| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/mm/vmstat.c |
| * |
| * Manages VM statistics |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * zoned VM statistics |
| * Copyright (C) 2006 Silicon Graphics, Inc., |
| * Christoph Lameter <christoph@lameter.com> |
| * Copyright (C) 2008-2014 Christoph Lameter |
| */ |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/vmstat.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/sched.h> |
| #include <linux/math64.h> |
| #include <linux/writeback.h> |
| #include <linux/compaction.h> |
| #include <linux/mm_inline.h> |
| #include <linux/page_owner.h> |
| #include <linux/sched/isolation.h> |
| |
| #include "internal.h" |
| |
| #ifdef CONFIG_NUMA |
| int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; |
| |
| /* zero numa counters within a zone */ |
| static void zero_zone_numa_counters(struct zone *zone) |
| { |
| int item, cpu; |
| |
| for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { |
| atomic_long_set(&zone->vm_numa_event[item], 0); |
| for_each_online_cpu(cpu) { |
| per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] |
| = 0; |
| } |
| } |
| } |
| |
| /* zero numa counters of all the populated zones */ |
| static void zero_zones_numa_counters(void) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) |
| zero_zone_numa_counters(zone); |
| } |
| |
| /* zero global numa counters */ |
| static void zero_global_numa_counters(void) |
| { |
| int item; |
| |
| for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
| atomic_long_set(&vm_numa_event[item], 0); |
| } |
| |
| static void invalid_numa_statistics(void) |
| { |
| zero_zones_numa_counters(); |
| zero_global_numa_counters(); |
| } |
| |
| static DEFINE_MUTEX(vm_numa_stat_lock); |
| |
| int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write, |
| void *buffer, size_t *length, loff_t *ppos) |
| { |
| int ret, oldval; |
| |
| mutex_lock(&vm_numa_stat_lock); |
| if (write) |
| oldval = sysctl_vm_numa_stat; |
| ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| if (ret || !write) |
| goto out; |
| |
| if (oldval == sysctl_vm_numa_stat) |
| goto out; |
| else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { |
| static_branch_enable(&vm_numa_stat_key); |
| pr_info("enable numa statistics\n"); |
| } else { |
| static_branch_disable(&vm_numa_stat_key); |
| invalid_numa_statistics(); |
| pr_info("disable numa statistics, and clear numa counters\n"); |
| } |
| |
| out: |
| mutex_unlock(&vm_numa_stat_lock); |
| return ret; |
| } |
| #endif |
| |
| #ifdef CONFIG_VM_EVENT_COUNTERS |
| DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
| EXPORT_PER_CPU_SYMBOL(vm_event_states); |
| |
| static void sum_vm_events(unsigned long *ret) |
| { |
| int cpu; |
| int i; |
| |
| memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
| |
| for_each_online_cpu(cpu) { |
| struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
| |
| for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
| ret[i] += this->event[i]; |
| } |
| } |
| |
| /* |
| * Accumulate the vm event counters across all CPUs. |
| * The result is unavoidably approximate - it can change |
| * during and after execution of this function. |
| */ |
| void all_vm_events(unsigned long *ret) |
| { |
| cpus_read_lock(); |
| sum_vm_events(ret); |
| cpus_read_unlock(); |
| } |
| EXPORT_SYMBOL_GPL(all_vm_events); |
| |
| /* |
| * Fold the foreign cpu events into our own. |
| * |
| * This is adding to the events on one processor |
| * but keeps the global counts constant. |
| */ |
| void vm_events_fold_cpu(int cpu) |
| { |
| struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); |
| int i; |
| |
| for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { |
| count_vm_events(i, fold_state->event[i]); |
| fold_state->event[i] = 0; |
| } |
| } |
| |
| #endif /* CONFIG_VM_EVENT_COUNTERS */ |
| |
| /* |
| * Manage combined zone based / global counters |
| * |
| * vm_stat contains the global counters |
| */ |
| atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; |
| atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; |
| atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; |
| EXPORT_SYMBOL(vm_zone_stat); |
| EXPORT_SYMBOL(vm_node_stat); |
| |
| #ifdef CONFIG_NUMA |
| static void fold_vm_zone_numa_events(struct zone *zone) |
| { |
| unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; |
| int cpu; |
| enum numa_stat_item item; |
| |
| for_each_online_cpu(cpu) { |
| struct per_cpu_zonestat *pzstats; |
| |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
| zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); |
| } |
| |
| for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
