(smi->dev, "port %d: %s VLAN filtering\n", port,
vlan_filtering ? "enable" : "disable");
/* If the port is not in the member set, the frame will be dropped */
ret = regmap_update_bits(smi->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG,
BIT(port), vlan_filtering ? BIT(port) : 0);
if (ret)
return ret;
/* If VLAN filtering is enabled and PVID is also enabled, we must
* not drop any untagged or C-tagged frames. If we turn off VLAN
* filtering on a port, we need to accept any frames.
*/
if (vlan_filtering)
ret = rtl8366rb_drop_untagged(smi, port, !rb->pvid_enabled[port]);
else
ret = rtl8366rb_drop_untagged(smi, port, false);
return ret;
}
static int
rtl8366rb_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
/* We support enabling/disabling learning */
if (flags.mask & ~(BR_LEARNING))
return -EINVAL;
return 0;
}
static int
rtl8366rb_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct realtek_smi *smi = ds->priv;
int ret;
if (flags.mask & BR_LEARNING) {
ret = regmap_update_bits(smi->map, RTL8366RB_PORT_LEARNDIS_CTRL,
BIT(port),
(flags.val & BR_LEARNING) ? 0 : BIT(port));
if (ret)
return ret;
}
return 0;
}
static void
rtl8366rb_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct realtek_smi *smi = ds->priv;
u32 val;
int i;
switch (state) {
case BR_STATE_DISABLED:
val = RTL8366RB_STP_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
val = RTL8366RB_STP_STATE_BLOCKING;
break;
case BR_STATE_LEARNING:
val = RTL8366RB_STP_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
val = RTL8366RB_STP_STATE_FORWARDING;
break;
default:
dev_err(smi->dev, "unknown bridge state requested\n");
return;
}
/* Set the same status for the port on all the FIDs */
for (i = 0; i < RTL8366RB_NUM_FIDS; i++) {
regmap_update_bits(smi->map, RTL8366RB_STP_STATE_BASE + i,
RTL8366RB_STP_STATE_MASK(port),
RTL8366RB_STP_STATE(port, val));
}
}
static void
rtl8366rb_port_fast_age(struct dsa_switch *ds, int port)
{
struct realtek_smi *smi = ds->priv;
/* This will age out any learned L2 entries */
regmap_update_bits(smi->map, RTL8366RB_SECURITY_CTRL,
BIT(port), BIT(port));
/* Restore the normal state of things */
regmap_update_bits(smi->map, RTL8366RB_SECURITY_CTRL,
BIT(port), 0);
}
static int rtl8366rb_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct realtek_smi *smi = ds->priv;
struct rtl8366rb *rb;
unsigned int max_mtu;
u32 len;
int i;
/* Cache the per-port MTU setting */
rb = smi->chip_data;
rb->max_mtu[port] = new_mtu;
/* Roof out the MTU for the entire switch to the greatest
* common denominator: the biggest set for any one port will
* be the biggest MTU for the switch.
*
* The first setting, 1522 bytes, is max IP packet 1500 bytes,
* plus ethernet header, 1518 bytes, plus CPU tag, 4 bytes.
* This function should consider the parameter an SDU, so the
* MTU passed for this setting is 1518 bytes. The same logic
* of subtracting the DSA tag of 4 bytes apply to the other
* settings.
*/
max_mtu = 1518;
for (i = 0; i < RTL8366RB_NUM_PORTS; i++) {
if (rb->max_mtu[i] > max_mtu)
max_mtu = rb->max_mtu[i];
}
if (max_mtu <= 1518)
len = RTL8366RB_SGCR_MAX_LENGTH_1522;
else if (max_mtu > 1518 && max_mtu <= 1532)
len = RTL8366RB_SGCR_MAX_LENGTH_1536;
else if (max_mtu > 1532 && max_mtu <= 1548)
len = RTL8366RB_SGCR_MAX_LENGTH_1552;
else
len = RTL8366RB_SGCR_MAX_LENGTH_16000;
return regmap_update_bits(smi->map, RTL8366RB_SGCR,
RTL8366RB_SGCR_MAX_LENGTH_MASK,
len);
}
static int rtl8366rb_max_mtu(struct dsa_switch *ds, int port)
{
/* The max MTU is 16000 bytes, so we subtract the CPU tag
* and the max presented to the system is 15996 bytes.
