| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020 - Google Inc |
| * Author: Andrew Scull <ascull@google.com> |
| */ |
| |
| #include <kvm/arm_hypercalls.h> |
| |
| #include <hyp/adjust_pc.h> |
| |
| #include <asm/pgtable-types.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_host.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| |
| #include <nvhe/ffa.h> |
| #include <nvhe/mem_protect.h> |
| #include <nvhe/mm.h> |
| #include <nvhe/pkvm.h> |
| #include <nvhe/trap_handler.h> |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <uapi/linux/psci.h> |
| |
| #include "../../sys_regs.h" |
| |
| DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); |
| |
| void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt); |
| |
| typedef void (*hyp_entry_exit_handler_fn)(struct pkvm_hyp_vcpu *); |
| |
| static void handle_pvm_entry_wfx(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| if (vcpu_get_flag(hyp_vcpu->host_vcpu, INCREMENT_PC)) { |
| vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ); |
| kvm_incr_pc(&hyp_vcpu->vcpu); |
| } |
| } |
| |
| static void handle_pvm_entry_psci(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| u32 psci_fn = smccc_get_function(&hyp_vcpu->vcpu); |
| u64 ret = READ_ONCE(hyp_vcpu->host_vcpu->arch.ctxt.regs.regs[0]); |
| |
| switch (psci_fn) { |
| case PSCI_0_2_FN_CPU_ON: |
| case PSCI_0_2_FN64_CPU_ON: |
| /* |
| * Check whether the cpu_on request to the host was successful. |
| * If not, reset the vcpu state from ON_PENDING to OFF. |
| * This could happen if this vcpu attempted to turn on the other |
| * vcpu while the other one is in the process of turning itself |
| * off. |
| */ |
| if (ret != PSCI_RET_SUCCESS) { |
| unsigned long cpu_id = smccc_get_arg1(&hyp_vcpu->vcpu); |
| struct pkvm_hyp_vcpu *target_vcpu; |
| struct pkvm_hyp_vm *hyp_vm; |
| |
| hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| target_vcpu = pkvm_mpidr_to_hyp_vcpu(hyp_vm, cpu_id); |
| |
| if (target_vcpu && READ_ONCE(target_vcpu->power_state) == PSCI_0_2_AFFINITY_LEVEL_ON_PENDING) |
| WRITE_ONCE(target_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_OFF); |
| |
| ret = PSCI_RET_INTERNAL_FAILURE; |
| } |
| |
| break; |
| default: |
| break; |
| } |
| |
| vcpu_set_reg(&hyp_vcpu->vcpu, 0, ret); |
| } |
| |
| static void handle_pvm_entry_hvc64(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| u32 fn = smccc_get_function(&hyp_vcpu->vcpu); |
| |
| switch (fn) { |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID: |
| fallthrough; |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID: |
| vcpu_set_reg(&hyp_vcpu->vcpu, 0, SMCCC_RET_SUCCESS); |
| break; |
| default: |
| handle_pvm_entry_psci(hyp_vcpu); |
| break; |
| } |
| } |
| |
| static void handle_pvm_entry_sys64(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| |
| /* Exceptions have priority on anything else */ |
| if (vcpu_get_flag(host_vcpu, PENDING_EXCEPTION)) { |
| /* Exceptions caused by this should be undef exceptions. */ |
| u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT); |
| |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr; |
| kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC); |
| return; |
| } |
| |
| if (vcpu_get_flag(host_vcpu, INCREMENT_PC)) { |
| vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ); |
| kvm_incr_pc(&hyp_vcpu->vcpu); |
| } |
| |
| if (!esr_sys64_to_params(hyp_vcpu->vcpu.arch.fault.esr_el2).is_write) { |
| /* r0 as transfer register between the guest and the host. */ |
| u64 rt_val = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]); |
| int rt = kvm_vcpu_sys_get_rt(&hyp_vcpu->vcpu); |
| |
| vcpu_set_reg(&hyp_vcpu->vcpu, rt, rt_val); |
| } |
| } |
| |
| static void handle_pvm_entry_iabt(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| unsigned long cpsr = *vcpu_cpsr(&hyp_vcpu->vcpu); |
| u32 esr = ESR_ELx_IL; |
| |
| if (!vcpu_get_flag(hyp_vcpu->host_vcpu, PENDING_EXCEPTION)) |
| return; |
| |
| /* |
| * If the host wants to inject an exception, get syndrom and |
| * fault address. |
| */ |
| if ((cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t) |
| esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT); |
| else |
| esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT); |
| |
| esr |= ESR_ELx_FSC_EXTABT; |
| |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr; |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, FAR_EL1) = |
| kvm_vcpu_get_hfar(&hyp_vcpu->vcpu); |
| |
| /* Tell the run loop that we want to inject something */ |
| kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC); |
| } |
| |
| static void handle_pvm_entry_dabt(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| bool pc_update; |
| |
| /* Exceptions have priority over anything else */ |
| if (vcpu_get_flag(host_vcpu, PENDING_EXCEPTION)) { |
| unsigned long cpsr = *vcpu_cpsr(&hyp_vcpu->vcpu); |
| u32 esr = ESR_ELx_IL; |
| |
| if ((cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t) |
