blob: 9421afb950f791c921306a45f03a3ad31e4a554d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* Advanced Micro Devices Inc. AMD8111E Linux Network Driver
* Copyright (C) 2004 Advanced Micro Devices
*
* Copyright 2001,2002 Jeff Garzik <jgarzik@mandrakesoft.com> [ 8139cp.c,tg3.c ]
* Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com)[ tg3.c]
* Copyright 1996-1999 Thomas Bogendoerfer [ pcnet32.c ]
* Derived from the lance driver written 1993,1994,1995 by Donald Becker.
* Copyright 1993 United States Government as represented by the
* Director, National Security Agency.[ pcnet32.c ]
* Carsten Langgaard, carstenl@mips.com [ pcnet32.c ]
* Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
*
Module Name:
amd8111e.c
Abstract:
AMD8111 based 10/100 Ethernet Controller Driver.
Environment:
Kernel Mode
Revision History:
3.0.0
Initial Revision.
3.0.1
1. Dynamic interrupt coalescing.
2. Removed prev_stats.
3. MII support.
4. Dynamic IPG support
3.0.2 05/29/2003
1. Bug fix: Fixed failure to send jumbo packets larger than 4k.
2. Bug fix: Fixed VLAN support failure.
3. Bug fix: Fixed receive interrupt coalescing bug.
4. Dynamic IPG support is disabled by default.
3.0.3 06/05/2003
1. Bug fix: Fixed failure to close the interface if SMP is enabled.
3.0.4 12/09/2003
1. Added set_mac_address routine for bonding driver support.
2. Tested the driver for bonding support
3. Bug fix: Fixed mismach in actual receive buffer lenth and lenth
indicated to the h/w.
4. Modified amd8111e_rx() routine to receive all the received packets
in the first interrupt.
5. Bug fix: Corrected rx_errors reported in get_stats() function.
3.0.5 03/22/2004
1. Added NAPI support
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/ctype.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/uaccess.h>
#if IS_ENABLED(CONFIG_VLAN_8021Q)
#define AMD8111E_VLAN_TAG_USED 1
#else
#define AMD8111E_VLAN_TAG_USED 0
#endif
#include "amd8111e.h"
#define MODULE_NAME "amd8111e"
MODULE_AUTHOR("Advanced Micro Devices, Inc.");
MODULE_DESCRIPTION("AMD8111 based 10/100 Ethernet Controller.");
MODULE_LICENSE("GPL");
module_param_array(speed_duplex, int, NULL, 0);
MODULE_PARM_DESC(speed_duplex, "Set device speed and duplex modes, 0: Auto Negotiate, 1: 10Mbps Half Duplex, 2: 10Mbps Full Duplex, 3: 100Mbps Half Duplex, 4: 100Mbps Full Duplex");
module_param_array(coalesce, bool, NULL, 0);
MODULE_PARM_DESC(coalesce, "Enable or Disable interrupt coalescing, 1: Enable, 0: Disable");
module_param_array(dynamic_ipg, bool, NULL, 0);
MODULE_PARM_DESC(dynamic_ipg, "Enable or Disable dynamic IPG, 1: Enable, 0: Disable");
/* This function will read the PHY registers. */
static int amd8111e_read_phy(struct amd8111e_priv *lp,
int phy_id, int reg, u32 *val)
{
void __iomem *mmio = lp->mmio;
unsigned int reg_val;
unsigned int repeat = REPEAT_CNT;
reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE)
reg_val = readl(mmio + PHY_ACCESS);
writel(PHY_RD_CMD | ((phy_id & 0x1f) << 21) |
((reg & 0x1f) << 16), mmio + PHY_ACCESS);
do {
reg_val = readl(mmio + PHY_ACCESS);
udelay(30); /* It takes 30 us to read/write data */
} while (--repeat && (reg_val & PHY_CMD_ACTIVE));
if (reg_val & PHY_RD_ERR)
goto err_phy_read;
*val = reg_val & 0xffff;
return 0;
err_phy_read:
*val = 0;
return -EINVAL;
}
/* This function will write into PHY registers. */
static int amd8111e_write_phy(struct amd8111e_priv *lp,
int phy_id, int reg, u32 val)
{
unsigned int repeat = REPEAT_CNT;
void __iomem *mmio = lp->mmio;
unsigned int reg_val;
reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE)
reg_val = readl(mmio + PHY_ACCESS);
writel(PHY_WR_CMD | ((phy_id & 0x1f) << 21) |
((reg & 0x1f) << 16)|val, mmio + PHY_ACCESS);
do {
reg_val = readl(mmio + PHY_ACCESS);
udelay(30); /* It takes 30 us to read/write the data */
} while (--repeat && (reg_val & PHY_CMD_ACTIVE));
if (reg_val & PHY_RD_ERR)
goto err_phy_write;
return 0;
err_phy_write:
return -EINVAL;
}
/* This is the mii register read function provided to the mii interface. */
static int amd8111e_mdio_read(struct net_device *dev, int phy_id, int reg_num)
{
struct amd8111e_priv *lp = netdev_priv(dev);
unsigned int reg_val;
amd8111e_read_phy(lp, phy_id, reg_num, &reg_val);
return reg_val;
}
/* This is the mii register write function provided to the mii interface. */
static void amd8111e_mdio_write(struct net_device *dev,
int phy_id, int reg_num, int val)
{
struct amd8111e_priv *lp = netdev_priv(dev);
amd8111e_write_phy(lp, phy_id, reg_num, val);
}
/* This function will set PHY speed. During initialization sets
* the original speed to 100 full
*/
static void amd8111e_set_ext_phy(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
u32 bmcr, advert, tmp;
/* Determine mii register values to set the speed */
advert = amd8111e_mdio_read(dev, lp->ext_phy_addr, MII_ADVERTISE);
tmp = advert & ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
switch (lp->ext_phy_option) {
default:
case SPEED_AUTONEG: /* advertise all values */
tmp |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
break;
case SPEED10_HALF:
tmp |= ADVERTISE_10HALF;
break;
case SPEED10_FULL:
tmp |= ADVERTISE_10FULL;
break;
case SPEED100_HALF:
tmp |= ADVERTISE_100HALF;
break;
case SPEED100_FULL:
tmp |= ADVERTISE_100FULL;
break;
}
if(advert != tmp)
amd8111e_mdio_write(dev, lp->ext_phy_addr, MII_ADVERTISE, tmp);
/* Restart auto negotiation */
bmcr = amd8111e_mdio_read(dev, lp->ext_phy_addr, MII_BMCR);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
amd8111e_mdio_write(dev, lp->ext_phy_addr, MII_BMCR, bmcr);
}
/* This function will unmap skb->data space and will free
* all transmit and receive skbuffs.
*/
static int amd8111e_free_skbs(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
struct sk_buff *rx_skbuff;
int i;
/* Freeing transmit skbs */
for (i = 0; i < NUM_TX_BUFFERS; i++) {
if (lp->tx_skbuff[i]) {
dma_unmap_single(&lp->pci_dev->dev,
lp->tx_dma_addr[i],
lp->tx_skbuff[i]->len, DMA_TO_DEVICE);
dev_kfree_skb(lp->tx_skbuff[i]);
lp->tx_skbuff[i] = NULL;
lp->tx_dma_addr[i] = 0;
}
}
/* Freeing previously allocated receive buffers */
for (i = 0; i < NUM_RX_BUFFERS; i++) {
rx_skbuff = lp->rx_skbuff[i];
if (rx_skbuff != NULL) {
dma_unmap_single(&lp->pci_dev->dev,
lp->rx_dma_addr[i],
lp->rx_buff_len - 2, DMA_FROM_DEVICE);
dev_kfree_skb(lp->rx_skbuff[i]);
lp->rx_skbuff[i] = NULL;
lp->rx_dma_addr[i] = 0;
}
}
return 0;
}
/* This will set the receive buffer length corresponding
* to the mtu size of networkinterface.