*/
return 15996;
}
static int rtl8366rb_get_vlan_4k(struct realtek_smi *smi, u32 vid,
struct rtl8366_vlan_4k *vlan4k)
{
u32 data[3];
int ret;
int i;
memset(vlan4k, '\0', sizeof(struct rtl8366_vlan_4k));
if (vid >= RTL8366RB_NUM_VIDS)
return -EINVAL;
/* write VID */
ret = regmap_write(smi->map, RTL8366RB_VLAN_TABLE_WRITE_BASE,
vid & RTL8366RB_VLAN_VID_MASK);
if (ret)
return ret;
/* write table access control word */
ret = regmap_write(smi->map, RTL8366RB_TABLE_ACCESS_CTRL_REG,
RTL8366RB_TABLE_VLAN_READ_CTRL);
if (ret)
return ret;
for (i = 0; i < 3; i++) {
ret = regmap_read(smi->map,
RTL8366RB_VLAN_TABLE_READ_BASE + i,
&data[i]);
if (ret)
return ret;
}
vlan4k->vid = vid;
vlan4k->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) &
RTL8366RB_VLAN_UNTAG_MASK;
vlan4k->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK;
vlan4k->fid = data[2] & RTL8366RB_VLAN_FID_MASK;
return 0;
}
static int rtl8366rb_set_vlan_4k(struct realtek_smi *smi,
const struct rtl8366_vlan_4k *vlan4k)
{
u32 data[3];
int ret;
int i;
if (vlan4k->vid >= RTL8366RB_NUM_VIDS ||
vlan4k->member > RTL8366RB_VLAN_MEMBER_MASK ||
vlan4k->untag > RTL8366RB_VLAN_UNTAG_MASK ||
vlan4k->fid > RTL8366RB_FIDMAX)
return -EINVAL;
data[0] = vlan4k->vid & RTL8366RB_VLAN_VID_MASK;
data[1] = (vlan4k->member & RTL8366RB_VLAN_MEMBER_MASK) |
((vlan4k->untag & RTL8366RB_VLAN_UNTAG_MASK) <<
RTL8366RB_VLAN_UNTAG_SHIFT);
data[2] = vlan4k->fid & RTL8366RB_VLAN_FID_MASK;
for (i = 0; i < 3; i++) {
ret = regmap_write(smi->map,
RTL8366RB_VLAN_TABLE_WRITE_BASE + i,
data[i]);
if (ret)
return ret;
}
/* write table access control word */
ret = regmap_write(smi->map, RTL8366RB_TABLE_ACCESS_CTRL_REG,
RTL8366RB_TABLE_VLAN_WRITE_CTRL);
return ret;
}
static int rtl8366rb_get_vlan_mc(struct realtek_smi *smi, u32 index,
struct rtl8366_vlan_mc *vlanmc)
{
u32 data[3];
int ret;
int i;
memset(vlanmc, '\0', sizeof(struct rtl8366_vlan_mc));
if (index >= RTL8366RB_NUM_VLANS)
return -EINVAL;
for (i = 0; i < 3; i++) {
ret = regmap_read(smi->map,
RTL8366RB_VLAN_MC_BASE(index) + i,
&data[i]);
if (ret)
return ret;
}
vlanmc->vid = data[0] & RTL8366RB_VLAN_VID_MASK;
vlanmc->priority = (data[0] >> RTL8366RB_VLAN_PRIORITY_SHIFT) &
RTL8366RB_VLAN_PRIORITY_MASK;
vlanmc->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) &
RTL8366RB_VLAN_UNTAG_MASK;
vlanmc->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK;
vlanmc->fid = data[2] & RTL8366RB_VLAN_FID_MASK;
return 0;
}
static int rtl8366rb_set_vlan_mc(struct realtek_smi *smi, u32 index,
const struct rtl8366_vlan_mc *vlanmc)
{
u32 data[3];
int ret;
int i;
if (index >= RTL8366RB_NUM_VLANS ||
vlanmc->vid >= RTL8366RB_NUM_VIDS ||
vlanmc->priority > RTL8366RB_PRIORITYMAX ||
vlanmc->member > RTL8366RB_VLAN_MEMBER_MASK ||
vlanmc->untag > RTL8366RB_VLAN_UNTAG_MASK ||
vlanmc->fid > RTL8366RB_FIDMAX)
return -EINVAL;
data[0] = (vlanmc->vid & RTL8366RB_VLAN_VID_MASK) |
((vlanmc->priority & RTL8366RB_VLAN_PRIORITY_MASK) <<
RTL8366RB_VLAN_PRIORITY_SHIFT);
data[1] = (vlanmc->member & RTL8366RB_VLAN_MEMBER_MASK) |
((vlanmc->untag & RTL8366RB_VLAN_UNTAG_MASK) <<
RTL8366RB_VLAN_UNTAG_SHIFT);
data[2] = vlanmc->fid & RTL8366RB_VLAN_FID_MASK;