| esr |= (ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT); |
| else |
| esr |= (ESR_ELx_EC_DABT_CUR << ESR_ELx_EC_SHIFT); |
| |
| esr |= ESR_ELx_FSC_EXTABT; |
| |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr; |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, FAR_EL1) = |
| kvm_vcpu_get_hfar(&hyp_vcpu->vcpu); |
| |
| /* Tell the run loop that we want to inject something */ |
| kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC); |
| |
| /* Cancel potential in-flight MMIO */ |
| hyp_vcpu->vcpu.mmio_needed = false; |
| return; |
| } |
| |
| /* Handle PC increment on MMIO */ |
| pc_update = (hyp_vcpu->vcpu.mmio_needed && |
| vcpu_get_flag(host_vcpu, INCREMENT_PC)); |
| if (pc_update) { |
| vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ); |
| kvm_incr_pc(&hyp_vcpu->vcpu); |
| } |
| |
| /* If we were doing an MMIO read access, update the register*/ |
| if (pc_update && !kvm_vcpu_dabt_iswrite(&hyp_vcpu->vcpu)) { |
| /* r0 as transfer register between the guest and the host. */ |
| u64 rd_val = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]); |
| int rd = kvm_vcpu_dabt_get_rd(&hyp_vcpu->vcpu); |
| |
| vcpu_set_reg(&hyp_vcpu->vcpu, rd, rd_val); |
| } |
| |
| hyp_vcpu->vcpu.mmio_needed = false; |
| } |
| |
| static void handle_pvm_exit_wfx(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| WRITE_ONCE(hyp_vcpu->host_vcpu->arch.ctxt.regs.pstate, |
| hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK); |
| WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2); |
| } |
| |
| static void handle_pvm_exit_sys64(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| u32 esr_el2 = hyp_vcpu->vcpu.arch.fault.esr_el2; |
| |
| /* r0 as transfer register between the guest and the host. */ |
| WRITE_ONCE(host_vcpu->arch.fault.esr_el2, |
| esr_el2 & ~ESR_ELx_SYS64_ISS_RT_MASK); |
| |
| /* The mode is required for the host to emulate some sysregs */ |
| WRITE_ONCE(host_vcpu->arch.ctxt.regs.pstate, |
| hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK); |
| |
| if (esr_sys64_to_params(esr_el2).is_write) { |
| int rt = kvm_vcpu_sys_get_rt(&hyp_vcpu->vcpu); |
| u64 rt_val = vcpu_get_reg(&hyp_vcpu->vcpu, rt); |
| |
| WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[0], rt_val); |
| } |
| } |
| |
| static void handle_pvm_exit_hvc64(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| int n, i; |
| |
| switch (smccc_get_function(&hyp_vcpu->vcpu)) { |
| /* |
| * CPU_ON takes 3 arguments, however, to wake up the target vcpu the |
| * host only needs to know the target's cpu_id, which is passed as the |
| * first argument. The processing of the reset state is done at hyp. |
| */ |
| case PSCI_0_2_FN_CPU_ON: |
| case PSCI_0_2_FN64_CPU_ON: |
| n = 2; |
| break; |
| |
| case PSCI_0_2_FN_CPU_OFF: |
| case PSCI_0_2_FN_SYSTEM_OFF: |
| case PSCI_0_2_FN_SYSTEM_RESET: |
| case PSCI_0_2_FN_CPU_SUSPEND: |
| case PSCI_0_2_FN64_CPU_SUSPEND: |
| n = 1; |
| break; |
| |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID: |
| fallthrough; |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID: |
| n = 4; |
| break; |
| |
| case PSCI_1_1_FN_SYSTEM_RESET2: |
| case PSCI_1_1_FN64_SYSTEM_RESET2: |
| n = 3; |
| break; |
| |
| /* |
| * The rest are either blocked or handled by HYP, so we should |
| * really never be here. |
| */ |
| default: |
| BUG(); |
| } |
| |
| WRITE_ONCE(host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2); |
| |
| /* Pass the hvc function id (r0) as well as any potential arguments. */ |
| for (i = 0; i < n; i++) { |
| WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[i], |
| vcpu_get_reg(&hyp_vcpu->vcpu, i)); |
| } |
| } |
| |
| static void handle_pvm_exit_iabt(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2); |
| WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.hpfar_el2, |
| hyp_vcpu->vcpu.arch.fault.hpfar_el2); |
| } |
| |
| static void handle_pvm_exit_dabt(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| |
| /* |
| * For now, we treat all data aborts as MMIO since we have no knowledge |
| * of the memslot configuration at EL2. |
| */ |
| hyp_vcpu->vcpu.mmio_needed = true; |
| |
| if (hyp_vcpu->vcpu.mmio_needed) { |
| /* r0 as transfer register between the guest and the host. */ |
| WRITE_ONCE(host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2 & ~ESR_ELx_SRT_MASK); |
| |
| if (kvm_vcpu_dabt_iswrite(&hyp_vcpu->vcpu)) { |
| int rt = kvm_vcpu_dabt_get_rd(&hyp_vcpu->vcpu); |
| u64 rt_val = vcpu_get_reg(&hyp_vcpu->vcpu, rt); |
| |
| WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[0], rt_val); |
| } |
| } else { |
| WRITE_ONCE(host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2 & ~ESR_ELx_ISV); |
| } |
| |
| WRITE_ONCE(host_vcpu->arch.ctxt.regs.pstate, |
| hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK); |
| WRITE_ONCE(host_vcpu->arch.fault.far_el2, |
| hyp_vcpu->vcpu.arch.fault.far_el2 & GENMASK(11, 0)); |