*/
static inline void amd8111e_set_rx_buff_len(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
unsigned int mtu = dev->mtu;
if (mtu > ETH_DATA_LEN) {
/* MTU + ethernet header + FCS
* + optional VLAN tag + skb reserve space 2
*/
lp->rx_buff_len = mtu + ETH_HLEN + 10;
lp->options |= OPTION_JUMBO_ENABLE;
} else {
lp->rx_buff_len = PKT_BUFF_SZ;
lp->options &= ~OPTION_JUMBO_ENABLE;
}
}
/* This function will free all the previously allocated buffers,
* determine new receive buffer length and will allocate new receive buffers.
* This function also allocates and initializes both the transmitter
* and receive hardware descriptors.
*/
static int amd8111e_init_ring(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int i;
lp->rx_idx = lp->tx_idx = 0;
lp->tx_complete_idx = 0;
lp->tx_ring_idx = 0;
if (lp->opened)
/* Free previously allocated transmit and receive skbs */
amd8111e_free_skbs(dev);
else {
/* allocate the tx and rx descriptors */
lp->tx_ring = dma_alloc_coherent(&lp->pci_dev->dev,
sizeof(struct amd8111e_tx_dr) * NUM_TX_RING_DR,
&lp->tx_ring_dma_addr, GFP_ATOMIC);
if (!lp->tx_ring)
goto err_no_mem;
lp->rx_ring = dma_alloc_coherent(&lp->pci_dev->dev,
sizeof(struct amd8111e_rx_dr) * NUM_RX_RING_DR,
&lp->rx_ring_dma_addr, GFP_ATOMIC);
if (!lp->rx_ring)
goto err_free_tx_ring;
}
/* Set new receive buff size */
amd8111e_set_rx_buff_len(dev);
/* Allocating receive skbs */
for (i = 0; i < NUM_RX_BUFFERS; i++) {
lp->rx_skbuff[i] = netdev_alloc_skb(dev, lp->rx_buff_len);
if (!lp->rx_skbuff[i]) {
/* Release previos allocated skbs */
for (--i; i >= 0; i--)
dev_kfree_skb(lp->rx_skbuff[i]);
goto err_free_rx_ring;
}
skb_reserve(lp->rx_skbuff[i], 2);
}
/* Initilaizing receive descriptors */
for (i = 0; i < NUM_RX_BUFFERS; i++) {
lp->rx_dma_addr[i] = dma_map_single(&lp->pci_dev->dev,
lp->rx_skbuff[i]->data,
lp->rx_buff_len - 2,
DMA_FROM_DEVICE);
lp->rx_ring[i].buff_phy_addr = cpu_to_le32(lp->rx_dma_addr[i]);
lp->rx_ring[i].buff_count = cpu_to_le16(lp->rx_buff_len-2);
wmb();
lp->rx_ring[i].rx_flags = cpu_to_le16(OWN_BIT);
}
/* Initializing transmit descriptors */
for (i = 0; i < NUM_TX_RING_DR; i++) {
lp->tx_ring[i].buff_phy_addr = 0;
lp->tx_ring[i].tx_flags = 0;
lp->tx_ring[i].buff_count = 0;
}
return 0;
err_free_rx_ring:
dma_free_coherent(&lp->pci_dev->dev,
sizeof(struct amd8111e_rx_dr) * NUM_RX_RING_DR,
lp->rx_ring, lp->rx_ring_dma_addr);
err_free_tx_ring:
dma_free_coherent(&lp->pci_dev->dev,
sizeof(struct amd8111e_tx_dr) * NUM_TX_RING_DR,
lp->tx_ring, lp->tx_ring_dma_addr);
err_no_mem:
return -ENOMEM;
}
/* This function will set the interrupt coalescing according
* to the input arguments
*/
static int amd8111e_set_coalesce(struct net_device *dev, enum coal_mode cmod)
{
unsigned int timeout;
unsigned int event_count;
struct amd8111e_priv *lp = netdev_priv(dev);
void __iomem *mmio = lp->mmio;
struct amd8111e_coalesce_conf *coal_conf = &lp->coal_conf;
switch(cmod)
{
case RX_INTR_COAL :
timeout = coal_conf->rx_timeout;
event_count = coal_conf->rx_event_count;
if (timeout > MAX_TIMEOUT ||
event_count > MAX_EVENT_COUNT)
return -EINVAL;
timeout = timeout * DELAY_TIMER_CONV;
writel(VAL0|STINTEN, mmio+INTEN0);
writel((u32)DLY_INT_A_R0 | (event_count << 16) |
timeout, mmio + DLY_INT_A);
break;
case TX_INTR_COAL:
timeout = coal_conf->tx_timeout;
event_count = coal_conf->tx_event_count;
if (timeout > MAX_TIMEOUT ||
event_count > MAX_EVENT_COUNT)
return -EINVAL;
timeout = timeout * DELAY_TIMER_CONV;
writel(VAL0 | STINTEN, mmio + INTEN0);
writel((u32)DLY_INT_B_T0 | (event_count << 16) |
timeout, mmio + DLY_INT_B);
break;
case DISABLE_COAL:
writel(0, mmio + STVAL);
writel(STINTEN, mmio + INTEN0);
writel(0, mmio + DLY_INT_B);
writel(0, mmio + DLY_INT_A);
break;
case ENABLE_COAL:
/* Start the timer */
writel((u32)SOFT_TIMER_FREQ, mmio + STVAL); /* 0.5 sec */
writel(VAL0 | STINTEN, mmio + INTEN0);
break;
default:
break;
}
return 0;
}
/* This function initializes the device registers and starts the device. */
static int amd8111e_restart(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
void __iomem *mmio = lp->mmio;
int i, reg_val;
/* stop the chip */
writel(RUN, mmio + CMD0);
if (amd8111e_init_ring(dev))
return -ENOMEM;
/* enable the port manager and set auto negotiation always */
writel((u32)VAL1 | EN_PMGR, mmio + CMD3);
writel((u32)XPHYANE | XPHYRST, mmio + CTRL2);
amd8111e_set_ext_phy(dev);
/* set control registers */
reg_val = readl(mmio + CTRL1);
reg_val &= ~XMTSP_MASK;
writel(reg_val | XMTSP_128 | CACHE_ALIGN, mmio + CTRL1);
/* enable interrupt */
writel(APINT5EN | APINT4EN | APINT3EN | APINT2EN | APINT1EN |
APINT0EN | MIIPDTINTEN | MCCIINTEN | MCCINTEN | MREINTEN |
SPNDINTEN | MPINTEN | SINTEN | STINTEN, mmio + INTEN0);
writel(VAL3 | LCINTEN | VAL1 | TINTEN0 | VAL0 | RINTEN0, mmio + INTEN0);
/* initialize tx and rx ring base addresses */
writel((u32)lp->tx_ring_dma_addr, mmio + XMT_RING_BASE_ADDR0);
writel((u32)lp->rx_ring_dma_addr, mmio + RCV_RING_BASE_ADDR0);
writew((u32)NUM_TX_RING_DR, mmio + XMT_RING_LEN0);
writew((u16)NUM_RX_RING_DR, mmio + RCV_RING_LEN0);
/* set default IPG to 96 */
writew((u32)DEFAULT_IPG, mmio + IPG);
writew((u32)(DEFAULT_IPG-IFS1_DELTA), mmio + IFS1);
if (lp->options & OPTION_JUMBO_ENABLE) {
writel((u32)VAL2|JUMBO, mmio + CMD3);
/* Reset REX_UFLO */
writel(REX_UFLO, mmio + CMD2);
/* Should not set REX_UFLO for jumbo frames */
writel(VAL0 | APAD_XMT | REX_RTRY, mmio + CMD2);
} else {
writel(VAL0 | APAD_XMT | REX_RTRY | REX_UFLO, mmio + CMD2);
writel((u32)JUMBO, mmio + CMD3);
}
#if AMD8111E_VLAN_TAG_USED
writel((u32)VAL2 | VSIZE | VL_TAG_DEL, mmio + CMD3);
#endif
writel(VAL0 | APAD_XMT | REX_RTRY, mmio + CMD2);
