| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (C) 2018 Spreadtrum Communications Inc. |
| |
| #include <linux/gpio/consumer.h> |
| #include <linux/iio/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/math64.h> |
| #include <linux/module.h> |
| #include <linux/nvmem-consumer.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/power_supply.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| |
| /* PMIC global control registers definition */ |
| #define SC27XX_MODULE_EN0 0xc08 |
| #define SC27XX_CLK_EN0 0xc18 |
| #define SC27XX_FGU_EN BIT(7) |
| #define SC27XX_FGU_RTC_EN BIT(6) |
| |
| /* FGU registers definition */ |
| #define SC27XX_FGU_START 0x0 |
| #define SC27XX_FGU_CONFIG 0x4 |
| #define SC27XX_FGU_ADC_CONFIG 0x8 |
| #define SC27XX_FGU_STATUS 0xc |
| #define SC27XX_FGU_INT_EN 0x10 |
| #define SC27XX_FGU_INT_CLR 0x14 |
| #define SC27XX_FGU_INT_STS 0x1c |
| #define SC27XX_FGU_VOLTAGE 0x20 |
| #define SC27XX_FGU_OCV 0x24 |
| #define SC27XX_FGU_POCV 0x28 |
| #define SC27XX_FGU_CURRENT 0x2c |
| #define SC27XX_FGU_LOW_OVERLOAD 0x34 |
| #define SC27XX_FGU_CLBCNT_SETH 0x50 |
| #define SC27XX_FGU_CLBCNT_SETL 0x54 |
| #define SC27XX_FGU_CLBCNT_DELTH 0x58 |
| #define SC27XX_FGU_CLBCNT_DELTL 0x5c |
| #define SC27XX_FGU_CLBCNT_VALH 0x68 |
| #define SC27XX_FGU_CLBCNT_VALL 0x6c |
| #define SC27XX_FGU_CLBCNT_QMAXL 0x74 |
| #define SC27XX_FGU_USER_AREA_SET 0xa0 |
| #define SC27XX_FGU_USER_AREA_CLEAR 0xa4 |
| #define SC27XX_FGU_USER_AREA_STATUS 0xa8 |
| #define SC27XX_FGU_VOLTAGE_BUF 0xd0 |
| #define SC27XX_FGU_CURRENT_BUF 0xf0 |
| |
| #define SC27XX_WRITE_SELCLB_EN BIT(0) |
| #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0) |
| #define SC27XX_FGU_CLBCNT_SHIFT 16 |
| #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0) |
| |
| #define SC27XX_FGU_INT_MASK GENMASK(9, 0) |
| #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0) |
| #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2) |
| |
| #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12) |
| #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0) |
| #define SC27XX_FGU_MODE_AREA_SHIFT 12 |
| |
| #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0) |
| #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0) |
| #define SC27XX_FGU_NORMAIL_POWERTON 0x5 |
| |
| #define SC27XX_FGU_CUR_BASIC_ADC 8192 |
| #define SC27XX_FGU_SAMPLE_HZ 2 |
| /* micro Ohms */ |
| #define SC27XX_FGU_IDEAL_RESISTANCE 20000 |
| |
| /* |
| * struct sc27xx_fgu_data: describe the FGU device |
| * @regmap: regmap for register access |
| * @dev: platform device |
| * @battery: battery power supply |
| * @base: the base offset for the controller |
| * @lock: protect the structure |
| * @gpiod: GPIO for battery detection |
| * @channel: IIO channel to get battery temperature |
| * @charge_chan: IIO channel to get charge voltage |
| * @internal_resist: the battery internal resistance in mOhm |
| * @total_cap: the total capacity of the battery in mAh |
| * @init_cap: the initial capacity of the battery in mAh |
| * @alarm_cap: the alarm capacity |
| * @init_clbcnt: the initial coulomb counter |
| * @max_volt: the maximum constant input voltage in millivolt |
| * @min_volt: the minimum drained battery voltage in microvolt |
| * @boot_volt: the voltage measured during boot in microvolt |
| * @table_len: the capacity table length |
| * @resist_table_len: the resistance table length |
| * @cur_1000ma_adc: ADC value corresponding to 1000 mA |
| * @vol_1000mv_adc: ADC value corresponding to 1000 mV |
| * @calib_resist: the real resistance of coulomb counter chip in uOhm |
| * @cap_table: capacity table with corresponding ocv |
| * @resist_table: resistance percent table with corresponding temperature |
| */ |
| struct sc27xx_fgu_data { |
| struct regmap *regmap; |
| struct device *dev; |
| struct power_supply *battery; |
| u32 base; |
| struct mutex lock; |
| struct gpio_desc *gpiod; |
| struct iio_channel *channel; |
| struct iio_channel *charge_chan; |
| bool bat_present; |
| int internal_resist; |
| int total_cap; |
| int init_cap; |
| int alarm_cap; |
| int init_clbcnt; |
| int max_volt; |
| int min_volt; |
| int boot_volt; |
| int table_len; |
| int resist_table_len; |
| int cur_1000ma_adc; |
| int vol_1000mv_adc; |
| int calib_resist; |
| struct power_supply_battery_ocv_table *cap_table; |
| struct power_supply_resistance_temp_table *resist_table; |
| }; |
| |
| static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity); |
| static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data, |
| int cap, bool int_mode); |
| static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap); |