| WRITE_ONCE(host_vcpu->arch.fault.hpfar_el2, |
| hyp_vcpu->vcpu.arch.fault.hpfar_el2); |
| WRITE_ONCE(__vcpu_sys_reg(host_vcpu, SCTLR_EL1), |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, SCTLR_EL1) & |
| (SCTLR_ELx_EE | SCTLR_EL1_E0E)); |
| } |
| |
| static void handle_vm_entry_generic(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| vcpu_copy_flag(&hyp_vcpu->vcpu, hyp_vcpu->host_vcpu, PC_UPDATE_REQ); |
| } |
| |
| static void handle_vm_exit_generic(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2); |
| } |
| |
| static void handle_vm_exit_abt(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| |
| WRITE_ONCE(host_vcpu->arch.fault.esr_el2, |
| hyp_vcpu->vcpu.arch.fault.esr_el2); |
| WRITE_ONCE(host_vcpu->arch.fault.far_el2, |
| hyp_vcpu->vcpu.arch.fault.far_el2); |
| WRITE_ONCE(host_vcpu->arch.fault.hpfar_el2, |
| hyp_vcpu->vcpu.arch.fault.hpfar_el2); |
| WRITE_ONCE(host_vcpu->arch.fault.disr_el1, |
| hyp_vcpu->vcpu.arch.fault.disr_el1); |
| } |
| |
| static const hyp_entry_exit_handler_fn entry_hyp_pvm_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = NULL, |
| [ESR_ELx_EC_WFx] = handle_pvm_entry_wfx, |
| [ESR_ELx_EC_HVC64] = handle_pvm_entry_hvc64, |
| [ESR_ELx_EC_SYS64] = handle_pvm_entry_sys64, |
| [ESR_ELx_EC_IABT_LOW] = handle_pvm_entry_iabt, |
| [ESR_ELx_EC_DABT_LOW] = handle_pvm_entry_dabt, |
| }; |
| |
| static const hyp_entry_exit_handler_fn exit_hyp_pvm_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = NULL, |
| [ESR_ELx_EC_WFx] = handle_pvm_exit_wfx, |
| [ESR_ELx_EC_HVC64] = handle_pvm_exit_hvc64, |
| [ESR_ELx_EC_SYS64] = handle_pvm_exit_sys64, |
| [ESR_ELx_EC_IABT_LOW] = handle_pvm_exit_iabt, |
| [ESR_ELx_EC_DABT_LOW] = handle_pvm_exit_dabt, |
| }; |
| |
| static const hyp_entry_exit_handler_fn entry_hyp_vm_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = handle_vm_entry_generic, |
| }; |
| |
| static const hyp_entry_exit_handler_fn exit_hyp_vm_handlers[] = { |
| [0 ... ESR_ELx_EC_MAX] = handle_vm_exit_generic, |
| [ESR_ELx_EC_IABT_LOW] = handle_vm_exit_abt, |
| [ESR_ELx_EC_DABT_LOW] = handle_vm_exit_abt, |
| }; |
| |
| static void __hyp_sve_save_guest(struct kvm_vcpu *vcpu) |
| { |
| __vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR); |
| /* |
| * On saving/restoring guest sve state, always use the maximum VL for |
| * the guest. The layout of the data when saving the sve state depends |
| * on the VL, so use a consistent (i.e., the maximum) guest VL. |
| */ |
| sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); |
| __sve_save_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr, true); |
| write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); |
| } |
| |
| static void __hyp_sve_restore_host(void) |
| { |
| struct cpu_sve_state *sve_state = *host_data_ptr(sve_state); |
| |
| /* |
| * On saving/restoring host sve state, always use the maximum VL for |
| * the host. The layout of the data when saving the sve state depends |
| * on the VL, so use a consistent (i.e., the maximum) host VL. |
| * |
| * Note that this constrains the PE to the maximum shared VL |
| * that was discovered, if we wish to use larger VLs this will |
| * need to be revisited. |
| */ |
| write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); |
| __sve_restore_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl), |
| &sve_state->fpsr, |
| true); |
| write_sysreg_el1(sve_state->zcr_el1, SYS_ZCR); |
| } |
| |
| static void fpsimd_sve_flush(void) |
| { |
| *host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED; |
| } |
| |
| static void fpsimd_sve_sync(struct kvm_vcpu *vcpu) |
| { |
| bool has_fpmr; |
| |
| if (!guest_owns_fp_regs()) |
| return; |
| |
| cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN); |
| isb(); |
| |
| if (vcpu_has_sve(vcpu)) |
| __hyp_sve_save_guest(vcpu); |
| else |
| __fpsimd_save_state(&vcpu->arch.ctxt.fp_regs); |
| |
| has_fpmr = kvm_has_fpmr(kern_hyp_va(vcpu->kvm)); |
| if (has_fpmr) |
| __vcpu_sys_reg(vcpu, FPMR) = read_sysreg_s(SYS_FPMR); |
| |
| if (system_supports_sve()) |
| __hyp_sve_restore_host(); |
| else |
| __fpsimd_restore_state(*host_data_ptr(fpsimd_state)); |
| |
| if (has_fpmr) |
| write_sysreg_s(*host_data_ptr(fpmr), SYS_FPMR); |
| |
| *host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED; |
| } |
| |
| static void flush_hyp_vgic_state(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| struct vgic_v3_cpu_if *host_cpu_if, *hyp_cpu_if; |
| unsigned int used_lrs, max_lrs, i; |
| |
| host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; |
| hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; |
| |
| max_lrs = (read_gicreg(ICH_VTR_EL2) & 0xf) + 1; |
| used_lrs = READ_ONCE(host_cpu_if->used_lrs); |
| used_lrs = min(used_lrs, max_lrs); |
| |
| hyp_cpu_if->vgic_hcr = READ_ONCE(host_cpu_if->vgic_hcr); |
| /* Should be a one-off */ |
| hyp_cpu_if->vgic_sre = (ICC_SRE_EL1_DIB | |
| ICC_SRE_EL1_DFB | |
| ICC_SRE_EL1_SRE); |