/* Setting the MAC address to the device */
for (i = 0; i < ETH_ALEN; i++)
writeb(dev->dev_addr[i], mmio + PADR + i);
/* Enable interrupt coalesce */
if (lp->options & OPTION_INTR_COAL_ENABLE) {
netdev_info(dev, "Interrupt Coalescing Enabled.\n");
amd8111e_set_coalesce(dev, ENABLE_COAL);
}
/* set RUN bit to start the chip */
writel(VAL2 | RDMD0, mmio + CMD0);
writel(VAL0 | INTREN | RUN, mmio + CMD0);
/* To avoid PCI posting bug */
readl(mmio+CMD0);
return 0;
}
/* This function clears necessary the device registers. */
static void amd8111e_init_hw_default(struct amd8111e_priv *lp)
{
unsigned int reg_val;
unsigned int logic_filter[2] = {0,};
void __iomem *mmio = lp->mmio;
/* stop the chip */
writel(RUN, mmio + CMD0);
/* AUTOPOLL0 Register *//*TBD default value is 8100 in FPS */
writew( 0x8100 | lp->ext_phy_addr, mmio + AUTOPOLL0);
/* Clear RCV_RING_BASE_ADDR */
writel(0, mmio + RCV_RING_BASE_ADDR0);
/* Clear XMT_RING_BASE_ADDR */
writel(0, mmio + XMT_RING_BASE_ADDR0);
writel(0, mmio + XMT_RING_BASE_ADDR1);
writel(0, mmio + XMT_RING_BASE_ADDR2);
writel(0, mmio + XMT_RING_BASE_ADDR3);
/* Clear CMD0 */
writel(CMD0_CLEAR, mmio + CMD0);
/* Clear CMD2 */
writel(CMD2_CLEAR, mmio + CMD2);
/* Clear CMD7 */
writel(CMD7_CLEAR, mmio + CMD7);
/* Clear DLY_INT_A and DLY_INT_B */
writel(0x0, mmio + DLY_INT_A);
writel(0x0, mmio + DLY_INT_B);
/* Clear FLOW_CONTROL */
writel(0x0, mmio + FLOW_CONTROL);
/* Clear INT0 write 1 to clear register */
reg_val = readl(mmio + INT0);
writel(reg_val, mmio + INT0);
/* Clear STVAL */
writel(0x0, mmio + STVAL);
/* Clear INTEN0 */
writel(INTEN0_CLEAR, mmio + INTEN0);
/* Clear LADRF */
writel(0x0, mmio + LADRF);
/* Set SRAM_SIZE & SRAM_BOUNDARY registers */
writel(0x80010, mmio + SRAM_SIZE);
/* Clear RCV_RING0_LEN */
writel(0x0, mmio + RCV_RING_LEN0);
/* Clear XMT_RING0/1/2/3_LEN */
writel(0x0, mmio + XMT_RING_LEN0);
writel(0x0, mmio + XMT_RING_LEN1);
writel(0x0, mmio + XMT_RING_LEN2);
writel(0x0, mmio + XMT_RING_LEN3);
/* Clear XMT_RING_LIMIT */
writel(0x0, mmio + XMT_RING_LIMIT);
/* Clear MIB */
writew(MIB_CLEAR, mmio + MIB_ADDR);
/* Clear LARF */
amd8111e_writeq(*(u64 *)logic_filter, mmio + LADRF);
/* SRAM_SIZE register */
reg_val = readl(mmio + SRAM_SIZE);
if (lp->options & OPTION_JUMBO_ENABLE)
writel(VAL2 | JUMBO, mmio + CMD3);
#if AMD8111E_VLAN_TAG_USED
writel(VAL2 | VSIZE | VL_TAG_DEL, mmio + CMD3);
#endif
/* Set default value to CTRL1 Register */
writel(CTRL1_DEFAULT, mmio + CTRL1);
/* To avoid PCI posting bug */
readl(mmio + CMD2);
}
/* This function disables the interrupt and clears all the pending
* interrupts in INT0
*/
static void amd8111e_disable_interrupt(struct amd8111e_priv *lp)
{
u32 intr0;
/* Disable interrupt */
writel(INTREN, lp->mmio + CMD0);
/* Clear INT0 */
intr0 = readl(lp->mmio + INT0);
writel(intr0, lp->mmio + INT0);
/* To avoid PCI posting bug */
readl(lp->mmio + INT0);
}
/* This function stops the chip. */
static void amd8111e_stop_chip(struct amd8111e_priv *lp)
{
writel(RUN, lp->mmio + CMD0);
/* To avoid PCI posting bug */
readl(lp->mmio + CMD0);
}
/* This function frees the transmiter and receiver descriptor rings. */
static void amd8111e_free_ring(struct amd8111e_priv *lp)
{
/* Free transmit and receive descriptor rings */
if (lp->rx_ring) {
dma_free_coherent(&lp->pci_dev->dev,
sizeof(struct amd8111e_rx_dr) * NUM_RX_RING_DR,
lp->rx_ring, lp->rx_ring_dma_addr);
lp->rx_ring = NULL;
}
if (lp->tx_ring) {
dma_free_coherent(&lp->pci_dev->dev,
sizeof(struct amd8111e_tx_dr) * NUM_TX_RING_DR,
lp->tx_ring, lp->tx_ring_dma_addr);
lp->tx_ring = NULL;
}
}
/* This function will free all the transmit skbs that are actually
* transmitted by the device. It will check the ownership of the
* skb before freeing the skb.
*/
static int amd8111e_tx(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int tx_index;
int status;
/* Complete all the transmit packet */
while (lp->tx_complete_idx != lp->tx_idx) {
tx_index = lp->tx_complete_idx & TX_RING_DR_MOD_MASK;
status = le16_to_cpu(lp->tx_ring[tx_index].tx_flags);
if (status & OWN_BIT)
break; /* It still hasn't been Txed */
lp->tx_ring[tx_index].buff_phy_addr = 0;
/* We must free the original skb */
if (lp->tx_skbuff[tx_index]) {
dma_unmap_single(&lp->pci_dev->dev,
lp->tx_dma_addr[tx_index],
lp->tx_skbuff[tx_index]->len,
DMA_TO_DEVICE);
dev_consume_skb_irq(lp->tx_skbuff[tx_index]);
lp->tx_skbuff[tx_index] = NULL;
lp->tx_dma_addr[tx_index] = 0;
}
lp->tx_complete_idx++;
/*COAL update tx coalescing parameters */
lp->coal_conf.tx_packets++;
lp->coal_conf.tx_bytes +=
le16_to_cpu(lp->tx_ring[tx_index].buff_count);
if (netif_queue_stopped(dev) &&
lp->tx_complete_idx > lp->tx_idx - NUM_TX_BUFFERS + 2) {
/* The ring is no longer full, clear tbusy. */
/* lp->tx_full = 0; */
netif_wake_queue(dev);
}
}
return 0;
}
/* This function handles the driver receive operation in polling mode */
static int amd8111e_rx_poll(struct napi_struct *napi, int budget)
{
struct amd8111e_priv *lp = container_of(napi, struct amd8111e_priv, napi);
struct net_device *dev = lp->amd8111e_net_dev;
int rx_index = lp->rx_idx & RX_RING_DR_MOD_MASK;
void __iomem *mmio = lp->mmio;
struct sk_buff *skb, *new_skb;
int min_pkt_len, status;
int num_rx_pkt = 0;
short pkt_len;
#if AMD8111E_VLAN_TAG_USED
short vtag;
#endif
while (num_rx_pkt < budget) {
status = le16_to_cpu(lp->rx_ring[rx_index].rx_flags);
if (status & OWN_BIT)
break;
/* There is a tricky error noted by John Murphy,
* <murf@perftech.com> to Russ Nelson: Even with
* full-sized * buffers it's possible for a
* jabber packet to use two buffers, with only
* the last correctly noting the error.