| zone_numa_event_add(zone_numa_events[item], zone, item); |
| } |
| |
| void fold_vm_numa_events(void) |
| { |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) |
| fold_vm_zone_numa_events(zone); |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| |
| int calculate_pressure_threshold(struct zone *zone) |
| { |
| int threshold; |
| int watermark_distance; |
| |
| /* |
| * As vmstats are not up to date, there is drift between the estimated |
| * and real values. For high thresholds and a high number of CPUs, it |
| * is possible for the min watermark to be breached while the estimated |
| * value looks fine. The pressure threshold is a reduced value such |
| * that even the maximum amount of drift will not accidentally breach |
| * the min watermark |
| */ |
| watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); |
| threshold = max(1, (int)(watermark_distance / num_online_cpus())); |
| |
| /* |
| * Maximum threshold is 125 |
| */ |
| threshold = min(125, threshold); |
| |
| return threshold; |
| } |
| |
| int calculate_normal_threshold(struct zone *zone) |
| { |
| int threshold; |
| int mem; /* memory in 128 MB units */ |
| |
| /* |
| * The threshold scales with the number of processors and the amount |
| * of memory per zone. More memory means that we can defer updates for |
| * longer, more processors could lead to more contention. |
| * fls() is used to have a cheap way of logarithmic scaling. |
| * |
| * Some sample thresholds: |
| * |
| * Threshold Processors (fls) Zonesize fls(mem)+1 |
| * ------------------------------------------------------------------ |
| * 8 1 1 0.9-1 GB 4 |
| * 16 2 2 0.9-1 GB 4 |
| * 20 2 2 1-2 GB 5 |
| * 24 2 2 2-4 GB 6 |
| * 28 2 2 4-8 GB 7 |
| * 32 2 2 8-16 GB 8 |
| * 4 2 2 <128M 1 |
| * 30 4 3 2-4 GB 5 |
| * 48 4 3 8-16 GB 8 |
| * 32 8 4 1-2 GB 4 |
| * 32 8 4 0.9-1GB 4 |
| * 10 16 5 <128M 1 |
| * 40 16 5 900M 4 |
| * 70 64 7 2-4 GB 5 |
| * 84 64 7 4-8 GB 6 |
| * 108 512 9 4-8 GB 6 |
| * 125 1024 10 8-16 GB 8 |
| * 125 1024 10 16-32 GB 9 |
| */ |
| |
| mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); |
| |
| threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); |
| |
| /* |
| * Maximum threshold is 125 |
| */ |
| threshold = min(125, threshold); |
| |
| return threshold; |
| } |
| |
| /* |
| * Refresh the thresholds for each zone. |
| */ |
| void refresh_zone_stat_thresholds(void) |
| { |
| struct pglist_data *pgdat; |
| struct zone *zone; |
| int cpu; |
| int threshold; |
| |
| /* Zero current pgdat thresholds */ |
| for_each_online_pgdat(pgdat) { |
| for_each_online_cpu(cpu) { |
| per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; |
| } |
| } |
| |
| for_each_populated_zone(zone) { |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| unsigned long max_drift, tolerate_drift; |
| |
| threshold = calculate_normal_threshold(zone); |
| |
| for_each_online_cpu(cpu) { |
| int pgdat_threshold; |
| |
| per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold |
| = threshold; |
| |
| /* Base nodestat threshold on the largest populated zone. */ |
| pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; |
| per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold |
| = max(threshold, pgdat_threshold); |
| } |
| |
| /* |
| * Only set percpu_drift_mark if there is a danger that |
| * NR_FREE_PAGES reports the low watermark is ok when in fact |
| * the min watermark could be breached by an allocation |
| */ |
| tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); |
| max_drift = num_online_cpus() * threshold; |
| if (max_drift > tolerate_drift) |
| zone->percpu_drift_mark = high_wmark_pages(zone) + |
| max_drift; |
| } |
| } |
| |
| void set_pgdat_percpu_threshold(pg_data_t *pgdat, |
| int (*calculate_pressure)(struct zone *)) |
| { |
| struct zone *zone; |
| int cpu; |
| int threshold; |
| int i; |
| |
| for (i = 0; i < pgdat->nr_zones; i++) { |
| zone = &pgdat->node_zones[i]; |
| if (!zone->percpu_drift_mark) |
| continue; |
| |
| threshold = (*calculate_pressure)(zone); |
| for_each_online_cpu(cpu) |
| per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold |
| = threshold; |
| } |
| } |
| |
| /* |
| * For use when we know that interrupts are disabled, |
| * or when we know that preemption is disabled and that |
| * particular counter cannot be updated from interrupt context. |
| */ |
| void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
| long delta) |
| { |
| struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| s8 __percpu *p = pcp->vm_stat_diff + item; |
| long x; |
| long t; |
| |
| /* |
| * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, |