| static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp); |
| |
| static const char * const sc27xx_charger_supply_name[] = { |
| "sc2731_charger", |
| "sc2720_charger", |
| "sc2721_charger", |
| "sc2723_charger", |
| }; |
| |
| static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc) |
| { |
| return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc); |
| } |
| |
| static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc) |
| { |
| return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc); |
| } |
| |
| static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol) |
| { |
| return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000); |
| } |
| |
| static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data) |
| { |
| int ret, status, cap, mode; |
| |
| ret = regmap_read(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_STATUS, &status); |
| if (ret) |
| return false; |
| |
| /* |
| * We use low 4 bits to save the last battery capacity and high 12 bits |
| * to save the system boot mode. |
| */ |
| mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT; |
| cap = status & SC27XX_FGU_CAP_AREA_MASK; |
| |
| /* |
| * When FGU has been powered down, the user area registers became |
| * default value (0xffff), which can be used to valid if the system is |
| * first power on or not. |
| */ |
| if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP) |
| return true; |
| |
| return false; |
| } |
| |
| static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data, |
| int boot_mode) |
| { |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_CLEAR, |
| SC27XX_FGU_MODE_AREA_MASK, |
| SC27XX_FGU_MODE_AREA_MASK); |
| if (ret) |
| return ret; |
| |
| /* |
| * Since the user area registers are put on power always-on region, |
| * then these registers changing time will be a little long. Thus |
| * here we should delay 200us to wait until values are updated |
| * successfully according to the datasheet. |
| */ |
| udelay(200); |
| |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_SET, |
| SC27XX_FGU_MODE_AREA_MASK, |
| boot_mode << SC27XX_FGU_MODE_AREA_SHIFT); |
| if (ret) |
| return ret; |
| |
| /* |
| * Since the user area registers are put on power always-on region, |
| * then these registers changing time will be a little long. Thus |
| * here we should delay 200us to wait until values are updated |
| * successfully according to the datasheet. |
| */ |
| udelay(200); |
| |
| /* |
| * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to |
| * make the user area data available, otherwise we can not save the user |
| * area data. |
| */ |
| return regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_CLEAR, |
| SC27XX_FGU_MODE_AREA_MASK, 0); |
| } |
| |
| static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap) |
| { |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_CLEAR, |
| SC27XX_FGU_CAP_AREA_MASK, |
| SC27XX_FGU_CAP_AREA_MASK); |
| if (ret) |
| return ret; |
| |
| /* |
| * Since the user area registers are put on power always-on region, |
| * then these registers changing time will be a little long. Thus |
| * here we should delay 200us to wait until values are updated |
| * successfully according to the datasheet. |
| */ |
| udelay(200); |
| |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_SET, |
| SC27XX_FGU_CAP_AREA_MASK, cap); |
| if (ret) |
| return ret; |
| |
| /* |
| * Since the user area registers are put on power always-on region, |
| * then these registers changing time will be a little long. Thus |
| * here we should delay 200us to wait until values are updated |
| * successfully according to the datasheet. |
| */ |
| udelay(200); |
| |
| /* |
| * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to |
| * make the user area data available, otherwise we can not save the user |
| * area data. |
| */ |
| return regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_CLEAR, |
| SC27XX_FGU_CAP_AREA_MASK, 0); |
| } |
| |
| static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap) |
| { |
| int ret, value; |
| |
| ret = regmap_read(data->regmap, |
| data->base + SC27XX_FGU_USER_AREA_STATUS, &value); |
| if (ret) |
| return ret; |
| |
| *cap = value & SC27XX_FGU_CAP_AREA_MASK; |
| return 0; |
| } |
| |
| /* |
| * When system boots on, we can not read battery capacity from coulomb |
| * registers, since now the coulomb registers are invalid. So we should |
| * calculate the battery open circuit voltage, and get current battery |
| * capacity according to the capacity table. |
| */ |
| static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap) |
| { |