*/
if (status & ERR_BIT) {
/* resetting flags */
lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS;
goto err_next_pkt;
}
/* check for STP and ENP */
if (!((status & STP_BIT) && (status & ENP_BIT))) {
/* resetting flags */
lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS;
goto err_next_pkt;
}
pkt_len = le16_to_cpu(lp->rx_ring[rx_index].msg_count) - 4;
#if AMD8111E_VLAN_TAG_USED
vtag = status & TT_MASK;
/* MAC will strip vlan tag */
if (vtag != 0)
min_pkt_len = MIN_PKT_LEN - 4;
else
#endif
min_pkt_len = MIN_PKT_LEN;
if (pkt_len < min_pkt_len) {
lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS;
lp->drv_rx_errors++;
goto err_next_pkt;
}
new_skb = netdev_alloc_skb(dev, lp->rx_buff_len);
if (!new_skb) {
/* if allocation fail,
* ignore that pkt and go to next one
*/
lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS;
lp->drv_rx_errors++;
goto err_next_pkt;
}
skb_reserve(new_skb, 2);
skb = lp->rx_skbuff[rx_index];
dma_unmap_single(&lp->pci_dev->dev, lp->rx_dma_addr[rx_index],
lp->rx_buff_len - 2, DMA_FROM_DEVICE);
skb_put(skb, pkt_len);
lp->rx_skbuff[rx_index] = new_skb;
lp->rx_dma_addr[rx_index] = dma_map_single(&lp->pci_dev->dev,
new_skb->data,
lp->rx_buff_len - 2,
DMA_FROM_DEVICE);
skb->protocol = eth_type_trans(skb, dev);
#if AMD8111E_VLAN_TAG_USED
if (vtag == TT_VLAN_TAGGED) {
u16 vlan_tag = le16_to_cpu(lp->rx_ring[rx_index].tag_ctrl_info);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
}
#endif
napi_gro_receive(napi, skb);
/* COAL update rx coalescing parameters */
lp->coal_conf.rx_packets++;
lp->coal_conf.rx_bytes += pkt_len;
num_rx_pkt++;
err_next_pkt:
lp->rx_ring[rx_index].buff_phy_addr
= cpu_to_le32(lp->rx_dma_addr[rx_index]);
lp->rx_ring[rx_index].buff_count =
cpu_to_le16(lp->rx_buff_len-2);
wmb();
lp->rx_ring[rx_index].rx_flags |= cpu_to_le16(OWN_BIT);
rx_index = (++lp->rx_idx) & RX_RING_DR_MOD_MASK;
}
if (num_rx_pkt < budget && napi_complete_done(napi, num_rx_pkt)) {
unsigned long flags;
/* Receive descriptor is empty now */
spin_lock_irqsave(&lp->lock, flags);
writel(VAL0|RINTEN0, mmio + INTEN0);
writel(VAL2 | RDMD0, mmio + CMD0);
spin_unlock_irqrestore(&lp->lock, flags);
}
return num_rx_pkt;
}
/* This function will indicate the link status to the kernel. */
static int amd8111e_link_change(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int status0, speed;
/* read the link change */
status0 = readl(lp->mmio + STAT0);
if (status0 & LINK_STATS) {
if (status0 & AUTONEG_COMPLETE)
lp->link_config.autoneg = AUTONEG_ENABLE;
else
lp->link_config.autoneg = AUTONEG_DISABLE;
if (status0 & FULL_DPLX)
lp->link_config.duplex = DUPLEX_FULL;
else
lp->link_config.duplex = DUPLEX_HALF;
speed = (status0 & SPEED_MASK) >> 7;
if (speed == PHY_SPEED_10)
lp->link_config.speed = SPEED_10;
else if (speed == PHY_SPEED_100)
lp->link_config.speed = SPEED_100;
netdev_info(dev, "Link is Up. Speed is %s Mbps %s Duplex\n",
(lp->link_config.speed == SPEED_100) ?
"100" : "10",
(lp->link_config.duplex == DUPLEX_FULL) ?
"Full" : "Half");
netif_carrier_on(dev);
} else {
lp->link_config.speed = SPEED_INVALID;
lp->link_config.duplex = DUPLEX_INVALID;
lp->link_config.autoneg = AUTONEG_INVALID;
netdev_info(dev, "Link is Down.\n");
netif_carrier_off(dev);
}
return 0;
}
/* This function reads the mib counters. */
static int amd8111e_read_mib(void __iomem *mmio, u8 MIB_COUNTER)
{
unsigned int status;
unsigned int data;
unsigned int repeat = REPEAT_CNT;
writew(MIB_RD_CMD | MIB_COUNTER, mmio + MIB_ADDR);
do {
status = readw(mmio + MIB_ADDR);
udelay(2); /* controller takes MAX 2 us to get mib data */
}
while (--repeat && (status & MIB_CMD_ACTIVE));
data = readl(mmio + MIB_DATA);
return data;
}
/* This function reads the mib registers and returns the hardware statistics.
* It updates previous internal driver statistics with new values.
*/
static struct net_device_stats *amd8111e_get_stats(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
void __iomem *mmio = lp->mmio;
unsigned long flags;
struct net_device_stats *new_stats = &dev->stats;
if (!lp->opened)
return new_stats;
spin_lock_irqsave(&lp->lock, flags);
/* stats.rx_packets */
new_stats->rx_packets = amd8111e_read_mib(mmio, rcv_broadcast_pkts)+
amd8111e_read_mib(mmio, rcv_multicast_pkts)+
amd8111e_read_mib(mmio, rcv_unicast_pkts);
/* stats.tx_packets */
new_stats->tx_packets = amd8111e_read_mib(mmio, xmt_packets);
/*stats.rx_bytes */
new_stats->rx_bytes = amd8111e_read_mib(mmio, rcv_octets);
/* stats.tx_bytes */
new_stats->tx_bytes = amd8111e_read_mib(mmio, xmt_octets);
/* stats.rx_errors */
/* hw errors + errors driver reported */
new_stats->rx_errors = amd8111e_read_mib(mmio, rcv_undersize_pkts)+
amd8111e_read_mib(mmio, rcv_fragments)+
amd8111e_read_mib(mmio, rcv_jabbers)+
amd8111e_read_mib(mmio, rcv_alignment_errors)+
amd8111e_read_mib(mmio, rcv_fcs_errors)+
amd8111e_read_mib(mmio, rcv_miss_pkts)+
lp->drv_rx_errors;
/* stats.tx_errors */
new_stats->tx_errors = amd8111e_read_mib(mmio, xmt_underrun_pkts);
/* stats.rx_dropped*/
new_stats->rx_dropped = amd8111e_read_mib(mmio, rcv_miss_pkts);
/* stats.tx_dropped*/
new_stats->tx_dropped = amd8111e_read_mib(mmio, xmt_underrun_pkts);
/* stats.multicast*/
new_stats->multicast = amd8111e_read_mib(mmio, rcv_multicast_pkts);
/* stats.collisions*/
new_stats->collisions = amd8111e_read_mib(mmio, xmt_collisions);
/* stats.rx_length_errors*/
new_stats->rx_length_errors =
amd8111e_read_mib(mmio, rcv_undersize_pkts)+
amd8111e_read_mib(mmio, rcv_oversize_pkts);
/* stats.rx_over_errors*/
new_stats->rx_over_errors = amd8111e_read_mib(mmio, rcv_miss_pkts);
/* stats.rx_crc_errors*/
new_stats->rx_crc_errors = amd8111e_read_mib(mmio, rcv_fcs_errors);
/* stats.rx_frame_errors*/
new_stats->rx_frame_errors =
amd8111e_read_mib(mmio, rcv_alignment_errors);
/* stats.rx_fifo_errors */
new_stats->rx_fifo_errors = amd8111e_read_mib(mmio, rcv_miss_pkts);
/* stats.rx_missed_errors */
new_stats->rx_missed_errors = amd8111e_read_mib(mmio, rcv_miss_pkts);
/* stats.tx_aborted_errors*/
new_stats->tx_aborted_errors =
amd8111e_read_mib(mmio, xmt_excessive_collision);
/* stats.tx_carrier_errors*/
new_stats->tx_carrier_errors =
amd8111e_read_mib(mmio, xmt_loss_carrier);
/* stats.tx_fifo_errors*/
new_stats->tx_fifo_errors = amd8111e_read_mib(mmio, xmt_underrun_pkts);
/* stats.tx_window_errors*/
new_stats->tx_window_errors =
amd8111e_read_mib(mmio, xmt_late_collision);
/* Reset the mibs for collecting new statistics */
/* writew(MIB_CLEAR, mmio + MIB_ADDR);*/
spin_unlock_irqrestore(&lp->lock, flags);
return new_stats;
}
/* This function recalculate the interrupt coalescing mode on every interrupt
* according to the datarate and the packet rate.
