blob: d42c48e722621447f29e855d991d86e0b81b1b46 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2020 Google LLC
*/
/*
* fs-verity integration into incfs
*
* Since incfs has its own merkle tree implementation, most of fs/verity/ is not
* needed. incfs also only needs to support the case where
* CONFIG_FS_VERITY_BUILTIN_SIGNATURES=n. Therefore, the integration consists of
* the following modifications:
*
* 1. Add the (optional) verity signature to the incfs file format. (Not really
* needed anymore, but this is kept around since this is the behavior of
* fs/verity/ even when CONFIG_FS_VERITY_BUILTIN_SIGNATURES=n.)
* 2. Add a pointer to the digest of the fs-verity descriptor struct to the
* data_file struct that incfs attaches to each file inode.
* 3. Add the following ioclts:
* - FS_IOC_ENABLE_VERITY
* - FS_IOC_GETFLAGS
* - FS_IOC_MEASURE_VERITY
* 4. When FS_IOC_ENABLE_VERITY is called on a non-verity file, the
* fs-verity descriptor struct is populated and digested. Then the S_VERITY
* flag is set and the xattr incfs.verity is set. If the signature is
* non-NULL, an INCFS_MD_VERITY_SIGNATURE is added to the backing file
* containing the signature.
* 5. When a file with an incfs.verity xattr's inode is initialized, the
* inode’s S_VERITY flag is set.
* 6. When a file with the S_VERITY flag set on its inode is opened, the
* data_file is checked for its verity digest. If the file doesn’t have a
* digest, the file’s digest is calculated as above, checked, and set, or the
* open is denied if it is not valid.
* 7. FS_IOC_GETFLAGS simply returns the value of the S_VERITY flag
* 8. FS_IOC_MEASURE_VERITY simply returns the cached digest
* 9. The final complication is that if FS_IOC_ENABLE_VERITY is called on a file
* which doesn’t have a merkle tree, the merkle tree is calculated before the
* rest of the process is completed.
*/
#include <crypto/hash.h>
#include <crypto/sha2.h>
#include <linux/fsverity.h>
#include <linux/mount.h>
#include "verity.h"
#include "data_mgmt.h"
#include "format.h"
#include "integrity.h"
#include "vfs.h"
#define FS_VERITY_MAX_SIGNATURE_SIZE 16128
static int incfs_get_root_hash(struct file *filp, u8 *root_hash)
{
struct data_file *df = get_incfs_data_file(filp);
if (!df)
return -EINVAL;
memcpy(root_hash, df->df_hash_tree->root_hash,
df->df_hash_tree->alg->digest_size);
return 0;
}
static int incfs_end_enable_verity(struct file *filp, u8 *sig, size_t sig_size)
{
struct inode *inode = file_inode(filp);
struct mem_range signature = {
.data = sig,
.len = sig_size,
};
struct data_file *df = get_incfs_data_file(filp);
struct backing_file_context *bfc;
int error;
struct incfs_df_verity_signature *vs = NULL;
loff_t offset;
if (!df || !df->df_backing_file_context)
return -EFSCORRUPTED;
if (sig) {
vs = kzalloc(sizeof(*vs), GFP_NOFS);
if (!vs)
return -ENOMEM;
}
bfc = df->df_backing_file_context;
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (error)
goto out;
error = incfs_write_verity_signature_to_backing_file(bfc, signature,
&offset);
mutex_unlock(&bfc->bc_mutex);
if (error)
goto out;
/*
* Set verity xattr so we can set S_VERITY without opening backing file
*/
error = vfs_setxattr(&nop_mnt_idmap, bfc->bc_file->f_path.dentry,
INCFS_XATTR_VERITY_NAME, NULL, 0, XATTR_CREATE);
if (error) {
pr_warn("incfs: error setting verity xattr: %d\n", error);
goto out;
}
if (sig) {
*vs = (struct incfs_df_verity_signature) {
.size = signature.len,
.offset = offset,
};
df->df_verity_signature = vs;
vs = NULL;
}
inode_set_flags(inode, S_VERITY, S_VERITY);
out:
kfree(vs);
return error;
}
static int incfs_compute_file_digest(struct incfs_hash_alg *alg,
struct fsverity_descriptor *desc,
u8 *digest)
{
SHASH_DESC_ON_STACK(d, alg->shash);
d->tfm = alg->shash;
return crypto_shash_digest(d, (u8 *)desc, sizeof(*desc), digest);
}
static enum incfs_hash_tree_algorithm incfs_convert_fsverity_hash_alg(
int hash_alg)
{
switch (hash_alg) {
case FS_VERITY_HASH_ALG_SHA256:
return INCFS_HASH_TREE_SHA256;
default:
return -EINVAL;
}
}
static struct mem_range incfs_get_verity_digest(struct inode *inode)
{
struct inode_info *node = get_incfs_node(inode);
struct data_file *df;
struct mem_range verity_file_digest;
if (!node) {
pr_warn("Invalid inode\n");
return range(NULL, 0);
}
df = node->n_file;
/*
* Pairs with the cmpxchg_release() in incfs_set_verity_digest().