for (i = 0; i < 3; i++) {
ret = regmap_write(smi->map,
RTL8366RB_VLAN_MC_BASE(index) + i,
data[i]);
if (ret)
return ret;
}
return 0;
}
static int rtl8366rb_get_mc_index(struct realtek_smi *smi, int port, int *val)
{
u32 data;
int ret;
if (port >= smi->num_ports)
return -EINVAL;
ret = regmap_read(smi->map, RTL8366RB_PORT_VLAN_CTRL_REG(port),
&data);
if (ret)
return ret;
*val = (data >> RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)) &
RTL8366RB_PORT_VLAN_CTRL_MASK;
return 0;
}
static int rtl8366rb_set_mc_index(struct realtek_smi *smi, int port, int index)
{
struct rtl8366rb *rb;
bool pvid_enabled;
int ret;
rb = smi->chip_data;
pvid_enabled = !!index;
if (port >= smi->num_ports || index >= RTL8366RB_NUM_VLANS)
return -EINVAL;
ret = regmap_update_bits(smi->map, RTL8366RB_PORT_VLAN_CTRL_REG(port),
RTL8366RB_PORT_VLAN_CTRL_MASK <<
RTL8366RB_PORT_VLAN_CTRL_SHIFT(port),
(index & RTL8366RB_PORT_VLAN_CTRL_MASK) <<
RTL8366RB_PORT_VLAN_CTRL_SHIFT(port));
if (ret)
return ret;
rb->pvid_enabled[port] = pvid_enabled;
/* If VLAN filtering is enabled and PVID is also enabled, we must
* not drop any untagged or C-tagged frames. Make sure to update the
* filtering setting.
*/
if (dsa_port_is_vlan_filtering(dsa_to_port(smi->ds, port)))
ret = rtl8366rb_drop_untagged(smi, port, !pvid_enabled);
return ret;
}
static bool rtl8366rb_is_vlan_valid(struct realtek_smi *smi, unsigned int vlan)
{
unsigned int max = RTL8366RB_NUM_VLANS - 1;
if (smi->vlan4k_enabled)
max = RTL8366RB_NUM_VIDS - 1;
if (vlan > max)
return false;
return true;
}
static int rtl8366rb_enable_vlan(struct realtek_smi *smi, bool enable)
{
dev_dbg(smi->dev, "%s VLAN\n", enable ? "enable" : "disable");
return regmap_update_bits(smi->map,
RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN,
enable ? RTL8366RB_SGCR_EN_VLAN : 0);
}
static int rtl8366rb_enable_vlan4k(struct realtek_smi *smi, bool enable)
{
dev_dbg(smi->dev, "%s VLAN 4k\n", enable ? "enable" : "disable");
return regmap_update_bits(smi->map, RTL8366RB_SGCR,
RTL8366RB_SGCR_EN_VLAN_4KTB,
enable ? RTL8366RB_SGCR_EN_VLAN_4KTB : 0);
}
static int rtl8366rb_phy_read(struct realtek_smi *smi, int phy, int regnum)
{
u32 val;
u32 reg;
int ret;
if (phy > RTL8366RB_PHY_NO_MAX)
return -EINVAL;
ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG,
RTL8366RB_PHY_CTRL_READ);
if (ret)
return ret;
reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum;
ret = regmap_write(smi->map, reg, 0);
if (ret) {
dev_err(smi->dev,
"failed to write PHY%d reg %04x @ %04x, ret %d\n",
phy, regnum, reg, ret);
return ret;
}
ret = regmap_read(smi->map, RTL8366RB_PHY_ACCESS_DATA_REG, &val);
if (ret)
return ret;
dev_dbg(smi->dev, "read PHY%d register 0x%04x @ %08x, val <- %04x\n",
phy, regnum, reg, val);
return val;
}
static int rtl8366rb_phy_write(struct realtek_smi *smi, int phy, int regnum,
u16 val)
{
u32 reg;
int ret;
if (phy > RTL8366RB_PHY_NO_MAX)
return -EINVAL;
ret = regmap_write(smi->map, RTL8366RB_PHY_ACCESS_CTRL_REG,
RTL8366RB_PHY_CTRL_WRITE);
if (ret)
return ret;
reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum;
dev_dbg(smi->dev, "write PHY%d register 0x%04x @ %04x, val -> %04x\n",