| * atomicity is provided by IRQs being disabled -- either explicitly |
| * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables |
| * CPU migrations and preemption potentially corrupts a counter so |
| * disable preemption. |
| */ |
| preempt_disable_nested(); |
| |
| x = delta + __this_cpu_read(*p); |
| |
| t = __this_cpu_read(pcp->stat_threshold); |
| |
| if (unlikely(abs(x) > t)) { |
| zone_page_state_add(x, zone, item); |
| x = 0; |
| } |
| __this_cpu_write(*p, x); |
| |
| preempt_enable_nested(); |
| } |
| EXPORT_SYMBOL(__mod_zone_page_state); |
| |
| void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
| long delta) |
| { |
| struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| long x; |
| long t; |
| |
| if (vmstat_item_in_bytes(item)) { |
| /* |
| * Only cgroups use subpage accounting right now; at |
| * the global level, these items still change in |
| * multiples of whole pages. Store them as pages |
| * internally to keep the per-cpu counters compact. |
| */ |
| VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); |
| delta >>= PAGE_SHIFT; |
| } |
| |
| /* See __mod_node_page_state */ |
| preempt_disable_nested(); |
| |
| x = delta + __this_cpu_read(*p); |
| |
| t = __this_cpu_read(pcp->stat_threshold); |
| |
| if (unlikely(abs(x) > t)) { |
| node_page_state_add(x, pgdat, item); |
| x = 0; |
| } |
| __this_cpu_write(*p, x); |
| |
| preempt_enable_nested(); |
| } |
| EXPORT_SYMBOL(__mod_node_page_state); |
| |
| /* |
| * Optimized increment and decrement functions. |
| * |
| * These are only for a single page and therefore can take a struct page * |
| * argument instead of struct zone *. This allows the inclusion of the code |
| * generated for page_zone(page) into the optimized functions. |
| * |
| * No overflow check is necessary and therefore the differential can be |
| * incremented or decremented in place which may allow the compilers to |
| * generate better code. |
| * The increment or decrement is known and therefore one boundary check can |
| * be omitted. |
| * |
| * NOTE: These functions are very performance sensitive. Change only |
| * with care. |
| * |
| * Some processors have inc/dec instructions that are atomic vs an interrupt. |
| * However, the code must first determine the differential location in a zone |
| * based on the processor number and then inc/dec the counter. There is no |
| * guarantee without disabling preemption that the processor will not change |
| * in between and therefore the atomicity vs. interrupt cannot be exploited |
| * in a useful way here. |
| */ |
| void __inc_zone_state(struct zone *zone, enum zone_stat_item item) |
| { |
| struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| s8 __percpu *p = pcp->vm_stat_diff + item; |
| s8 v, t; |
| |
| /* See __mod_node_page_state */ |
| preempt_disable_nested(); |
| |
| v = __this_cpu_inc_return(*p); |
| t = __this_cpu_read(pcp->stat_threshold); |
| if (unlikely(v > t)) { |
| s8 overstep = t >> 1; |
| |
| zone_page_state_add(v + overstep, zone, item); |
| __this_cpu_write(*p, -overstep); |
| } |
| |
| preempt_enable_nested(); |
| } |
| |
| void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| { |
| struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| s8 v, t; |
| |
| VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
| |
| /* See __mod_node_page_state */ |
| preempt_disable_nested(); |
| |
| v = __this_cpu_inc_return(*p); |
| t = __this_cpu_read(pcp->stat_threshold); |
| if (unlikely(v > t)) { |
| s8 overstep = t >> 1; |
| |
| node_page_state_add(v + overstep, pgdat, item); |
| __this_cpu_write(*p, -overstep); |
| } |
| |
| preempt_enable_nested(); |
| } |
| |
| void __inc_zone_page_state(struct page *page, enum zone_stat_item item) |
| { |
| __inc_zone_state(page_zone(page), item); |
| } |
| EXPORT_SYMBOL(__inc_zone_page_state); |
| |
| void __inc_node_page_state(struct page *page, enum node_stat_item item) |
| { |
| __inc_node_state(page_pgdat(page), item); |
| } |
| EXPORT_SYMBOL(__inc_node_page_state); |
| |
| void __dec_zone_state(struct zone *zone, enum zone_stat_item item) |
| { |
| struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| s8 __percpu *p = pcp->vm_stat_diff + item; |
| s8 v, t; |
| |
| /* See __mod_node_page_state */ |
| preempt_disable_nested(); |
| |
| v = __this_cpu_dec_return(*p); |
| t = __this_cpu_read(pcp->stat_threshold); |
| if (unlikely(v < - t)) { |
| s8 overstep = t >> 1; |
| |
| zone_page_state_add(v - overstep, zone, item); |
| __this_cpu_write(*p, overstep); |
| } |
| |
| preempt_enable_nested(); |
| } |
| |
| void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| { |
| struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| s8 v, t; |