* I.e., another task may publish ->df_verity_file_digest concurrently,
* executing a RELEASE barrier. We need to use smp_load_acquire() here
* to safely ACQUIRE the memory the other task published.
*/
verity_file_digest.data = smp_load_acquire(
&df->df_verity_file_digest.data);
verity_file_digest.len = df->df_verity_file_digest.len;
return verity_file_digest;
}
static void incfs_set_verity_digest(struct inode *inode,
struct mem_range verity_file_digest)
{
struct inode_info *node = get_incfs_node(inode);
struct data_file *df;
if (!node) {
pr_warn("Invalid inode\n");
kfree(verity_file_digest.data);
return;
}
df = node->n_file;
df->df_verity_file_digest.len = verity_file_digest.len;
/*
* Multiple tasks may race to set ->df_verity_file_digest.data, so use
* cmpxchg_release(). This pairs with the smp_load_acquire() in
* incfs_get_verity_digest(). I.e., here we publish
* ->df_verity_file_digest.data, with a RELEASE barrier so that other
* tasks can ACQUIRE it.
*/
if (cmpxchg_release(&df->df_verity_file_digest.data, NULL,
verity_file_digest.data) != NULL)
/* Lost the race, so free the file_digest we allocated. */
kfree(verity_file_digest.data);
}
/* Calculate the digest of the fsverity_descriptor. */
static struct mem_range incfs_calc_verity_digest_from_desc(
const struct inode *inode,
struct fsverity_descriptor *desc)
{
enum incfs_hash_tree_algorithm incfs_hash_alg;
struct mem_range verity_file_digest;
int err;
struct incfs_hash_alg *hash_alg;
incfs_hash_alg = incfs_convert_fsverity_hash_alg(desc->hash_algorithm);
if (incfs_hash_alg < 0)
return range(ERR_PTR(incfs_hash_alg), 0);
hash_alg = incfs_get_hash_alg(incfs_hash_alg);
if (IS_ERR(hash_alg))
return range((u8 *)hash_alg, 0);
verity_file_digest = range(kzalloc(hash_alg->digest_size, GFP_KERNEL),
hash_alg->digest_size);
if (!verity_file_digest.data)
return range(ERR_PTR(-ENOMEM), 0);
err = incfs_compute_file_digest(hash_alg, desc,
verity_file_digest.data);
if (err) {
pr_err("Error %d computing file digest", err);
kfree(verity_file_digest.data);
return range(ERR_PTR(err), 0);
}
pr_debug("Computed file digest: %s:%*phN\n",
hash_alg->name, (int) verity_file_digest.len,
verity_file_digest.data);
return verity_file_digest;
}
static struct fsverity_descriptor *incfs_get_fsverity_descriptor(
struct file *filp, int hash_algorithm)
{
struct inode *inode = file_inode(filp);
struct fsverity_descriptor *desc = kzalloc(sizeof(*desc), GFP_KERNEL);
int err;
if (!desc)
return ERR_PTR(-ENOMEM);
*desc = (struct fsverity_descriptor) {
.version = 1,
.hash_algorithm = hash_algorithm,
.log_blocksize = ilog2(INCFS_DATA_FILE_BLOCK_SIZE),
.data_size = cpu_to_le64(inode->i_size),
};