*/
static int amd8111e_calc_coalesce(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
struct amd8111e_coalesce_conf *coal_conf = &lp->coal_conf;
int tx_pkt_rate;
int rx_pkt_rate;
int tx_data_rate;
int rx_data_rate;
int rx_pkt_size;
int tx_pkt_size;
tx_pkt_rate = coal_conf->tx_packets - coal_conf->tx_prev_packets;
coal_conf->tx_prev_packets = coal_conf->tx_packets;
tx_data_rate = coal_conf->tx_bytes - coal_conf->tx_prev_bytes;
coal_conf->tx_prev_bytes = coal_conf->tx_bytes;
rx_pkt_rate = coal_conf->rx_packets - coal_conf->rx_prev_packets;
coal_conf->rx_prev_packets = coal_conf->rx_packets;
rx_data_rate = coal_conf->rx_bytes - coal_conf->rx_prev_bytes;
coal_conf->rx_prev_bytes = coal_conf->rx_bytes;
if (rx_pkt_rate < 800) {
if (coal_conf->rx_coal_type != NO_COALESCE) {
coal_conf->rx_timeout = 0x0;
coal_conf->rx_event_count = 0;
amd8111e_set_coalesce(dev, RX_INTR_COAL);
coal_conf->rx_coal_type = NO_COALESCE;
}
} else {
rx_pkt_size = rx_data_rate/rx_pkt_rate;
if (rx_pkt_size < 128) {
if (coal_conf->rx_coal_type != NO_COALESCE) {
coal_conf->rx_timeout = 0;
coal_conf->rx_event_count = 0;
amd8111e_set_coalesce(dev, RX_INTR_COAL);
coal_conf->rx_coal_type = NO_COALESCE;
}
} else if ((rx_pkt_size >= 128) && (rx_pkt_size < 512)) {
if (coal_conf->rx_coal_type != LOW_COALESCE) {
coal_conf->rx_timeout = 1;
coal_conf->rx_event_count = 4;
amd8111e_set_coalesce(dev, RX_INTR_COAL);
coal_conf->rx_coal_type = LOW_COALESCE;
}
} else if ((rx_pkt_size >= 512) && (rx_pkt_size < 1024)) {
if (coal_conf->rx_coal_type != MEDIUM_COALESCE) {
coal_conf->rx_timeout = 1;
coal_conf->rx_event_count = 4;
amd8111e_set_coalesce(dev, RX_INTR_COAL);
coal_conf->rx_coal_type = MEDIUM_COALESCE;
}
} else if (rx_pkt_size >= 1024) {
if (coal_conf->rx_coal_type != HIGH_COALESCE) {
coal_conf->rx_timeout = 2;
coal_conf->rx_event_count = 3;
amd8111e_set_coalesce(dev, RX_INTR_COAL);
coal_conf->rx_coal_type = HIGH_COALESCE;
}
}
}
/* NOW FOR TX INTR COALESC */
if (tx_pkt_rate < 800) {
if (coal_conf->tx_coal_type != NO_COALESCE) {
coal_conf->tx_timeout = 0x0;
coal_conf->tx_event_count = 0;
amd8111e_set_coalesce(dev, TX_INTR_COAL);
coal_conf->tx_coal_type = NO_COALESCE;
}
} else {
tx_pkt_size = tx_data_rate/tx_pkt_rate;
if (tx_pkt_size < 128) {
if (coal_conf->tx_coal_type != NO_COALESCE) {
coal_conf->tx_timeout = 0;
coal_conf->tx_event_count = 0;
amd8111e_set_coalesce(dev, TX_INTR_COAL);
coal_conf->tx_coal_type = NO_COALESCE;
}
} else if ((tx_pkt_size >= 128) && (tx_pkt_size < 512)) {
if (coal_conf->tx_coal_type != LOW_COALESCE) {
coal_conf->tx_timeout = 1;
coal_conf->tx_event_count = 2;
amd8111e_set_coalesce(dev, TX_INTR_COAL);
coal_conf->tx_coal_type = LOW_COALESCE;
}
} else if ((tx_pkt_size >= 512) && (tx_pkt_size < 1024)) {
if (coal_conf->tx_coal_type != MEDIUM_COALESCE) {
coal_conf->tx_timeout = 2;
coal_conf->tx_event_count = 5;
amd8111e_set_coalesce(dev, TX_INTR_COAL);
coal_conf->tx_coal_type = MEDIUM_COALESCE;
}
} else if (tx_pkt_size >= 1024) {
if (coal_conf->tx_coal_type != HIGH_COALESCE) {
coal_conf->tx_timeout = 4;
coal_conf->tx_event_count = 8;
amd8111e_set_coalesce(dev, TX_INTR_COAL);
coal_conf->tx_coal_type = HIGH_COALESCE;
}
}
}
return 0;
}
/* This is device interrupt function. It handles transmit,
* receive,link change and hardware timer interrupts.