| hyp_cpu_if->used_lrs = used_lrs; |
| |
| for (i = 0; i < used_lrs; i++) |
| hyp_cpu_if->vgic_lr[i] = READ_ONCE(host_cpu_if->vgic_lr[i]); |
| } |
| |
| static void sync_hyp_vgic_state(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| struct vgic_v3_cpu_if *host_cpu_if, *hyp_cpu_if; |
| unsigned int i; |
| |
| host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; |
| hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; |
| |
| WRITE_ONCE(host_cpu_if->vgic_hcr, hyp_cpu_if->vgic_hcr); |
| |
| for (i = 0; i < hyp_cpu_if->used_lrs; i++) |
| WRITE_ONCE(host_cpu_if->vgic_lr[i], hyp_cpu_if->vgic_lr[i]); |
| } |
| |
| static void flush_hyp_timer_state(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| return; |
| |
| /* |
| * A hyp vcpu has no offset, and sees vtime == ptime. The |
| * ptimer is fully emulated by EL1 and cannot be trusted. |
| */ |
| write_sysreg(0, cntvoff_el2); |
| isb(); |
| write_sysreg_el0(__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CVAL_EL0), |
| SYS_CNTV_CVAL); |
| write_sysreg_el0(__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CTL_EL0), |
| SYS_CNTV_CTL); |
| } |
| |
| static void sync_hyp_timer_state(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| return; |
| |
| /* |
| * Preserve the vtimer state so that it is always correct, |
| * even if the host tries to make a mess. |
| */ |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CVAL_EL0) = |
| read_sysreg_el0(SYS_CNTV_CVAL); |
| __vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CTL_EL0) = |
| read_sysreg_el0(SYS_CNTV_CTL); |
| } |
| |
| #define copy_sysreg(REG) do { \ |
| BUILD_BUG_ON(REG <= __INVALID_SYSREG__); \ |
| BUILD_BUG_ON(REG >= NR_SYS_REGS); \ |
| to_vcpu->arch.ctxt.sys_regs[REG] = from_vcpu->arch.ctxt.sys_regs[REG]; \ |
| } while (0) |
| |
| static void __copy_vcpu_state(const struct kvm_vcpu *from_vcpu, |
| struct kvm_vcpu *to_vcpu) |
| { |
| int reg; |
| |
| to_vcpu->arch.ctxt.regs = from_vcpu->arch.ctxt.regs; |
| to_vcpu->arch.ctxt.spsr_abt = from_vcpu->arch.ctxt.spsr_abt; |
| to_vcpu->arch.ctxt.spsr_und = from_vcpu->arch.ctxt.spsr_und; |
| to_vcpu->arch.ctxt.spsr_irq = from_vcpu->arch.ctxt.spsr_irq; |
| to_vcpu->arch.ctxt.spsr_fiq = from_vcpu->arch.ctxt.spsr_fiq; |
| |
| /* |
| * Copy the sysregs, but don't mess with the timer state which |
| * is directly handled by EL1 and is expected to be preserved. |
| * Note that the sysreg enum is sparse and not sorted, therefore, |
| * explicitly specify the registers to copy. |
| */ |
| copy_sysreg(MPIDR_EL1); |
| copy_sysreg(CLIDR_EL1); |
| copy_sysreg(CSSELR_EL1); |
| copy_sysreg(TPIDR_EL0); |
| copy_sysreg(TPIDRRO_EL0); |
| copy_sysreg(TPIDR_EL1); |
| copy_sysreg(CNTKCTL_EL1); |
| copy_sysreg(PAR_EL1); |
| copy_sysreg(MDCCINT_EL1); |
| copy_sysreg(OSLSR_EL1); |
| copy_sysreg(DISR_EL1); |
| |
| copy_sysreg(PMCR_EL0); |
| copy_sysreg(PMSELR_EL0); |
| for (reg = PMEVCNTR0_EL0; reg <= PMEVCNTR30_EL0; reg++) |
| copy_sysreg(reg); |
| copy_sysreg(PMCCNTR_EL0); |
| for (reg = PMEVTYPER0_EL0; reg <= PMEVTYPER30_EL0; reg++) |
| copy_sysreg(reg); |
| copy_sysreg(PMCCFILTR_EL0); |
| copy_sysreg(PMCNTENSET_EL0); |
| copy_sysreg(PMINTENSET_EL1); |
| copy_sysreg(PMOVSSET_EL0); |
| copy_sysreg(PMUSERENR_EL0); |
| |
| copy_sysreg(APIAKEYLO_EL1); |
| copy_sysreg(APIAKEYHI_EL1); |
| copy_sysreg(APIBKEYLO_EL1); |
| copy_sysreg(APIBKEYHI_EL1); |
| copy_sysreg(APDAKEYLO_EL1); |
| copy_sysreg(APDAKEYHI_EL1); |
| copy_sysreg(APDBKEYLO_EL1); |
| copy_sysreg(APDBKEYHI_EL1); |
| copy_sysreg(APGAKEYLO_EL1); |
| copy_sysreg(APGAKEYHI_EL1); |
| |
| copy_sysreg(RGSR_EL1); |
| copy_sysreg(GCR_EL1); |
| copy_sysreg(TFSRE0_EL1); |
| |
| copy_sysreg(SCTLR_EL1); |
| copy_sysreg(ACTLR_EL1); |
| copy_sysreg(CPACR_EL1); |
| copy_sysreg(ZCR_EL1); |
| copy_sysreg(TTBR0_EL1); |
| copy_sysreg(TTBR1_EL1); |
| copy_sysreg(TCR_EL1); |
| copy_sysreg(TCR2_EL1); |
| copy_sysreg(ESR_EL1); |
| copy_sysreg(AFSR0_EL1); |
| copy_sysreg(AFSR1_EL1); |
| copy_sysreg(FAR_EL1); |
| copy_sysreg(MAIR_EL1); |
| copy_sysreg(VBAR_EL1); |
| copy_sysreg(CONTEXTIDR_EL1); |
| copy_sysreg(AMAIR_EL1); |
| copy_sysreg(MDSCR_EL1); |
| copy_sysreg(ELR_EL1); |
| copy_sysreg(SP_EL1); |
| copy_sysreg(SPSR_EL1); |
| copy_sysreg(TFSR_EL1); |
| |
| copy_sysreg(PIR_EL1); |
| copy_sysreg(PIRE0_EL1); |
| } |
| |
| static void __sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| __copy_vcpu_state(&hyp_vcpu->vcpu, hyp_vcpu->host_vcpu); |
| } |
| |
| static void __flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| __copy_vcpu_state(hyp_vcpu->host_vcpu, &hyp_vcpu->vcpu); |
| } |
| |
| static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| hyp_entry_exit_handler_fn ec_handler; |
| u8 esr_ec; |
| |
| fpsimd_sve_flush(); |
| |
| if (READ_ONCE(hyp_vcpu->power_state) == PSCI_0_2_AFFINITY_LEVEL_ON_PENDING) |
| pkvm_reset_vcpu(hyp_vcpu); |
| |
| /* |
| * If we deal with a non-protected guest and the state is potentially |