| int volt, cur, oci, ocv, ret; |
| bool is_first_poweron = sc27xx_fgu_is_first_poweron(data); |
| |
| /* |
| * If system is not the first power on, we should use the last saved |
| * battery capacity as the initial battery capacity. Otherwise we should |
| * re-calculate the initial battery capacity. |
| */ |
| if (!is_first_poweron) { |
| ret = sc27xx_fgu_read_last_cap(data, cap); |
| if (ret) |
| return ret; |
| |
| return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON); |
| } |
| |
| /* |
| * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved |
| * the first sampled open circuit current. |
| */ |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL, |
| &cur); |
| if (ret) |
| return ret; |
| |
| cur <<= 1; |
| oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); |
| |
| /* |
| * Should get the OCV from SC27XX_FGU_POCV register at the system |
| * beginning. It is ADC values reading from registers which need to |
| * convert the corresponding voltage. |
| */ |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt); |
| if (ret) |
| return ret; |
| |
| volt = sc27xx_fgu_adc_to_voltage(data, volt); |
| ocv = volt * 1000 - oci * data->internal_resist; |
| data->boot_volt = ocv; |
| |
| /* |
| * Parse the capacity table to look up the correct capacity percent |
| * according to current battery's corresponding OCV values. |
| */ |
| *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, |
| ocv); |
| |
| ret = sc27xx_fgu_save_last_cap(data, *cap); |
| if (ret) |
| return ret; |
| |
| return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON); |
| } |
| |
| static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt) |
| { |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_CLBCNT_SETL, |
| SC27XX_FGU_CLBCNT_MASK, clbcnt); |
| if (ret) |
| return ret; |
| |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_CLBCNT_SETH, |
| SC27XX_FGU_CLBCNT_MASK, |
| clbcnt >> SC27XX_FGU_CLBCNT_SHIFT); |
| if (ret) |
| return ret; |
| |
| return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START, |
| SC27XX_WRITE_SELCLB_EN, |
| SC27XX_WRITE_SELCLB_EN); |
| } |
| |
| static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt) |
| { |
| int ccl, cch, ret; |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL, |
| &ccl); |
| if (ret) |
| return ret; |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH, |
| &cch); |
| if (ret) |
| return ret; |
| |
| *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK; |
| *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT; |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val) |
| { |
| int ret; |
| u32 vol; |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF, |
| &vol); |
| if (ret) |
| return ret; |
| |
| /* |
| * It is ADC values reading from registers which need to convert to |
| * corresponding voltage values. |
| */ |
| *val = sc27xx_fgu_adc_to_voltage(data, vol); |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val) |
| { |
| int ret; |
| u32 cur; |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF, |
| &cur); |
| if (ret) |
| return ret; |
| |
| /* |
| * It is ADC values reading from registers which need to convert to |
| * corresponding current values. |
| */ |
| *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap) |
| { |
| int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp; |
| |
| /* Get current coulomb counters firstly */ |
| ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt); |
| if (ret) |
| return ret; |
| |
| delta_clbcnt = cur_clbcnt - data->init_clbcnt; |
| |
| /* |
| * Convert coulomb counter to delta capacity (mAh), and set multiplier |
| * as 10 to improve the precision. |
| */ |
| temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ); |
| temp = sc27xx_fgu_adc_to_current(data, temp / 1000); |
| |
| /* |
| * Convert to capacity percent of the battery total capacity, |
| * and multiplier is 100 too. |
| */ |
| delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap); |
| *cap = delta_cap + data->init_cap; |
| |
| /* Calibrate the battery capacity in a normal range. */ |
| sc27xx_fgu_capacity_calibration(data, *cap, false); |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val) |
| { |
| int ret, vol; |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol); |
| if (ret) |
| return ret; |
| |
| /* |
| * It is ADC values reading from registers which need to convert to |
| * corresponding voltage values. |
| */ |
| *val = sc27xx_fgu_adc_to_voltage(data, vol); |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val) |
| { |
| int ret, cur; |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur); |
| if (ret) |
| return ret; |