*/
static irqreturn_t amd8111e_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct amd8111e_priv *lp = netdev_priv(dev);
void __iomem *mmio = lp->mmio;
unsigned int intr0, intren0;
unsigned int handled = 1;
if (unlikely(dev == NULL))
return IRQ_NONE;
spin_lock(&lp->lock);
/* disabling interrupt */
writel(INTREN, mmio + CMD0);
/* Read interrupt status */
intr0 = readl(mmio + INT0);
intren0 = readl(mmio + INTEN0);
/* Process all the INT event until INTR bit is clear. */
if (!(intr0 & INTR)) {
handled = 0;
goto err_no_interrupt;
}
/* Current driver processes 4 interrupts : RINT,TINT,LCINT,STINT */
writel(intr0, mmio + INT0);
/* Check if Receive Interrupt has occurred. */
if (intr0 & RINT0) {
if (napi_schedule_prep(&lp->napi)) {
/* Disable receive interupts */
writel(RINTEN0, mmio + INTEN0);
/* Schedule a polling routine */
__napi_schedule(&lp->napi);
} else if (intren0 & RINTEN0) {
netdev_dbg(dev, "************Driver bug! interrupt while in poll\n");
/* Fix by disable receive interrupts */
writel(RINTEN0, mmio + INTEN0);
}
}
/* Check if Transmit Interrupt has occurred. */
if (intr0 & TINT0)
amd8111e_tx(dev);
/* Check if Link Change Interrupt has occurred. */
if (intr0 & LCINT)
amd8111e_link_change(dev);
/* Check if Hardware Timer Interrupt has occurred. */
if (intr0 & STINT)
amd8111e_calc_coalesce(dev);
err_no_interrupt:
writel(VAL0 | INTREN, mmio + CMD0);
spin_unlock(&lp->lock);
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void amd8111e_poll(struct net_device *dev)
{
unsigned long flags;
local_irq_save(flags);
amd8111e_interrupt(0, dev);
local_irq_restore(flags);
}
#endif
/* This function closes the network interface and updates
* the statistics so that most recent statistics will be
* available after the interface is down.
*/
static int amd8111e_close(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
netif_stop_queue(dev);
napi_disable(&lp->napi);
spin_lock_irq(&lp->lock);
amd8111e_disable_interrupt(lp);
amd8111e_stop_chip(lp);
/* Free transmit and receive skbs */
amd8111e_free_skbs(lp->amd8111e_net_dev);
netif_carrier_off(lp->amd8111e_net_dev);
/* Delete ipg timer */
if (lp->options & OPTION_DYN_IPG_ENABLE)
del_timer_sync(&lp->ipg_data.ipg_timer);
spin_unlock_irq(&lp->lock);
free_irq(dev->irq, dev);
amd8111e_free_ring(lp);
/* Update the statistics before closing */
amd8111e_get_stats(dev);
lp->opened = 0;
return 0;
}
/* This function opens new interface.It requests irq for the device,
* initializes the device,buffers and descriptors, and starts the device.
*/
static int amd8111e_open(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
if (dev->irq == 0 || request_irq(dev->irq, amd8111e_interrupt,
IRQF_SHARED, dev->name, dev))
return -EAGAIN;
napi_enable(&lp->napi);
spin_lock_irq(&lp->lock);
amd8111e_init_hw_default(lp);
if (amd8111e_restart(dev)) {
spin_unlock_irq(&lp->lock);
napi_disable(&lp->napi);
if (dev->irq)
free_irq(dev->irq, dev);
return -ENOMEM;
}
/* Start ipg timer */
if (lp->options & OPTION_DYN_IPG_ENABLE) {
add_timer(&lp->ipg_data.ipg_timer);
netdev_info(dev, "Dynamic IPG Enabled\n");
}
lp->opened = 1;
spin_unlock_irq(&lp->lock);
netif_start_queue(dev);
return 0;
}
/* This function checks if there is any transmit descriptors
* available to queue more packet.
*/
static int amd8111e_tx_queue_avail(struct amd8111e_priv *lp)
{
int tx_index = lp->tx_idx & TX_BUFF_MOD_MASK;
if (lp->tx_skbuff[tx_index])
return -1;
else
return 0;
}
/* This function will queue the transmit packets to the
* descriptors and will trigger the send operation. It also
* initializes the transmit descriptors with buffer physical address,
* byte count, ownership to hardware etc.
*/
static netdev_tx_t amd8111e_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int tx_index;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
tx_index = lp->tx_idx & TX_RING_DR_MOD_MASK;
lp->tx_ring[tx_index].buff_count = cpu_to_le16(skb->len);
lp->tx_skbuff[tx_index] = skb;
lp->tx_ring[tx_index].tx_flags = 0;
#if AMD8111E_VLAN_TAG_USED
if (skb_vlan_tag_present(skb)) {
lp->tx_ring[tx_index].tag_ctrl_cmd |=
cpu_to_le16(TCC_VLAN_INSERT);
lp->tx_ring[tx_index].tag_ctrl_info =
cpu_to_le16(skb_vlan_tag_get(skb));
}
#endif
lp->tx_dma_addr[tx_index] =
dma_map_single(&lp->pci_dev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
lp->tx_ring[tx_index].buff_phy_addr =
cpu_to_le32(lp->tx_dma_addr[tx_index]);
/* Set FCS and LTINT bits */
wmb();
lp->tx_ring[tx_index].tx_flags |=
cpu_to_le16(OWN_BIT | STP_BIT | ENP_BIT|ADD_FCS_BIT|LTINT_BIT);
lp->tx_idx++;
/* Trigger an immediate send poll. */
writel(VAL1 | TDMD0, lp->mmio + CMD0);
writel(VAL2 | RDMD0, lp->mmio + CMD0);
if (amd8111e_tx_queue_avail(lp) < 0) {
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
/* This function returns all the memory mapped registers of the device. */
static void amd8111e_read_regs(struct amd8111e_priv *lp, u32 *buf)
{
void __iomem *mmio = lp->mmio;
/* Read only necessary registers */
buf[0] = readl(mmio + XMT_RING_BASE_ADDR0);
buf[1] = readl(mmio + XMT_RING_LEN0);
buf[2] = readl(mmio + RCV_RING_BASE_ADDR0);
buf[3] = readl(mmio + RCV_RING_LEN0);
buf[4] = readl(mmio + CMD0);
buf[5] = readl(mmio + CMD2);
buf[6] = readl(mmio + CMD3);
buf[7] = readl(mmio + CMD7);
buf[8] = readl(mmio + INT0);
buf[9] = readl(mmio + INTEN0);
buf[10] = readl(mmio + LADRF);
buf[11] = readl(mmio + LADRF+4);
buf[12] = readl(mmio + STAT0);
}
/* This function sets promiscuos mode, all-multi mode or the multicast address
* list to the device.