err = incfs_get_root_hash(filp, desc->root_hash);
if (err) {
kfree(desc);
return ERR_PTR(err);
}
return desc;
}
static struct mem_range incfs_calc_verity_digest(
struct inode *inode, struct file *filp,
int hash_algorithm)
{
struct fsverity_descriptor *desc = incfs_get_fsverity_descriptor(filp,
hash_algorithm);
struct mem_range verity_file_digest;
if (IS_ERR(desc))
return range((u8 *)desc, 0);
verity_file_digest = incfs_calc_verity_digest_from_desc(inode, desc);
kfree(desc);
return verity_file_digest;
}
static int incfs_build_merkle_tree(struct file *f, struct data_file *df,
struct backing_file_context *bfc,
struct mtree *hash_tree, loff_t hash_offset,
struct incfs_hash_alg *alg, struct mem_range hash)
{
int error = 0;
int limit, lvl, i, result;
struct mem_range buf = {.len = INCFS_DATA_FILE_BLOCK_SIZE};
struct mem_range tmp = {.len = 2 * INCFS_DATA_FILE_BLOCK_SIZE};
buf.data = (u8 *)kzalloc(buf.len, GFP_NOFS);
tmp.data = (u8 *)kzalloc(tmp.len, GFP_NOFS);
if (!buf.data || !tmp.data) {
error = -ENOMEM;
goto out;
}
/*
* lvl - 1 is the level we are reading, lvl the level we are writing
* lvl == -1 means actual blocks
* lvl == hash_tree->depth means root hash
*/
limit = df->df_data_block_count;
for (lvl = 0; lvl <= hash_tree->depth; lvl++) {
for (i = 0; i < limit; ++i) {
loff_t hash_level_offset;
struct mem_range partial_buf = buf;
if (lvl == 0)
result = incfs_read_data_file_block(partial_buf,
f, i, tmp, NULL, NULL);
else {
hash_level_offset = hash_offset +
hash_tree->hash_level_suboffset[lvl - 1];
result = incfs_kread(bfc, partial_buf.data,
partial_buf.len,
hash_level_offset + i *
INCFS_DATA_FILE_BLOCK_SIZE);
}
if (result < 0) {
error = result;
goto out;
}
partial_buf.len = result;
error = incfs_calc_digest(alg, partial_buf, hash);
if (error)
goto out;
/*
* last level - only one hash to take and it is stored
* in the incfs signature record
*/
if (lvl == hash_tree->depth)
break;
hash_level_offset = hash_offset +
hash_tree->hash_level_suboffset[lvl];
result = incfs_kwrite(bfc, hash.data, hash.len,
hash_level_offset + hash.len * i);
if (result < 0) {
error = result;
goto out;
}
if (result != hash.len) {
error = -EIO;
goto out;
}
}
limit = DIV_ROUND_UP(limit,
INCFS_DATA_FILE_BLOCK_SIZE / hash.len);
}
out:
kfree(tmp.data);
kfree(buf.data);
return error;
}
/*
* incfs files have a signature record that is separate from the
* verity_signature record. The signature record does not actually contain a
* signature, rather it contains the size/offset of the hash tree, and a binary
* blob which contains the root hash and potentially a signature.
*
* If the file was created with a signature record, then this function simply
* returns.