| |
| /* |
| * It is ADC values reading from registers which need to convert to |
| * corresponding current values. |
| */ |
| *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val) |
| { |
| int vol, cur, ret, temp, resistance; |
| |
| ret = sc27xx_fgu_get_vbat_vol(data, &vol); |
| if (ret) |
| return ret; |
| |
| ret = sc27xx_fgu_get_current(data, &cur); |
| if (ret) |
| return ret; |
| |
| resistance = data->internal_resist; |
| if (data->resist_table_len > 0) { |
| ret = sc27xx_fgu_get_temp(data, &temp); |
| if (ret) |
| return ret; |
| |
| resistance = power_supply_temp2resist_simple(data->resist_table, |
| data->resist_table_len, temp); |
| resistance = data->internal_resist * resistance / 100; |
| } |
| |
| /* Return the battery OCV in micro volts. */ |
| *val = vol * 1000 - cur * resistance; |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val) |
| { |
| int ret, vol; |
| |
| ret = iio_read_channel_processed(data->charge_chan, &vol); |
| if (ret < 0) |
| return ret; |
| |
| *val = vol * 1000; |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp) |
| { |
| return iio_read_channel_processed(data->channel, temp); |
| } |
| |
| static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health) |
| { |
| int ret, vol; |
| |
| ret = sc27xx_fgu_get_vbat_vol(data, &vol); |
| if (ret) |
| return ret; |
| |
| if (vol > data->max_volt) |
| *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; |
| else |
| *health = POWER_SUPPLY_HEALTH_GOOD; |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status) |
| { |
| union power_supply_propval val; |
| struct power_supply *psy; |
| int i, ret = -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) { |
| psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]); |
| if (!psy) |
| continue; |
| |
| ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, |
| &val); |
| power_supply_put(psy); |
| if (ret) |
| return ret; |
| |
| *status = val.intval; |
| } |
| |
| return ret; |
| } |
| |
| static int sc27xx_fgu_get_property(struct power_supply *psy, |
| enum power_supply_property psp, |
| union power_supply_propval *val) |
| { |
| struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); |
| int ret = 0; |
| int value; |
| |
| mutex_lock(&data->lock); |
| |
| switch (psp) { |
| case POWER_SUPPLY_PROP_STATUS: |
| ret = sc27xx_fgu_get_status(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value; |
| break; |
| |
| case POWER_SUPPLY_PROP_HEALTH: |
| ret = sc27xx_fgu_get_health(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value; |
| break; |
| |
| case POWER_SUPPLY_PROP_PRESENT: |
| val->intval = data->bat_present; |
| break; |
| |
| case POWER_SUPPLY_PROP_TEMP: |
| ret = sc27xx_fgu_get_temp(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value; |
| break; |
| |
| case POWER_SUPPLY_PROP_TECHNOLOGY: |
| val->intval = POWER_SUPPLY_TECHNOLOGY_LION; |
| break; |
| |
| case POWER_SUPPLY_PROP_CAPACITY: |
| ret = sc27xx_fgu_get_capacity(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value; |
| break; |
| |
| case POWER_SUPPLY_PROP_VOLTAGE_AVG: |
| ret = sc27xx_fgu_get_vbat_vol(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value * 1000; |
| break; |
| |
| case POWER_SUPPLY_PROP_VOLTAGE_OCV: |
| ret = sc27xx_fgu_get_vbat_ocv(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value; |
| break; |
| |
| case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: |
| ret = sc27xx_fgu_get_charge_vol(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value; |
| break; |
| |
| case POWER_SUPPLY_PROP_CURRENT_AVG: |
| ret = sc27xx_fgu_get_current(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value * 1000; |
| break; |
| |
| case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: |
| val->intval = data->total_cap * 1000; |
| break; |
| |
| case POWER_SUPPLY_PROP_CHARGE_NOW: |
| ret = sc27xx_fgu_get_clbcnt(data, &value); |
| if (ret) |
| goto error; |
| |
| value = DIV_ROUND_CLOSEST(value * 10, |
| 36 * SC27XX_FGU_SAMPLE_HZ); |
| val->intval = sc27xx_fgu_adc_to_current(data, value); |
| |
| break; |
| |
| case POWER_SUPPLY_PROP_VOLTAGE_NOW: |
| ret = sc27xx_fgu_get_vol_now(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value * 1000; |
| break; |
| |
| case POWER_SUPPLY_PROP_CURRENT_NOW: |
| ret = sc27xx_fgu_get_cur_now(data, &value); |
| if (ret) |
| goto error; |
| |
| val->intval = value * 1000; |
| break; |
| |
| case POWER_SUPPLY_PROP_VOLTAGE_BOOT: |
| val->intval = data->boot_volt; |
| break; |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| error: |
| mutex_unlock(&data->lock); |
| return ret; |
| } |
| |
| static int sc27xx_fgu_set_property(struct power_supply *psy, |