*/
static void amd8111e_set_multicast_list(struct net_device *dev)
{
struct netdev_hw_addr *ha;
struct amd8111e_priv *lp = netdev_priv(dev);
u32 mc_filter[2];
int bit_num;
if (dev->flags & IFF_PROMISC) {
writel(VAL2 | PROM, lp->mmio + CMD2);
return;
}
else
writel(PROM, lp->mmio + CMD2);
if (dev->flags & IFF_ALLMULTI ||
netdev_mc_count(dev) > MAX_FILTER_SIZE) {
/* get all multicast packet */
mc_filter[1] = mc_filter[0] = 0xffffffff;
lp->options |= OPTION_MULTICAST_ENABLE;
amd8111e_writeq(*(u64 *)mc_filter, lp->mmio + LADRF);
return;
}
if (netdev_mc_empty(dev)) {
/* get only own packets */
mc_filter[1] = mc_filter[0] = 0;
lp->options &= ~OPTION_MULTICAST_ENABLE;
amd8111e_writeq(*(u64 *)mc_filter, lp->mmio + LADRF);
/* disable promiscuous mode */
writel(PROM, lp->mmio + CMD2);
return;
}
/* load all the multicast addresses in the logic filter */
lp->options |= OPTION_MULTICAST_ENABLE;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
bit_num = (ether_crc_le(ETH_ALEN, ha->addr) >> 26) & 0x3f;
mc_filter[bit_num >> 5] |= 1 << (bit_num & 31);
}
amd8111e_writeq(*(u64 *)mc_filter, lp->mmio + LADRF);
/* To eliminate PCI posting bug */
readl(lp->mmio + CMD2);
}
static void amd8111e_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct amd8111e_priv *lp = netdev_priv(dev);
struct pci_dev *pci_dev = lp->pci_dev;
strlcpy(info->driver, MODULE_NAME, sizeof(info->driver));
snprintf(info->fw_version, sizeof(info->fw_version),
"%u", chip_version);
strlcpy(info->bus_info, pci_name(pci_dev), sizeof(info->bus_info));
}
static int amd8111e_get_regs_len(struct net_device *dev)
{
return AMD8111E_REG_DUMP_LEN;
}
static void amd8111e_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
{
struct amd8111e_priv *lp = netdev_priv(dev);
regs->version = 0;
amd8111e_read_regs(lp, buf);
}
static int amd8111e_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct amd8111e_priv *lp = netdev_priv(dev);
spin_lock_irq(&lp->lock);
mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
spin_unlock_irq(&lp->lock);
return 0;
}
static int amd8111e_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int res;
spin_lock_irq(&lp->lock);
res = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
spin_unlock_irq(&lp->lock);
return res;
}
static int amd8111e_nway_reset(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
return mii_nway_restart(&lp->mii_if);
}
static u32 amd8111e_get_link(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
return mii_link_ok(&lp->mii_if);
}
static void amd8111e_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol_info)
{
struct amd8111e_priv *lp = netdev_priv(dev);
wol_info->supported = WAKE_MAGIC|WAKE_PHY;
if (lp->options & OPTION_WOL_ENABLE)
wol_info->wolopts = WAKE_MAGIC;
}
static int amd8111e_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol_info)
{
struct amd8111e_priv *lp = netdev_priv(dev);
if (wol_info->wolopts & ~(WAKE_MAGIC|WAKE_PHY))
return -EINVAL;
spin_lock_irq(&lp->lock);
if (wol_info->wolopts & WAKE_MAGIC)
lp->options |=
(OPTION_WOL_ENABLE | OPTION_WAKE_MAGIC_ENABLE);
else if (wol_info->wolopts & WAKE_PHY)
lp->options |=
(OPTION_WOL_ENABLE | OPTION_WAKE_PHY_ENABLE);
else
lp->options &= ~OPTION_WOL_ENABLE;
spin_unlock_irq(&lp->lock);
return 0;
}
static const struct ethtool_ops ops = {
.get_drvinfo = amd8111e_get_drvinfo,
.get_regs_len = amd8111e_get_regs_len,
.get_regs = amd8111e_get_regs,
.nway_reset = amd8111e_nway_reset,
.get_link = amd8111e_get_link,
.get_wol = amd8111e_get_wol,
.set_wol = amd8111e_set_wol,
.get_link_ksettings = amd8111e_get_link_ksettings,
.set_link_ksettings = amd8111e_set_link_ksettings,
};
/* This function handles all the ethtool ioctls. It gives driver info,
* gets/sets driver speed, gets memory mapped register values, forces
* auto negotiation, sets/gets WOL options for ethtool application.
*/
static int amd8111e_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct amd8111e_priv *lp = netdev_priv(dev);
int err;
u32 mii_regval;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = lp->ext_phy_addr;
fallthrough;
case SIOCGMIIREG:
spin_lock_irq(&lp->lock);
err = amd8111e_read_phy(lp, data->phy_id,
data->reg_num & PHY_REG_ADDR_MASK, &mii_regval);
spin_unlock_irq(&lp->lock);
data->val_out = mii_regval;
return err;
case SIOCSMIIREG:
spin_lock_irq(&lp->lock);
err = amd8111e_write_phy(lp, data->phy_id,
data->reg_num & PHY_REG_ADDR_MASK, data->val_in);
spin_unlock_irq(&lp->lock);
return err;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
static int amd8111e_set_mac_address(struct net_device *dev, void *p)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int i;
struct sockaddr *addr = p;
eth_hw_addr_set(dev, addr->sa_data);
spin_lock_irq(&lp->lock);
/* Setting the MAC address to the device */
for (i = 0; i < ETH_ALEN; i++)
writeb(dev->dev_addr[i], lp->mmio + PADR + i);
spin_unlock_irq(&lp->lock);
return 0;
}
/* This function changes the mtu of the device. It restarts the device to
* initialize the descriptor with new receive buffers.
*/
static int amd8111e_change_mtu(struct net_device *dev, int new_mtu)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int err;
if (!netif_running(dev)) {
/* new_mtu will be used
* when device starts netxt time
*/
dev->mtu = new_mtu;
return 0;
}
spin_lock_irq(&lp->lock);
/* stop the chip */
writel(RUN, lp->mmio + CMD0);
dev->mtu = new_mtu;
err = amd8111e_restart(dev);
spin_unlock_irq(&lp->lock);
if (!err)
netif_start_queue(dev);
return err;
}
static int amd8111e_enable_magicpkt(struct amd8111e_priv *lp)
{
writel(VAL1 | MPPLBA, lp->mmio + CMD3);
writel(VAL0 | MPEN_SW, lp->mmio + CMD7);
/* To eliminate PCI posting bug */
readl(lp->mmio + CMD7);
return 0;
}
static int amd8111e_enable_link_change(struct amd8111e_priv *lp)
{
/* Adapter is already stoped/suspended/interrupt-disabled */
writel(VAL0 | LCMODE_SW, lp->mmio + CMD7);
/* To eliminate PCI posting bug */
readl(lp->mmio + CMD7);
return 0;
}
/* This function is called when a packet transmission fails to complete
* within a reasonable period, on the assumption that an interrupt have
* failed or the interface is locked up. This function will reinitialize
* the hardware.
*/
static void amd8111e_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int err;
netdev_err(dev, "transmit timed out, resetting\n");
spin_lock_irq(&lp->lock);
err = amd8111e_restart(dev);
spin_unlock_irq(&lp->lock);
if (!err)
netif_wake_queue(dev);
}
static int __maybe_unused amd8111e_suspend(struct device *dev_d)
{
struct net_device *dev = dev_get_drvdata(dev_d);
struct amd8111e_priv *lp = netdev_priv(dev);
if (!netif_running(dev))
return 0;
/* disable the interrupt */
spin_lock_irq(&lp->lock);
amd8111e_disable_interrupt(lp);
spin_unlock_irq(&lp->lock);
netif_device_detach(dev);
/* stop chip */
spin_lock_irq(&lp->lock);
if (lp->options & OPTION_DYN_IPG_ENABLE)
del_timer_sync(&lp->ipg_data.ipg_timer);
amd8111e_stop_chip(lp);
spin_unlock_irq(&lp->lock);
if (lp->options & OPTION_WOL_ENABLE) {
/* enable wol */