| * dirty (from a host perspective), copy the state back into the hyp |
| * vcpu. |
| */ |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { |
| if (vcpu_get_flag(host_vcpu, PKVM_HOST_STATE_DIRTY)) |
| __flush_hyp_vcpu(hyp_vcpu); |
| |
| hyp_vcpu->vcpu.arch.hcr_el2 &= ~(HCR_TWI | HCR_TWE); |
| hyp_vcpu->vcpu.arch.hcr_el2 |= READ_ONCE(host_vcpu->arch.hcr_el2) & |
| (HCR_TWI | HCR_TWE); |
| |
| hyp_vcpu->vcpu.arch.mdcr_el2 = host_vcpu->arch.mdcr_el2; |
| hyp_vcpu->vcpu.arch.debug_ptr = kern_hyp_va(host_vcpu->arch.debug_ptr); |
| } |
| |
| hyp_vcpu->vcpu.arch.vsesr_el2 = host_vcpu->arch.vsesr_el2; |
| |
| flush_hyp_vgic_state(hyp_vcpu); |
| flush_hyp_timer_state(hyp_vcpu); |
| |
| switch (ARM_EXCEPTION_CODE(hyp_vcpu->exit_code)) { |
| case ARM_EXCEPTION_IRQ: |
| case ARM_EXCEPTION_EL1_SERROR: |
| case ARM_EXCEPTION_IL: |
| break; |
| case ARM_EXCEPTION_TRAP: |
| esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(&hyp_vcpu->vcpu)); |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| ec_handler = entry_hyp_pvm_handlers[esr_ec]; |
| else |
| ec_handler = entry_hyp_vm_handlers[esr_ec]; |
| |
| if (ec_handler) |
| ec_handler(hyp_vcpu); |
| break; |
| default: |
| BUG(); |
| } |
| |
| hyp_vcpu->exit_code = 0; |
| } |
| |
| static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu, u32 exit_reason) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| hyp_entry_exit_handler_fn ec_handler; |
| u8 esr_ec; |
| |
| fpsimd_sve_sync(&hyp_vcpu->vcpu); |
| |
| /* |
| * Don't sync the vcpu GPR/sysreg state after a run. Instead, |
| * leave it in the hyp vCPU until someone actually requires it. |
| */ |
| sync_hyp_vgic_state(hyp_vcpu); |
| sync_hyp_timer_state(hyp_vcpu); |
| |
| switch (ARM_EXCEPTION_CODE(exit_reason)) { |
| case ARM_EXCEPTION_IRQ: |
| break; |
| case ARM_EXCEPTION_TRAP: |
| esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(&hyp_vcpu->vcpu)); |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| ec_handler = exit_hyp_pvm_handlers[esr_ec]; |
| else |
| ec_handler = exit_hyp_vm_handlers[esr_ec]; |
| |
| if (ec_handler) |
| ec_handler(hyp_vcpu); |
| break; |
| case ARM_EXCEPTION_EL1_SERROR: |
| case ARM_EXCEPTION_IL: |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| vcpu_clear_flag(host_vcpu, PC_UPDATE_REQ); |
| else |
| host_vcpu->arch.iflags = hyp_vcpu->vcpu.arch.iflags; |
| |
| hyp_vcpu->exit_code = exit_reason; |
| } |
| |
| static void fpsimd_host_restore(void) |
| { |
| cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN); |
| isb(); |
| |
| |
| if (unlikely(is_protected_kvm_enabled())) { |
| struct pkvm_hyp_vcpu *hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); |
| |
| if (vcpu_has_sve(&hyp_vcpu->vcpu)) |
| __hyp_sve_save_guest(&hyp_vcpu->vcpu); |
| else |
| __fpsimd_save_state(&hyp_vcpu->vcpu.arch.ctxt.fp_regs); |
| |
| __fpsimd_restore_state(*host_data_ptr(fpsimd_state)); |
| |
| *host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED; |
| } |
| |
| if (system_supports_sve()) |
| sve_cond_update_zcr_vq(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, |
| SYS_ZCR_EL2); |
| } |
| |
| static void handle___pkvm_vcpu_load(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); |
| DECLARE_REG(unsigned int, vcpu_idx, host_ctxt, 2); |
| DECLARE_REG(u64, hcr_el2, host_ctxt, 3); |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| int __percpu *last_vcpu_ran; |
| int *last_ran; |
| |
| if (!is_protected_kvm_enabled()) |
| return; |
| |
| hyp_vcpu = pkvm_load_hyp_vcpu(handle, vcpu_idx); |
| if (!hyp_vcpu) |
| return; |
| |
| /* |
| * Guarantee that both TLBs and I-cache are private to each vcpu. If a |
| * vcpu from the same VM has previously run on the same physical CPU, |
| * nuke the relevant contexts. |
| */ |
| last_vcpu_ran = hyp_vcpu->vcpu.arch.hw_mmu->last_vcpu_ran; |
| last_ran = (__force int *) &last_vcpu_ran[hyp_smp_processor_id()]; |
| if (*last_ran != hyp_vcpu->vcpu.vcpu_id) { |
| __kvm_flush_cpu_context(hyp_vcpu->vcpu.arch.hw_mmu); |
| *last_ran = hyp_vcpu->vcpu.vcpu_id; |
| } |
| |
| *host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED; |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { |
| /* Propagate WFx trapping flags */ |
| hyp_vcpu->vcpu.arch.hcr_el2 &= ~(HCR_TWE | HCR_TWI); |
| hyp_vcpu->vcpu.arch.hcr_el2 |= hcr_el2 & (HCR_TWE | HCR_TWI); |
| } |
| } |
| |
| static void handle___pkvm_vcpu_put(struct kvm_cpu_context *host_ctxt) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| |
| if (!is_protected_kvm_enabled()) |
| return; |
| |
| hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); |
| if (hyp_vcpu) { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| |
| if (guest_owns_fp_regs()) |
| fpsimd_host_restore(); |
| |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu) && |
| !vcpu_get_flag(host_vcpu, PKVM_HOST_STATE_DIRTY)) { |
| __sync_hyp_vcpu(hyp_vcpu); |
| } |
| |
| pkvm_put_hyp_vcpu(hyp_vcpu); |
| } |
| } |
| |