| enum power_supply_property psp, |
| const union power_supply_propval *val) |
| { |
| struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); |
| int ret; |
| |
| mutex_lock(&data->lock); |
| |
| switch (psp) { |
| case POWER_SUPPLY_PROP_CAPACITY: |
| ret = sc27xx_fgu_save_last_cap(data, val->intval); |
| if (ret < 0) |
| dev_err(data->dev, "failed to save battery capacity\n"); |
| break; |
| |
| case POWER_SUPPLY_PROP_CALIBRATE: |
| sc27xx_fgu_adjust_cap(data, val->intval); |
| ret = 0; |
| break; |
| |
| case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: |
| data->total_cap = val->intval / 1000; |
| ret = 0; |
| break; |
| |
| default: |
| ret = -EINVAL; |
| } |
| |
| mutex_unlock(&data->lock); |
| |
| return ret; |
| } |
| |
| static void sc27xx_fgu_external_power_changed(struct power_supply *psy) |
| { |
| struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); |
| |
| power_supply_changed(data->battery); |
| } |
| |
| static int sc27xx_fgu_property_is_writeable(struct power_supply *psy, |
| enum power_supply_property psp) |
| { |
| return psp == POWER_SUPPLY_PROP_CAPACITY || |
| psp == POWER_SUPPLY_PROP_CALIBRATE || |
| psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN; |
| } |
| |
| static enum power_supply_property sc27xx_fgu_props[] = { |
| POWER_SUPPLY_PROP_STATUS, |
| POWER_SUPPLY_PROP_HEALTH, |
| POWER_SUPPLY_PROP_PRESENT, |
| POWER_SUPPLY_PROP_TEMP, |
| POWER_SUPPLY_PROP_TECHNOLOGY, |
| POWER_SUPPLY_PROP_CAPACITY, |
| POWER_SUPPLY_PROP_VOLTAGE_NOW, |
| POWER_SUPPLY_PROP_VOLTAGE_OCV, |
| POWER_SUPPLY_PROP_VOLTAGE_AVG, |
| POWER_SUPPLY_PROP_VOLTAGE_BOOT, |
| POWER_SUPPLY_PROP_CURRENT_NOW, |
| POWER_SUPPLY_PROP_CURRENT_AVG, |
| POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, |
| POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, |
| POWER_SUPPLY_PROP_CALIBRATE, |
| POWER_SUPPLY_PROP_CHARGE_NOW |
| }; |
| |
| static const struct power_supply_desc sc27xx_fgu_desc = { |
| .name = "sc27xx-fgu", |
| .type = POWER_SUPPLY_TYPE_BATTERY, |
| .properties = sc27xx_fgu_props, |
| .num_properties = ARRAY_SIZE(sc27xx_fgu_props), |
| .get_property = sc27xx_fgu_get_property, |
| .set_property = sc27xx_fgu_set_property, |
| .external_power_changed = sc27xx_fgu_external_power_changed, |
| .property_is_writeable = sc27xx_fgu_property_is_writeable, |
| .no_thermal = true, |
| }; |
| |
| static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap) |
| { |
| int ret; |
| |
| data->init_cap = cap; |
| ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt); |
| if (ret) |
| dev_err(data->dev, "failed to get init coulomb counter\n"); |
| } |
| |
| static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data, |
| int cap, bool int_mode) |
| { |
| int ret, ocv, chg_sts, adc; |
| |
| ret = sc27xx_fgu_get_vbat_ocv(data, &ocv); |
| if (ret) { |
| dev_err(data->dev, "get battery ocv error.\n"); |
| return; |
| } |
| |
| ret = sc27xx_fgu_get_status(data, &chg_sts); |
| if (ret) { |
| dev_err(data->dev, "get charger status error.\n"); |
| return; |
| } |
| |
| /* |
| * If we are in charging mode, then we do not need to calibrate the |
| * lower capacity. |
| */ |
| if (chg_sts == POWER_SUPPLY_STATUS_CHARGING) |
| return; |
| |
| if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) { |
| /* |
| * If current OCV value is larger than the max OCV value in |
| * OCV table, or the current capacity is larger than 100, |
| * we should force the inititial capacity to 100. |
| */ |
| sc27xx_fgu_adjust_cap(data, 100); |
| } else if (ocv <= data->cap_table[data->table_len - 1].ocv) { |
| /* |
| * If current OCV value is leass than the minimum OCV value in |
| * OCV table, we should force the inititial capacity to 0. |
| */ |
| sc27xx_fgu_adjust_cap(data, 0); |
| } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) || |
| (ocv > data->min_volt && cap <= data->alarm_cap)) { |
| /* |
| * If current OCV value is not matchable with current capacity, |
| * we should re-calculate current capacity by looking up the |
| * OCV table. |
| */ |
| int cur_cap = power_supply_ocv2cap_simple(data->cap_table, |
| data->table_len, ocv); |
| |
| sc27xx_fgu_adjust_cap(data, cur_cap); |
| } else if (ocv <= data->min_volt) { |
| /* |
| * If current OCV value is less than the low alarm voltage, but |
| * current capacity is larger than the alarm capacity, we should |
| * adjust the inititial capacity to alarm capacity. |
| */ |
| if (cap > data->alarm_cap) { |
| sc27xx_fgu_adjust_cap(data, data->alarm_cap); |
| } else { |
| int cur_cap; |
| |
| /* |
| * If current capacity is equal with 0 or less than 0 |