*
* Otherwise it will create a signature record with a minimal binary blob as
* defined by the structure below, create space for the hash tree and then
* populate it using incfs_build_merkle_tree
*/
static int incfs_add_signature_record(struct file *f)
{
/* See incfs_parse_signature */
struct {
__le32 version;
__le32 size_of_hash_info_section;
struct {
__le32 hash_algorithm;
u8 log2_blocksize;
__le32 salt_size;
u8 salt[0];
__le32 hash_size;
u8 root_hash[32];
} __packed hash_section;
__le32 size_of_signing_info_section;
u8 signing_info_section[0];
} __packed sig = {
.version = cpu_to_le32(INCFS_SIGNATURE_VERSION),
.size_of_hash_info_section =
cpu_to_le32(sizeof(sig.hash_section)),
.hash_section = {
.hash_algorithm = cpu_to_le32(INCFS_HASH_TREE_SHA256),
.log2_blocksize = ilog2(INCFS_DATA_FILE_BLOCK_SIZE),
.hash_size = cpu_to_le32(SHA256_DIGEST_SIZE),
},
};
struct data_file *df = get_incfs_data_file(f);
struct mtree *hash_tree = NULL;
struct backing_file_context *bfc;
int error;
loff_t hash_offset, sig_offset;
struct incfs_hash_alg *alg = incfs_get_hash_alg(INCFS_HASH_TREE_SHA256);
u8 hash_buf[INCFS_MAX_HASH_SIZE];
int hash_size = alg->digest_size;
struct mem_range hash = range(hash_buf, hash_size);
int result;
struct incfs_df_signature *signature = NULL;
if (!df)
return -EINVAL;
if (df->df_header_flags & INCFS_FILE_MAPPED)
return -EINVAL;
/* Already signed? */
if (df->df_signature && df->df_hash_tree)
return 0;
if (df->df_signature || df->df_hash_tree)
return -EFSCORRUPTED;
/* Add signature metadata record to file */
hash_tree = incfs_alloc_mtree(range((u8 *)&sig, sizeof(sig)),
df->df_data_block_count);
if (IS_ERR(hash_tree))
return PTR_ERR(hash_tree);
bfc = df->df_backing_file_context;
if (!bfc) {
error = -EFSCORRUPTED;
goto out;
}
error = mutex_lock_interruptible(&bfc->bc_mutex);
if (error)
goto out;
error = incfs_write_signature_to_backing_file(bfc,
range((u8 *)&sig, sizeof(sig)),
hash_tree->hash_tree_area_size,
&hash_offset, &sig_offset);
mutex_unlock(&bfc->bc_mutex);
if (error)
goto out;
/* Populate merkle tree */
error = incfs_build_merkle_tree(f, df, bfc, hash_tree, hash_offset, alg,
hash);
if (error)
goto out;
/* Update signature metadata record */
memcpy(sig.hash_section.root_hash, hash.data, alg->digest_size);
result = incfs_kwrite(bfc, &sig, sizeof(sig), sig_offset);
if (result < 0) {
error = result;
goto out;
}
if (result != sizeof(sig)) {
error = -EIO;
goto out;
}
/* Update in-memory records */
memcpy(hash_tree->root_hash, hash.data, alg->digest_size);
signature = kzalloc(sizeof(*signature), GFP_NOFS);
if (!signature) {
error = -ENOMEM;
goto out;
}
*signature = (struct incfs_df_signature) {
.hash_offset = hash_offset,
.hash_size = hash_tree->hash_tree_area_size,
.sig_offset = sig_offset,
.sig_size = sizeof(sig),
};
df->df_signature = signature;
signature = NULL;
/*
* Use memory barrier to prevent readpage seeing the hash tree until
* it's fully there
*/
smp_store_release(&df->df_hash_tree, hash_tree);
hash_tree = NULL;
out:
kfree(signature);
kfree(hash_tree);
return error;
}
static int incfs_enable_verity(struct file *filp,
const struct fsverity_enable_arg *arg)
{
struct inode *inode = file_inode(filp);
struct data_file *df = get_incfs_data_file(filp);
u8 *signature = NULL;
struct mem_range verity_file_digest = range(NULL, 0);
int err;
if (!df)