| static void handle___pkvm_vcpu_sync_state(struct kvm_cpu_context *host_ctxt) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| |
| if (!is_protected_kvm_enabled()) |
| return; |
| |
| hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); |
| if (!hyp_vcpu || pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| return; |
| |
| if (guest_owns_fp_regs()) |
| fpsimd_host_restore(); |
| |
| __sync_hyp_vcpu(hyp_vcpu); |
| } |
| |
| static struct kvm_vcpu *__get_host_hyp_vcpus(struct kvm_vcpu *arg, |
| struct pkvm_hyp_vcpu **hyp_vcpup) |
| { |
| struct kvm_vcpu *host_vcpu = kern_hyp_va(arg); |
| struct pkvm_hyp_vcpu *hyp_vcpu = NULL; |
| |
| if (unlikely(is_protected_kvm_enabled())) { |
| hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); |
| |
| if (!hyp_vcpu || hyp_vcpu->host_vcpu != host_vcpu) { |
| hyp_vcpu = NULL; |
| host_vcpu = NULL; |
| } |
| } |
| |
| *hyp_vcpup = hyp_vcpu; |
| return host_vcpu; |
| } |
| |
| #define get_host_hyp_vcpus(ctxt, regnr, hyp_vcpup) \ |
| ({ \ |
| DECLARE_REG(struct kvm_vcpu *, __vcpu, ctxt, regnr); \ |
| __get_host_hyp_vcpus(__vcpu, hyp_vcpup); \ |
| }) |
| |
| #define get_host_hyp_vcpus_from_vgic_v3_cpu_if(ctxt, regnr, hyp_vcpup) \ |
| ({ \ |
| DECLARE_REG(struct vgic_v3_cpu_if *, cif, ctxt, regnr); \ |
| struct kvm_vcpu *__vcpu = container_of(cif, \ |
| struct kvm_vcpu, \ |
| arch.vgic_cpu.vgic_v3); \ |
| \ |
| __get_host_hyp_vcpus(__vcpu, hyp_vcpup); \ |
| }) |
| |
| static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| struct kvm_vcpu *host_vcpu; |
| int ret; |
| |
| host_vcpu = get_host_hyp_vcpus(host_ctxt, 1, &hyp_vcpu); |
| |
| if (!host_vcpu) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (unlikely(hyp_vcpu)) { |
| /* |
| * KVM (and pKVM) doesn't support SME guests for now, and |
| * ensures that SME features aren't enabled in pstate when |
| * loading a vcpu. Therefore, if SME features enabled the host |
| * is misbehaving. |
| */ |
| if (unlikely(system_supports_sme() && read_sysreg_s(SYS_SVCR))) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| flush_hyp_vcpu(hyp_vcpu); |
| |
| ret = __kvm_vcpu_run(&hyp_vcpu->vcpu); |
| |
| sync_hyp_vcpu(hyp_vcpu, ret); |
| |
| /* Trap host fpsimd/sve if the guest has used fpsimd/sve. */ |
| if (guest_owns_fp_regs()) |
| cpacr_clear_set(CPACR_ELx_FPEN | CPACR_ELx_ZEN, 0); |
| } else { |
| /* The host is fully trusted, run its vCPU directly. */ |
| ret = __kvm_vcpu_run(host_vcpu); |
| } |
| out: |
| cpu_reg(host_ctxt, 1) = ret; |
| } |
| |
| static int pkvm_refill_memcache(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu; |
| u64 nr_pages = VTCR_EL2_LVLS(mmu->vtcr) - 1; |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| |
| return refill_memcache(&hyp_vcpu->vcpu.arch.pkvm_memcache, nr_pages, |
| &host_vcpu->arch.pkvm_memcache); |
| } |
| |
| static void handle___pkvm_host_map_guest(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(u64, pfn, host_ctxt, 1); |
| DECLARE_REG(u64, gfn, host_ctxt, 2); |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| int ret = -EINVAL; |
| |
| if (!is_protected_kvm_enabled()) |
| goto out; |
| |
| hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); |
| if (!hyp_vcpu) |
| goto out; |
| |
| /* Top-up our per-vcpu memcache from the host's */ |
| ret = pkvm_refill_memcache(hyp_vcpu); |
| if (ret) |
| goto out; |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| ret = __pkvm_host_donate_guest(pfn, gfn, hyp_vcpu); |
| else |
| ret = __pkvm_host_share_guest(pfn, gfn, hyp_vcpu); |
| out: |
| cpu_reg(host_ctxt, 1) = ret; |
| } |
| |
| static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| struct kvm_vcpu *host_vcpu; |
| |
| host_vcpu = get_host_hyp_vcpus(host_ctxt, 1, &hyp_vcpu); |
| if (!host_vcpu) |
| return; |
| |
| if (hyp_vcpu) { |
| /* This only applies to non-protected VMs */ |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| return; |
| |
| __kvm_adjust_pc(&hyp_vcpu->vcpu); |
| } else { |
| __kvm_adjust_pc(host_vcpu); |
| } |
| } |
| |
| static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt) |
| { |
| __kvm_flush_vm_context(); |
| } |
| |
| static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); |
| DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); |
| DECLARE_REG(int, level, host_ctxt, 3); |
| |
| __kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level); |
| } |
| |
| static void handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); |
| DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); |
| DECLARE_REG(int, level, host_ctxt, 3); |
| |
| __kvm_tlb_flush_vmid_ipa_nsh(kern_hyp_va(mmu), ipa, level); |
| } |
| |
| static void |
| handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); |
| DECLARE_REG(phys_addr_t, start, host_ctxt, 2); |
| DECLARE_REG(unsigned long, pages, host_ctxt, 3); |
| |
| __kvm_tlb_flush_vmid_range(kern_hyp_va(mmu), start, pages); |
| } |
| |
| static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); |
| |