phy, regnum, reg, val);
ret = regmap_write(smi->map, reg, val);
if (ret)
return ret;
return 0;
}
static int rtl8366rb_reset_chip(struct realtek_smi *smi)
{
int timeout = 10;
u32 val;
int ret;
realtek_smi_write_reg_noack(smi, RTL8366RB_RESET_CTRL_REG,
RTL8366RB_CHIP_CTRL_RESET_HW);
do {
usleep_range(20000, 25000);
ret = regmap_read(smi->map, RTL8366RB_RESET_CTRL_REG, &val);
if (ret)
return ret;
if (!(val & RTL8366RB_CHIP_CTRL_RESET_HW))
break;
} while (--timeout);
if (!timeout) {
dev_err(smi->dev, "timeout waiting for the switch to reset\n");
return -EIO;
}
return 0;
}
static int rtl8366rb_detect(struct realtek_smi *smi)
{
struct device *dev = smi->dev;
int ret;
u32 val;
/* Detect device */
ret = regmap_read(smi->map, 0x5c, &val);
if (ret) {
dev_err(dev, "can't get chip ID (%d)\n", ret);
return ret;
}
switch (val) {
case 0x6027:
dev_info(dev, "found an RTL8366S switch\n");
dev_err(dev, "this switch is not yet supported, submit patches!\n");
return -ENODEV;
case 0x5937:
dev_info(dev, "found an RTL8366RB switch\n");
smi->cpu_port = RTL8366RB_PORT_NUM_CPU;
smi->num_ports = RTL8366RB_NUM_PORTS;
smi->num_vlan_mc = RTL8366RB_NUM_VLANS;
smi->mib_counters = rtl8366rb_mib_counters;
smi->num_mib_counters = ARRAY_SIZE(rtl8366rb_mib_counters);
break;
default:
dev_info(dev, "found an Unknown Realtek switch (id=0x%04x)\n",
val);
break;
}
ret = rtl8366rb_reset_chip(smi);
if (ret)
return ret;
return 0;
}
static const struct dsa_switch_ops rtl8366rb_switch_ops = {
.get_tag_protocol = rtl8366_get_tag_protocol,
.setup = rtl8366rb_setup,
.phylink_mac_link_up = rtl8366rb_mac_link_up,
.phylink_mac_link_down = rtl8366rb_mac_link_down,
.get_strings = rtl8366_get_strings,
.get_ethtool_stats = rtl8366_get_ethtool_stats,
.get_sset_count = rtl8366_get_sset_count,
.port_bridge_join = rtl8366rb_port_bridge_join,
.port_bridge_leave = rtl8366rb_port_bridge_leave,
.port_vlan_filtering = rtl8366rb_vlan_filtering,
.port_vlan_add = rtl8366_vlan_add,
.port_vlan_del = rtl8366_vlan_del,
.port_enable = rtl8366rb_port_enable,
.port_disable = rtl8366rb_port_disable,
.port_pre_bridge_flags = rtl8366rb_port_pre_bridge_flags,
.port_bridge_flags = rtl8366rb_port_bridge_flags,
.port_stp_state_set = rtl8366rb_port_stp_state_set,
.port_fast_age = rtl8366rb_port_fast_age,
.port_change_mtu = rtl8366rb_change_mtu,
.port_max_mtu = rtl8366rb_max_mtu,
};
static const struct realtek_smi_ops rtl8366rb_smi_ops = {
.detect = rtl8366rb_detect,
.get_vlan_mc = rtl8366rb_get_vlan_mc,
.set_vlan_mc = rtl8366rb_set_vlan_mc,
.get_vlan_4k = rtl8366rb_get_vlan_4k,
.set_vlan_4k = rtl8366rb_set_vlan_4k,
.get_mc_index = rtl8366rb_get_mc_index,
.set_mc_index = rtl8366rb_set_mc_index,
.get_mib_counter = rtl8366rb_get_mib_counter,
.is_vlan_valid = rtl8366rb_is_vlan_valid,
.enable_vlan = rtl8366rb_enable_vlan,
.enable_vlan4k = rtl8366rb_enable_vlan4k,
.phy_read = rtl8366rb_phy_read,
.phy_write = rtl8366rb_phy_write,
};
const struct realtek_smi_variant rtl8366rb_variant = {
.ds_ops = &rtl8366rb_switch_ops,
.ops = &rtl8366rb_smi_ops,
.clk_delay = 10,
.cmd_read = 0xa9,
.cmd_write = 0xa8,
.chip_data_sz = sizeof(struct rtl8366rb),
};
EXPORT_SYMBOL_GPL(rtl8366rb_variant);