return -EFSCORRUPTED;
err = mutex_lock_interruptible(&df->df_enable_verity);
if (err)
return err;
if (IS_VERITY(inode)) {
err = -EEXIST;
goto out;
}
err = incfs_add_signature_record(filp);
if (err)
goto out;
/* Get the signature if the user provided one */
if (arg->sig_size) {
signature = memdup_user(u64_to_user_ptr(arg->sig_ptr),
arg->sig_size);
if (IS_ERR(signature)) {
err = PTR_ERR(signature);
signature = NULL;
goto out;
}
}
verity_file_digest = incfs_calc_verity_digest(inode, filp,
arg->hash_algorithm);
if (IS_ERR(verity_file_digest.data)) {
err = PTR_ERR(verity_file_digest.data);
verity_file_digest.data = NULL;
goto out;
}
err = incfs_end_enable_verity(filp, signature, arg->sig_size);
if (err)
goto out;
/* Successfully enabled verity */
incfs_set_verity_digest(inode, verity_file_digest);
verity_file_digest.data = NULL;
out:
mutex_unlock(&df->df_enable_verity);
kfree(signature);
kfree(verity_file_digest.data);
if (err)
pr_err("%s failed with err %d\n", __func__, err);
return err;
}
int incfs_ioctl_enable_verity(struct file *filp, const void __user *uarg)
{
struct inode *inode = file_inode(filp);
struct fsverity_enable_arg arg;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
if (arg.version != 1)
return -EINVAL;
if (arg.__reserved1 ||
memchr_inv(arg.__reserved2, 0, sizeof(arg.__reserved2)))
return -EINVAL;
if (arg.hash_algorithm != FS_VERITY_HASH_ALG_SHA256)
return -EINVAL;
if (arg.block_size != PAGE_SIZE)
return -EINVAL;
if (arg.salt_size)
return -EINVAL;
if (arg.sig_size > FS_VERITY_MAX_SIGNATURE_SIZE)
return -EMSGSIZE;
if (S_ISDIR(inode->i_mode))
return -EISDIR;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
return incfs_enable_verity(filp, &arg);
}
static u8 *incfs_get_verity_signature(struct file *filp, size_t *sig_size)
{
struct data_file *df = get_incfs_data_file(filp);
struct incfs_df_verity_signature *vs;
u8 *signature;
int res;
if (!df || !df->df_backing_file_context)
return ERR_PTR(-EFSCORRUPTED);
vs = df->df_verity_signature;
if (!vs) {
*sig_size = 0;
return NULL;
}
if (!vs->size) {
*sig_size = 0;
return ERR_PTR(-EFSCORRUPTED);
}
signature = kzalloc(vs->size, GFP_KERNEL);
if (!signature)
return ERR_PTR(-ENOMEM);
res = incfs_kread(df->df_backing_file_context,
signature, vs->size, vs->offset);
if (res < 0)
goto err_out;
if (res != vs->size) {
res = -EINVAL;
goto err_out;
}
*sig_size = vs->size;
return signature;
err_out:
kfree(signature);
return ERR_PTR(res);
}
/* Ensure data_file->df_verity_file_digest is populated */
static int ensure_verity_info(struct inode *inode, struct file *filp)
{
struct mem_range verity_file_digest;
/* See if this file's verity file digest is already cached */
verity_file_digest = incfs_get_verity_digest(inode);
if (verity_file_digest.data)
return 0;
verity_file_digest = incfs_calc_verity_digest(inode, filp,
FS_VERITY_HASH_ALG_SHA256);
if (IS_ERR(verity_file_digest.data))
return PTR_ERR(verity_file_digest.data);
incfs_set_verity_digest(inode, verity_file_digest);
return 0;
}
/**
* incfs_fsverity_file_open() - prepare to open a file that may be
* verity-enabled
* @inode: the inode being opened
* @filp: the struct file being set up
*
* When opening a verity file, set up data_file->df_verity_file_digest if not
* already done. Note that incfs does not allow opening for writing, so there is
* no need for that check.