| __kvm_tlb_flush_vmid(kern_hyp_va(mmu)); |
| } |
| |
| static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); |
| |
| __kvm_flush_cpu_context(kern_hyp_va(mmu)); |
| } |
| |
| static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt) |
| { |
| __kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1)); |
| } |
| |
| static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt) |
| { |
| u64 tmp; |
| |
| tmp = read_sysreg_el2(SYS_SCTLR); |
| tmp |= SCTLR_ELx_DSSBS; |
| write_sysreg_el2(tmp, SYS_SCTLR); |
| } |
| |
| static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt) |
| { |
| cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config(); |
| } |
| |
| static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt) |
| { |
| __vgic_v3_init_lrs(); |
| } |
| |
| static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt) |
| { |
| cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2(); |
| } |
| |
| static void handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context *host_ctxt) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| struct kvm_vcpu *host_vcpu; |
| |
| host_vcpu = get_host_hyp_vcpus_from_vgic_v3_cpu_if(host_ctxt, 1, |
| &hyp_vcpu); |
| if (!host_vcpu) |
| return; |
| |
| if (unlikely(hyp_vcpu)) { |
| struct vgic_v3_cpu_if *hyp_cpu_if, *host_cpu_if; |
| int i; |
| |
| hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; |
| __vgic_v3_save_vmcr_aprs(hyp_cpu_if); |
| |
| host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; |
| host_cpu_if->vgic_vmcr = hyp_cpu_if->vgic_vmcr; |
| for (i = 0; i < ARRAY_SIZE(host_cpu_if->vgic_ap0r); i++) { |
| host_cpu_if->vgic_ap0r[i] = hyp_cpu_if->vgic_ap0r[i]; |
| host_cpu_if->vgic_ap1r[i] = hyp_cpu_if->vgic_ap1r[i]; |
| } |
| } else { |
| __vgic_v3_save_vmcr_aprs(&host_vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| static void handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context *host_ctxt) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| struct kvm_vcpu *host_vcpu; |
| |
| host_vcpu = get_host_hyp_vcpus_from_vgic_v3_cpu_if(host_ctxt, 1, |
| &hyp_vcpu); |
| if (!host_vcpu) |
| return; |
| |
| if (unlikely(hyp_vcpu)) { |
| struct vgic_v3_cpu_if *hyp_cpu_if, *host_cpu_if; |
| int i; |
| |
| hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; |
| host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; |
| |
| hyp_cpu_if->vgic_vmcr = host_cpu_if->vgic_vmcr; |
| /* Should be a one-off */ |
| hyp_cpu_if->vgic_sre = (ICC_SRE_EL1_DIB | |
| ICC_SRE_EL1_DFB | |
| ICC_SRE_EL1_SRE); |
| for (i = 0; i < ARRAY_SIZE(host_cpu_if->vgic_ap0r); i++) { |
| hyp_cpu_if->vgic_ap0r[i] = host_cpu_if->vgic_ap0r[i]; |
| hyp_cpu_if->vgic_ap1r[i] = host_cpu_if->vgic_ap1r[i]; |
| } |
| |
| __vgic_v3_restore_vmcr_aprs(hyp_cpu_if); |
| } else { |
| __vgic_v3_restore_vmcr_aprs(&host_vcpu->arch.vgic_cpu.vgic_v3); |
| } |
| } |
| |
| static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); |
| DECLARE_REG(unsigned long, size, host_ctxt, 2); |
| DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3); |
| DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4); |
| DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5); |
| |
| /* |
| * __pkvm_init() will return only if an error occurred, otherwise it |
| * will tail-call in __pkvm_init_finalise() which will have to deal |
| * with the host context directly. |
| */ |
| cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base, |
| hyp_va_bits); |
| } |
| |
| static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1); |
| |
| cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot); |
| } |
| |
| static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(u64, pfn, host_ctxt, 1); |
| |
| cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn); |
| } |
| |
| static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(u64, pfn, host_ctxt, 1); |
| |
| cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn); |
| } |
| |
| static void handle___pkvm_host_reclaim_page(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(u64, pfn, host_ctxt, 1); |
| |
| cpu_reg(host_ctxt, 1) = __pkvm_host_reclaim_page(pfn); |
| } |
| |
| static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); |
| DECLARE_REG(size_t, size, host_ctxt, 2); |
| DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3); |
| |
| /* |
| * __pkvm_create_private_mapping() populates a pointer with the |
| * hypervisor start address of the allocation. |
| * |
| * However, handle___pkvm_create_private_mapping() hypercall crosses the |
| * EL1/EL2 boundary so the pointer would not be valid in this context. |
| * |
| * Instead pass the allocation address as the return value (or return |
| * ERR_PTR() on failure). |
| */ |
| unsigned long haddr; |
| int err = __pkvm_create_private_mapping(phys, size, prot, &haddr); |
| |
| if (err) |
| haddr = (unsigned long)ERR_PTR(err); |
| |
| cpu_reg(host_ctxt, 1) = haddr; |
| } |
| |