| * (some error occurs), we should adjust inititial |
| * capacity to the capacity corresponding to current OCV |
| * value. |
| */ |
| cur_cap = power_supply_ocv2cap_simple(data->cap_table, |
| data->table_len, |
| ocv); |
| sc27xx_fgu_adjust_cap(data, cur_cap); |
| } |
| |
| if (!int_mode) |
| return; |
| |
| /* |
| * After adjusting the battery capacity, we should set the |
| * lowest alarm voltage instead. |
| */ |
| data->min_volt = data->cap_table[data->table_len - 1].ocv; |
| data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table, |
| data->table_len, |
| data->min_volt); |
| |
| adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000); |
| regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_LOW_OVERLOAD, |
| SC27XX_FGU_LOW_OVERLOAD_MASK, adc); |
| } |
| } |
| |
| static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id) |
| { |
| struct sc27xx_fgu_data *data = dev_id; |
| int ret, cap; |
| u32 status; |
| |
| mutex_lock(&data->lock); |
| |
| ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS, |
| &status); |
| if (ret) |
| goto out; |
| |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR, |
| status, status); |
| if (ret) |
| goto out; |
| |
| /* |
| * When low overload voltage interrupt happens, we should calibrate the |
| * battery capacity in lower voltage stage. |
| */ |
| if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT)) |
| goto out; |
| |
| ret = sc27xx_fgu_get_capacity(data, &cap); |
| if (ret) |
| goto out; |
| |
| sc27xx_fgu_capacity_calibration(data, cap, true); |
| |
| out: |
| mutex_unlock(&data->lock); |
| |
| power_supply_changed(data->battery); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id) |
| { |
| struct sc27xx_fgu_data *data = dev_id; |
| int state; |
| |
| mutex_lock(&data->lock); |
| |
| state = gpiod_get_value_cansleep(data->gpiod); |
| if (state < 0) { |
| dev_err(data->dev, "failed to get gpio state\n"); |
| mutex_unlock(&data->lock); |
| return IRQ_RETVAL(state); |
| } |
| |
| data->bat_present = !!state; |
| |
| mutex_unlock(&data->lock); |
| |
| power_supply_changed(data->battery); |
| return IRQ_HANDLED; |
| } |
| |
| static void sc27xx_fgu_disable(void *_data) |
| { |
| struct sc27xx_fgu_data *data = _data; |
| |
| regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0); |
| regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0); |
| } |
| |
| static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity) |
| { |
| /* |
| * Get current capacity (mAh) = battery total capacity (mAh) * |
| * current capacity percent (capacity / 100). |
| */ |
| int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100); |
| |
| /* |
| * Convert current capacity (mAh) to coulomb counter according to the |
| * formula: 1 mAh =3.6 coulomb. |
| */ |
| return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10); |
| } |
| |
| static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data) |
| { |
| struct nvmem_cell *cell; |
| int calib_data, cal_4200mv; |
| void *buf; |
| size_t len; |
| |
| cell = nvmem_cell_get(data->dev, "fgu_calib"); |
| if (IS_ERR(cell)) |
| return PTR_ERR(cell); |
| |
| buf = nvmem_cell_read(cell, &len); |
| nvmem_cell_put(cell); |
| |
| if (IS_ERR(buf)) |
| return PTR_ERR(buf); |
| |
| memcpy(&calib_data, buf, min(len, sizeof(u32))); |
| |
| /* |
| * Get the ADC value corresponding to 4200 mV from eFuse controller |
| * according to below formula. Then convert to ADC values corresponding |
| * to 1000 mV and 1000 mA. |
| */ |
| cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256; |
| data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42); |
| data->cur_1000ma_adc = |
| DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist, |
| SC27XX_FGU_IDEAL_RESISTANCE); |
| |
| kfree(buf); |
| return 0; |
| } |
| |
| static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data) |
| { |
| struct power_supply_battery_info info = { }; |
| struct power_supply_battery_ocv_table *table; |
| int ret, delta_clbcnt, alarm_adc; |
| |
| ret = power_supply_get_battery_info(data->battery, &info); |
| if (ret) { |
| dev_err(data->dev, "failed to get battery information\n"); |
| return ret; |
| } |
| |
| data->total_cap = info.charge_full_design_uah / 1000; |
| data->max_volt = info.constant_charge_voltage_max_uv / 1000; |
| data->internal_resist = info.factory_internal_resistance_uohm / 1000; |
| data->min_volt = info.voltage_min_design_uv; |
| |
| /* |
| * For SC27XX fuel gauge device, we only use one ocv-capacity |
| * table in normal temperature 20 Celsius. |
| */ |
| table = power_supply_find_ocv2cap_table(&info, 20, &data->table_len); |
| if (!table) |
| return -EINVAL; |