*
* Return: 0 on success, -errno on failure
*/
int incfs_fsverity_file_open(struct inode *inode, struct file *filp)
{
if (IS_VERITY(inode))
return ensure_verity_info(inode, filp);
return 0;
}
int incfs_ioctl_measure_verity(struct file *filp, void __user *_uarg)
{
struct inode *inode = file_inode(filp);
struct mem_range verity_file_digest = incfs_get_verity_digest(inode);
struct fsverity_digest __user *uarg = _uarg;
struct fsverity_digest arg;
if (!verity_file_digest.data || !verity_file_digest.len)
return -ENODATA; /* not a verity file */
/*
* The user specifies the digest_size their buffer has space for; we can
* return the digest if it fits in the available space. We write back
* the actual size, which may be shorter than the user-specified size.
*/
if (get_user(arg.digest_size, &uarg->digest_size))
return -EFAULT;
if (arg.digest_size < verity_file_digest.len)
return -EOVERFLOW;
memset(&arg, 0, sizeof(arg));
arg.digest_algorithm = FS_VERITY_HASH_ALG_SHA256;
arg.digest_size = verity_file_digest.len;
if (copy_to_user(uarg, &arg, sizeof(arg)))
return -EFAULT;
if (copy_to_user(uarg->digest, verity_file_digest.data,
verity_file_digest.len))
return -EFAULT;
return 0;
}
static int incfs_read_merkle_tree(struct file *filp, void __user *buf,
u64 start_offset, int length)
{
struct mem_range tmp_buf;
size_t offset;
int retval = 0;
int err = 0;
struct data_file *df = get_incfs_data_file(filp);
if (!df)
return -EINVAL;
tmp_buf = (struct mem_range) {
.data = kzalloc(INCFS_DATA_FILE_BLOCK_SIZE, GFP_NOFS),
.len = INCFS_DATA_FILE_BLOCK_SIZE,
};
if (!tmp_buf.data)
return -ENOMEM;
for (offset = start_offset; offset < start_offset + length;
offset += tmp_buf.len) {
err = incfs_read_merkle_tree_blocks(tmp_buf, df, offset);
if (err < 0)
break;
if (err != tmp_buf.len)
break;
if (copy_to_user(buf, tmp_buf.data, tmp_buf.len))
break;
buf += tmp_buf.len;
retval += tmp_buf.len;
}
kfree(tmp_buf.data);
return retval ? retval : err;
}
static int incfs_read_descriptor(struct file *filp,
void __user *buf, u64 offset, int length)
{
int err;
struct fsverity_descriptor *desc = incfs_get_fsverity_descriptor(filp,
FS_VERITY_HASH_ALG_SHA256);
if (IS_ERR(desc))
return PTR_ERR(desc);
length = min_t(u64, length, sizeof(*desc));
err = copy_to_user(buf, desc, length);
kfree(desc);
return err ? err : length;
}
static int incfs_read_signature(struct file *filp,
void __user *buf, u64 offset, int length)
{
size_t sig_size;
static u8 *signature;
int err;
signature = incfs_get_verity_signature(filp, &sig_size);
if (IS_ERR(signature))
return PTR_ERR(signature);
if (!signature)
return -ENODATA;
length = min_t(u64, length, sig_size);
err = copy_to_user(buf, signature, length);
kfree(signature);
return err ? err : length;
}
int incfs_ioctl_read_verity_metadata(struct file *filp,
const void __user *uarg)
{
struct fsverity_read_metadata_arg arg;
int length;
void __user *buf;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
if (arg.__reserved)
return -EINVAL;
/* offset + length must not overflow. */
if (arg.offset + arg.length < arg.offset)
return -EINVAL;
/* Ensure that the return value will fit in INT_MAX. */
length = min_t(u64, arg.length, INT_MAX);
buf = u64_to_user_ptr(arg.buf_ptr);
switch (arg.metadata_type) {
case FS_VERITY_METADATA_TYPE_MERKLE_TREE:
return incfs_read_merkle_tree(filp, buf, arg.offset, length);
case FS_VERITY_METADATA_TYPE_DESCRIPTOR:
return incfs_read_descriptor(filp, buf, arg.offset, length);
case FS_VERITY_METADATA_TYPE_SIGNATURE:
return incfs_read_signature(filp, buf, arg.offset, length);
default:
return -EINVAL;
}
}