| static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt) |
| { |
| cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize(); |
| } |
| |
| static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1); |
| DECLARE_REG(unsigned long, vm_hva, host_ctxt, 2); |
| DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 3); |
| DECLARE_REG(unsigned long, last_ran_hva, host_ctxt, 4); |
| |
| host_kvm = kern_hyp_va(host_kvm); |
| cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, vm_hva, pgd_hva, |
| last_ran_hva); |
| } |
| |
| static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); |
| DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2); |
| DECLARE_REG(unsigned long, vcpu_hva, host_ctxt, 3); |
| |
| host_vcpu = kern_hyp_va(host_vcpu); |
| cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu, vcpu_hva); |
| } |
| |
| static void handle___pkvm_teardown_vm(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); |
| |
| cpu_reg(host_ctxt, 1) = __pkvm_teardown_vm(handle); |
| } |
| |
| typedef void (*hcall_t)(struct kvm_cpu_context *); |
| |
| #define HANDLE_FUNC(x) [__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x |
| |
| static const hcall_t host_hcall[] = { |
| /* ___kvm_hyp_init */ |
| HANDLE_FUNC(__kvm_get_mdcr_el2), |
| HANDLE_FUNC(__pkvm_init), |
| HANDLE_FUNC(__pkvm_create_private_mapping), |
| HANDLE_FUNC(__pkvm_cpu_set_vector), |
| HANDLE_FUNC(__kvm_enable_ssbs), |
| HANDLE_FUNC(__vgic_v3_init_lrs), |
| HANDLE_FUNC(__vgic_v3_get_gic_config), |
| HANDLE_FUNC(__kvm_flush_vm_context), |
| HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa), |
| HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa_nsh), |
| HANDLE_FUNC(__kvm_tlb_flush_vmid), |
| HANDLE_FUNC(__kvm_tlb_flush_vmid_range), |
| HANDLE_FUNC(__kvm_flush_cpu_context), |
| HANDLE_FUNC(__pkvm_prot_finalize), |
| |
| HANDLE_FUNC(__pkvm_host_share_hyp), |
| HANDLE_FUNC(__pkvm_host_unshare_hyp), |
| HANDLE_FUNC(__pkvm_host_reclaim_page), |
| HANDLE_FUNC(__pkvm_host_map_guest), |
| HANDLE_FUNC(__kvm_adjust_pc), |
| HANDLE_FUNC(__kvm_vcpu_run), |
| HANDLE_FUNC(__kvm_timer_set_cntvoff), |
| HANDLE_FUNC(__vgic_v3_save_vmcr_aprs), |
| HANDLE_FUNC(__vgic_v3_restore_vmcr_aprs), |
| HANDLE_FUNC(__pkvm_init_vm), |
| HANDLE_FUNC(__pkvm_init_vcpu), |
| HANDLE_FUNC(__pkvm_teardown_vm), |
| HANDLE_FUNC(__pkvm_vcpu_load), |
| HANDLE_FUNC(__pkvm_vcpu_put), |
| HANDLE_FUNC(__pkvm_vcpu_sync_state), |
| }; |
| |
| static void handle_host_hcall(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(unsigned long, id, host_ctxt, 0); |
| unsigned long hcall_min = 0; |
| hcall_t hfn; |
| |
| /* |
| * If pKVM has been initialised then reject any calls to the |
| * early "privileged" hypercalls. Note that we cannot reject |
| * calls to __pkvm_prot_finalize for two reasons: (1) The static |
| * key used to determine initialisation must be toggled prior to |
| * finalisation and (2) finalisation is performed on a per-CPU |
| * basis. This is all fine, however, since __pkvm_prot_finalize |
| * returns -EPERM after the first call for a given CPU. |
| */ |
| if (static_branch_unlikely(&kvm_protected_mode_initialized)) |
| hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize; |
| |
| id &= ~ARM_SMCCC_CALL_HINTS; |
| id -= KVM_HOST_SMCCC_ID(0); |
| |
| if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall))) |
| goto inval; |
| |
| hfn = host_hcall[id]; |
| if (unlikely(!hfn)) |
| goto inval; |
| |
| cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS; |
| hfn(host_ctxt); |
| |
| return; |
| inval: |
| cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED; |
| } |
| |
| static void default_host_smc_handler(struct kvm_cpu_context *host_ctxt) |
| { |
| __kvm_hyp_host_forward_smc(host_ctxt); |
| } |
| |
| static void handle_host_smc(struct kvm_cpu_context *host_ctxt) |
| { |
| DECLARE_REG(u64, func_id, host_ctxt, 0); |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| bool handled; |
| |
| hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); |
| if (hyp_vcpu && guest_owns_fp_regs()) |
| fpsimd_host_restore(); |
| |
| func_id &= ~ARM_SMCCC_CALL_HINTS; |
| |
| handled = kvm_host_psci_handler(host_ctxt, func_id); |
| if (!handled) |
| handled = kvm_host_ffa_handler(host_ctxt, func_id); |
| if (!handled) |
| default_host_smc_handler(host_ctxt); |
| |
| /* SMC was trapped, move ELR past the current PC. */ |
| kvm_skip_host_instr(); |
| } |
| |
| void handle_trap(struct kvm_cpu_context *host_ctxt) |
| { |
| u64 esr = read_sysreg_el2(SYS_ESR); |
| |
| switch (ESR_ELx_EC(esr)) { |
| case ESR_ELx_EC_HVC64: |
| handle_host_hcall(host_ctxt); |
| break; |
| case ESR_ELx_EC_SMC64: |
| handle_host_smc(host_ctxt); |
| break; |
| case ESR_ELx_EC_FP_ASIMD: |
| case ESR_ELx_EC_SVE: |
| case ESR_ELx_EC_SME: |
| fpsimd_host_restore(); |
| break; |
| case ESR_ELx_EC_IABT_LOW: |
| case ESR_ELx_EC_DABT_LOW: |
| handle_host_mem_abort(host_ctxt); |
| break; |
| default: |
| BUG(); |
| } |
| } |