| |
| data->cap_table = devm_kmemdup(data->dev, table, |
| data->table_len * sizeof(*table), |
| GFP_KERNEL); |
| if (!data->cap_table) { |
| power_supply_put_battery_info(data->battery, &info); |
| return -ENOMEM; |
| } |
| |
| data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table, |
| data->table_len, |
| data->min_volt); |
| if (!data->alarm_cap) |
| data->alarm_cap += 1; |
| |
| data->resist_table_len = info.resist_table_size; |
| if (data->resist_table_len > 0) { |
| data->resist_table = devm_kmemdup(data->dev, info.resist_table, |
| data->resist_table_len * |
| sizeof(struct power_supply_resistance_temp_table), |
| GFP_KERNEL); |
| if (!data->resist_table) { |
| power_supply_put_battery_info(data->battery, &info); |
| return -ENOMEM; |
| } |
| } |
| |
| power_supply_put_battery_info(data->battery, &info); |
| |
| ret = sc27xx_fgu_calibration(data); |
| if (ret) |
| return ret; |
| |
| /* Enable the FGU module */ |
| ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, |
| SC27XX_FGU_EN, SC27XX_FGU_EN); |
| if (ret) { |
| dev_err(data->dev, "failed to enable fgu\n"); |
| return ret; |
| } |
| |
| /* Enable the FGU RTC clock to make it work */ |
| ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0, |
| SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN); |
| if (ret) { |
| dev_err(data->dev, "failed to enable fgu RTC clock\n"); |
| goto disable_fgu; |
| } |
| |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR, |
| SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK); |
| if (ret) { |
| dev_err(data->dev, "failed to clear interrupt status\n"); |
| goto disable_clk; |
| } |
| |
| /* |
| * Set the voltage low overload threshold, which means when the battery |
| * voltage is lower than this threshold, the controller will generate |
| * one interrupt to notify. |
| */ |
| alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000); |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD, |
| SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc); |
| if (ret) { |
| dev_err(data->dev, "failed to set fgu low overload\n"); |
| goto disable_clk; |
| } |
| |
| /* |
| * Set the coulomb counter delta threshold, that means when the coulomb |
| * counter change is multiples of the delta threshold, the controller |
| * will generate one interrupt to notify the users to update the battery |
| * capacity. Now we set the delta threshold as a counter value of 1% |
| * capacity. |
| */ |
| delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1); |
| |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL, |
| SC27XX_FGU_CLBCNT_MASK, delta_clbcnt); |
| if (ret) { |
| dev_err(data->dev, "failed to set low delta coulomb counter\n"); |
| goto disable_clk; |
| } |
| |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH, |
| SC27XX_FGU_CLBCNT_MASK, |
| delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT); |
| if (ret) { |
| dev_err(data->dev, "failed to set high delta coulomb counter\n"); |
| goto disable_clk; |
| } |
| |
| /* |
| * Get the boot battery capacity when system powers on, which is used to |
| * initialize the coulomb counter. After that, we can read the coulomb |
| * counter to measure the battery capacity. |
| */ |
| ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap); |
| if (ret) { |
| dev_err(data->dev, "failed to get boot capacity\n"); |
| goto disable_clk; |
| } |
| |
| /* |
| * Convert battery capacity to the corresponding initial coulomb counter |
| * and set into coulomb counter registers. |
| */ |
| data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap); |
| ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt); |
| if (ret) { |
| dev_err(data->dev, "failed to initialize coulomb counter\n"); |
| goto disable_clk; |
| } |
| |
| return 0; |
| |
| disable_clk: |
| regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0); |
| disable_fgu: |
| regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0); |
| |
| return ret; |
| } |
| |
| static int sc27xx_fgu_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct power_supply_config fgu_cfg = { }; |
| struct sc27xx_fgu_data *data; |
| int ret, irq; |
| |
| data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->regmap = dev_get_regmap(dev->parent, NULL); |
| if (!data->regmap) { |
| dev_err(dev, "failed to get regmap\n"); |
| return -ENODEV; |
| } |
| |
| ret = device_property_read_u32(dev, "reg", &data->base); |
| if (ret) { |
| dev_err(dev, "failed to get fgu address\n"); |
| return ret; |
| } |
| |
| ret = device_property_read_u32(&pdev->dev, |
| "sprd,calib-resistance-micro-ohms", |