if (lp->options & OPTION_WAKE_MAGIC_ENABLE)
amd8111e_enable_magicpkt(lp);
if (lp->options & OPTION_WAKE_PHY_ENABLE)
amd8111e_enable_link_change(lp);
device_set_wakeup_enable(dev_d, 1);
} else {
device_set_wakeup_enable(dev_d, 0);
}
return 0;
}
static int __maybe_unused amd8111e_resume(struct device *dev_d)
{
struct net_device *dev = dev_get_drvdata(dev_d);
struct amd8111e_priv *lp = netdev_priv(dev);
if (!netif_running(dev))
return 0;
netif_device_attach(dev);
spin_lock_irq(&lp->lock);
amd8111e_restart(dev);
/* Restart ipg timer */
if (lp->options & OPTION_DYN_IPG_ENABLE)
mod_timer(&lp->ipg_data.ipg_timer,
jiffies + IPG_CONVERGE_JIFFIES);
spin_unlock_irq(&lp->lock);
return 0;
}
static void amd8111e_config_ipg(struct timer_list *t)
{
struct amd8111e_priv *lp = from_timer(lp, t, ipg_data.ipg_timer);
struct ipg_info *ipg_data = &lp->ipg_data;
void __iomem *mmio = lp->mmio;
unsigned int prev_col_cnt = ipg_data->col_cnt;
unsigned int total_col_cnt;
unsigned int tmp_ipg;
if (lp->link_config.duplex == DUPLEX_FULL) {
ipg_data->ipg = DEFAULT_IPG;
return;
}
if (ipg_data->ipg_state == SSTATE) {
if (ipg_data->timer_tick == IPG_STABLE_TIME) {
ipg_data->timer_tick = 0;
ipg_data->ipg = MIN_IPG - IPG_STEP;
ipg_data->current_ipg = MIN_IPG;
ipg_data->diff_col_cnt = 0xFFFFFFFF;
ipg_data->ipg_state = CSTATE;
}
else
ipg_data->timer_tick++;
}
if (ipg_data->ipg_state == CSTATE) {
/* Get the current collision count */
total_col_cnt = ipg_data->col_cnt =
amd8111e_read_mib(mmio, xmt_collisions);
if ((total_col_cnt - prev_col_cnt) <
(ipg_data->diff_col_cnt)) {
ipg_data->diff_col_cnt =
total_col_cnt - prev_col_cnt;
ipg_data->ipg = ipg_data->current_ipg;
}
ipg_data->current_ipg += IPG_STEP;
if (ipg_data->current_ipg <= MAX_IPG)
tmp_ipg = ipg_data->current_ipg;
else {
tmp_ipg = ipg_data->ipg;
ipg_data->ipg_state = SSTATE;
}
writew((u32)tmp_ipg, mmio + IPG);
writew((u32)(tmp_ipg - IFS1_DELTA), mmio + IFS1);
}
mod_timer(&lp->ipg_data.ipg_timer, jiffies + IPG_CONVERGE_JIFFIES);
return;
}
static void amd8111e_probe_ext_phy(struct net_device *dev)
{
struct amd8111e_priv *lp = netdev_priv(dev);
int i;
for (i = 0x1e; i >= 0; i--) {
u32 id1, id2;
if (amd8111e_read_phy(lp, i, MII_PHYSID1, &id1))
continue;
if (amd8111e_read_phy(lp, i, MII_PHYSID2, &id2))
continue;
lp->ext_phy_id = (id1 << 16) | id2;
lp->ext_phy_addr = i;
return;
}
lp->ext_phy_id = 0;
lp->ext_phy_addr = 1;
}
static const struct net_device_ops amd8111e_netdev_ops = {
.ndo_open = amd8111e_open,
.ndo_stop = amd8111e_close,
.ndo_start_xmit = amd8111e_start_xmit,
.ndo_tx_timeout = amd8111e_tx_timeout,
.ndo_get_stats = amd8111e_get_stats,
.ndo_set_rx_mode = amd8111e_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = amd8111e_set_mac_address,
.ndo_eth_ioctl = amd8111e_ioctl,
.ndo_change_mtu = amd8111e_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = amd8111e_poll,
#endif
};
static int amd8111e_probe_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err, i;
unsigned long reg_addr, reg_len;
struct amd8111e_priv *lp;
struct net_device *dev;
u8 addr[ETH_ALEN];
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable new PCI device\n");
return err;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev, "Cannot find PCI base address\n");
err = -ENODEV;
goto err_disable_pdev;
}
err = pci_request_regions(pdev, MODULE_NAME);
if (err) {
dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
goto err_disable_pdev;
}
pci_set_master(pdev);
/* Find power-management capability. */
if (!pdev->pm_cap) {
dev_err(&pdev->dev, "No Power Management capability\n");
err = -ENODEV;
goto err_free_reg;
}
/* Initialize DMA */
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) < 0) {
dev_err(&pdev->dev, "DMA not supported\n");
err = -ENODEV;
goto err_free_reg;
}
reg_addr = pci_resource_start(pdev, 0);
reg_len = pci_resource_len(pdev, 0);
dev = alloc_etherdev(sizeof(struct amd8111e_priv));
if (!dev) {
err = -ENOMEM;
goto err_free_reg;
}
SET_NETDEV_DEV(dev, &pdev->dev);
#if AMD8111E_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
#endif
lp = netdev_priv(dev);
lp->pci_dev = pdev;
lp->amd8111e_net_dev = dev;
lp->pm_cap = pdev->pm_cap;
spin_lock_init(&lp->lock);
lp->mmio = devm_ioremap(&pdev->dev, reg_addr, reg_len);
if (!lp->mmio) {
dev_err(&pdev->dev, "Cannot map device registers\n");
err = -ENOMEM;
goto err_free_dev;
}
/* Initializing MAC address */
for (i = 0; i < ETH_ALEN; i++)
addr[i] = readb(lp->mmio + PADR + i);
eth_hw_addr_set(dev, addr);
/* Setting user defined parametrs */
lp->ext_phy_option = speed_duplex[card_idx];
if (coalesce[card_idx])
lp->options |= OPTION_INTR_COAL_ENABLE;
if (dynamic_ipg[card_idx++])
lp->options |= OPTION_DYN_IPG_ENABLE;
/* Initialize driver entry points */
dev->netdev_ops = &amd8111e_netdev_ops;
dev->ethtool_ops = &ops;
dev->irq = pdev->irq;
dev->watchdog_timeo = AMD8111E_TX_TIMEOUT;
dev->min_mtu = AMD8111E_MIN_MTU;
dev->max_mtu = AMD8111E_MAX_MTU;
netif_napi_add(dev, &lp->napi, amd8111e_rx_poll, 32);
#if AMD8111E_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
#endif
/* Probe the external PHY */
amd8111e_probe_ext_phy(dev);
/* setting mii default values */
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = amd8111e_mdio_read;
lp->mii_if.mdio_write = amd8111e_mdio_write;
lp->mii_if.phy_id = lp->ext_phy_addr;
/* Set receive buffer length and set jumbo option*/
amd8111e_set_rx_buff_len(dev);
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "Cannot register net device\n");
goto err_free_dev;
}
pci_set_drvdata(pdev, dev);
/* Initialize software ipg timer */
if (lp->options & OPTION_DYN_IPG_ENABLE) {
timer_setup(&lp->ipg_data.ipg_timer, amd8111e_config_ipg, 0);
lp->ipg_data.ipg_timer.expires = jiffies +
IPG_CONVERGE_JIFFIES;
lp->ipg_data.ipg = DEFAULT_IPG;
lp->ipg_data.ipg_state = CSTATE;
}
/* display driver and device information */
chip_version = (readl(lp->mmio + CHIPID) & 0xf0000000) >> 28;
dev_info(&pdev->dev, "[ Rev %x ] PCI 10/100BaseT Ethernet %pM\n",
chip_version, dev->dev_addr);
if (lp->ext_phy_id)
dev_info(&pdev->dev, "Found MII PHY ID 0x%08x at address 0x%02x\n",
lp->ext_phy_id, lp->ext_phy_addr);
else
dev_info(&pdev->dev, "Couldn't detect MII PHY, assuming address 0x01\n");
return 0;
err_free_dev:
free_netdev(dev);
err_free_reg:
pci_release_regions(pdev);
err_disable_pdev:
pci_disable_device(pdev);
return err;
}
static void amd8111e_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
unregister_netdev(dev);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
}
static const struct pci_device_id amd8111e_pci_tbl[] = {
{
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD8111E_7462,
},
{
.vendor = 0,
}
};
MODULE_DEVICE_TABLE(pci, amd8111e_pci_tbl);
static SIMPLE_DEV_PM_OPS(amd8111e_pm_ops, amd8111e_suspend, amd8111e_resume);
static struct pci_driver amd8111e_driver = {
.name = MODULE_NAME,
.id_table = amd8111e_pci_tbl,
.probe = amd8111e_probe_one,
.remove = amd8111e_remove_one,
.driver.pm = &amd8111e_pm_ops
};
module_pci_driver(amd8111e_driver);