| &data->calib_resist); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "failed to get fgu calibration resistance\n"); |
| return ret; |
| } |
| |
| data->channel = devm_iio_channel_get(dev, "bat-temp"); |
| if (IS_ERR(data->channel)) { |
| dev_err(dev, "failed to get IIO channel\n"); |
| return PTR_ERR(data->channel); |
| } |
| |
| data->charge_chan = devm_iio_channel_get(dev, "charge-vol"); |
| if (IS_ERR(data->charge_chan)) { |
| dev_err(dev, "failed to get charge IIO channel\n"); |
| return PTR_ERR(data->charge_chan); |
| } |
| |
| data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN); |
| if (IS_ERR(data->gpiod)) { |
| dev_err(dev, "failed to get battery detection GPIO\n"); |
| return PTR_ERR(data->gpiod); |
| } |
| |
| ret = gpiod_get_value_cansleep(data->gpiod); |
| if (ret < 0) { |
| dev_err(dev, "failed to get gpio state\n"); |
| return ret; |
| } |
| |
| data->bat_present = !!ret; |
| mutex_init(&data->lock); |
| data->dev = dev; |
| platform_set_drvdata(pdev, data); |
| |
| fgu_cfg.drv_data = data; |
| fgu_cfg.of_node = np; |
| data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc, |
| &fgu_cfg); |
| if (IS_ERR(data->battery)) { |
| dev_err(dev, "failed to register power supply\n"); |
| return PTR_ERR(data->battery); |
| } |
| |
| ret = sc27xx_fgu_hw_init(data); |
| if (ret) { |
| dev_err(dev, "failed to initialize fgu hardware\n"); |
| return ret; |
| } |
| |
| ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data); |
| if (ret) { |
| dev_err(dev, "failed to add fgu disable action\n"); |
| return ret; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_threaded_irq(data->dev, irq, NULL, |
| sc27xx_fgu_interrupt, |
| IRQF_NO_SUSPEND | IRQF_ONESHOT, |
| pdev->name, data); |
| if (ret) { |
| dev_err(data->dev, "failed to request fgu IRQ\n"); |
| return ret; |
| } |
| |
| irq = gpiod_to_irq(data->gpiod); |
| if (irq < 0) { |
| dev_err(dev, "failed to translate GPIO to IRQ\n"); |
| return irq; |
| } |
| |
| ret = devm_request_threaded_irq(dev, irq, NULL, |
| sc27xx_fgu_bat_detection, |
| IRQF_ONESHOT | IRQF_TRIGGER_RISING | |
| IRQF_TRIGGER_FALLING, |
| pdev->name, data); |
| if (ret) { |
| dev_err(dev, "failed to request IRQ\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int sc27xx_fgu_resume(struct device *dev) |
| { |
| struct sc27xx_fgu_data *data = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, |
| SC27XX_FGU_LOW_OVERLOAD_INT | |
| SC27XX_FGU_CLBCNT_DELTA_INT, 0); |
| if (ret) { |
| dev_err(data->dev, "failed to disable fgu interrupts\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int sc27xx_fgu_suspend(struct device *dev) |
| { |
| struct sc27xx_fgu_data *data = dev_get_drvdata(dev); |
| int ret, status, ocv; |
| |
| ret = sc27xx_fgu_get_status(data, &status); |
| if (ret) |
| return ret; |
| |
| /* |
| * If we are charging, then no need to enable the FGU interrupts to |
| * adjust the battery capacity. |
| */ |
| if (status != POWER_SUPPLY_STATUS_NOT_CHARGING && |
| status != POWER_SUPPLY_STATUS_DISCHARGING) |
| return 0; |
| |
| ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, |
| SC27XX_FGU_LOW_OVERLOAD_INT, |
| SC27XX_FGU_LOW_OVERLOAD_INT); |
| if (ret) { |
| dev_err(data->dev, "failed to enable low voltage interrupt\n"); |
| return ret; |
| } |
| |
| ret = sc27xx_fgu_get_vbat_ocv(data, &ocv); |
| if (ret) |
| goto disable_int; |
| |
| /* |
| * If current OCV is less than the minimum voltage, we should enable the |
| * coulomb counter threshold interrupt to notify events to adjust the |
| * battery capacity. |
| */ |
| if (ocv < data->min_volt) { |
| ret = regmap_update_bits(data->regmap, |
| data->base + SC27XX_FGU_INT_EN, |
| SC27XX_FGU_CLBCNT_DELTA_INT, |
| SC27XX_FGU_CLBCNT_DELTA_INT); |
| if (ret) { |
| dev_err(data->dev, |
| "failed to enable coulomb threshold int\n"); |
| goto disable_int; |
| } |
| } |
| |
| return 0; |
| |
| disable_int: |
| regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, |
| SC27XX_FGU_LOW_OVERLOAD_INT, 0); |
| return ret; |
| } |
| #endif |
| |
| static const struct dev_pm_ops sc27xx_fgu_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume) |
| }; |
| |
| static const struct of_device_id sc27xx_fgu_of_match[] = { |
| { .compatible = "sprd,sc2731-fgu", }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match); |
| |
| static struct platform_driver sc27xx_fgu_driver = { |
| .probe = sc27xx_fgu_probe, |
| .driver = { |
| .name = "sc27xx-fgu", |
| .of_match_table = sc27xx_fgu_of_match, |
| .pm = &sc27xx_fgu_pm_ops, |
| } |
| }; |
| |
| module_platform_driver(sc27xx_fgu_driver); |
| |
| MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver"); |
| MODULE_LICENSE("GPL v2"); |