| |
| VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
| |
| /* See __mod_node_page_state */ |
| preempt_disable_nested(); |
| |
| v = __this_cpu_dec_return(*p); |
| t = __this_cpu_read(pcp->stat_threshold); |
| if (unlikely(v < - t)) { |
| s8 overstep = t >> 1; |
| |
| node_page_state_add(v - overstep, pgdat, item); |
| __this_cpu_write(*p, overstep); |
| } |
| |
| preempt_enable_nested(); |
| } |
| |
| void __dec_zone_page_state(struct page *page, enum zone_stat_item item) |
| { |
| __dec_zone_state(page_zone(page), item); |
| } |
| EXPORT_SYMBOL(__dec_zone_page_state); |
| |
| void __dec_node_page_state(struct page *page, enum node_stat_item item) |
| { |
| __dec_node_state(page_pgdat(page), item); |
| } |
| EXPORT_SYMBOL(__dec_node_page_state); |
| |
| #ifdef CONFIG_HAVE_CMPXCHG_LOCAL |
| /* |
| * If we have cmpxchg_local support then we do not need to incur the overhead |
| * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. |
| * |
| * mod_state() modifies the zone counter state through atomic per cpu |
| * operations. |
| * |
| * Overstep mode specifies how overstep should handled: |
| * 0 No overstepping |
| * 1 Overstepping half of threshold |
| * -1 Overstepping minus half of threshold |
| */ |
| static inline void mod_zone_state(struct zone *zone, |
| enum zone_stat_item item, long delta, int overstep_mode) |
| { |
| struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| s8 __percpu *p = pcp->vm_stat_diff + item; |
| long n, t, z; |
| s8 o; |
| |
| o = this_cpu_read(*p); |
| do { |
| z = 0; /* overflow to zone counters */ |
| |
| /* |
| * The fetching of the stat_threshold is racy. We may apply |
| * a counter threshold to the wrong the cpu if we get |
| * rescheduled while executing here. However, the next |
| * counter update will apply the threshold again and |
| * therefore bring the counter under the threshold again. |
| * |
| * Most of the time the thresholds are the same anyways |
| * for all cpus in a zone. |
| */ |
| t = this_cpu_read(pcp->stat_threshold); |
| |
| n = delta + (long)o; |
| |
| if (abs(n) > t) { |
| int os = overstep_mode * (t >> 1) ; |
| |
| /* Overflow must be added to zone counters */ |
| z = n + os; |
| n = -os; |
| } |
| } while (!this_cpu_try_cmpxchg(*p, &o, n)); |
| |
| if (z) |
| zone_page_state_add(z, zone, item); |
| } |
| |
| void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
| long delta) |
| { |
| mod_zone_state(zone, item, delta, 0); |
| } |
| EXPORT_SYMBOL(mod_zone_page_state); |
| |
| void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
| { |
| mod_zone_state(page_zone(page), item, 1, 1); |
| } |
| EXPORT_SYMBOL(inc_zone_page_state); |
| |
| void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
| { |
| mod_zone_state(page_zone(page), item, -1, -1); |
| } |
| EXPORT_SYMBOL(dec_zone_page_state); |
| |
| static inline void mod_node_state(struct pglist_data *pgdat, |
| enum node_stat_item item, int delta, int overstep_mode) |
| { |
| struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| long n, t, z; |
| s8 o; |
| |
| if (vmstat_item_in_bytes(item)) { |
| /* |
| * Only cgroups use subpage accounting right now; at |
| * the global level, these items still change in |
| * multiples of whole pages. Store them as pages |
| * internally to keep the per-cpu counters compact. |
| */ |
| VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); |
| delta >>= PAGE_SHIFT; |
| } |
| |
| o = this_cpu_read(*p); |
| do { |
| z = 0; /* overflow to node counters */ |
| |
| /* |
| * The fetching of the stat_threshold is racy. We may apply |
| * a counter threshold to the wrong the cpu if we get |
| * rescheduled while executing here. However, the next |
| * counter update will apply the threshold again and |
| * therefore bring the counter under the threshold again. |
| * |
| * Most of the time the thresholds are the same anyways |
| * for all cpus in a node. |
| */ |
| t = this_cpu_read(pcp->stat_threshold); |
| |
| n = delta + (long)o; |
| |
| if (abs(n) > t) { |
| int os = overstep_mode * (t >> 1) ; |
| |
| /* Overflow must be added to node counters */ |
| z = n + os; |
| n = -os; |
| } |
| } while (!this_cpu_try_cmpxchg(*p, &o, n)); |
| |
| if (z) |
| node_page_state_add(z, pgdat, item); |
| } |
| |
| void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
| long delta) |
| { |
| mod_node_state(pgdat, item, delta, 0); |
| } |
| EXPORT_SYMBOL(mod_node_page_state); |
| |
| void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| { |
| mod_node_state(pgdat, item, 1, 1); |
| } |
| |
| void inc_node_page_state(struct page *page, enum node_stat_item item) |
| { |
| mod_node_state(page_pgdat(page), item, 1, 1); |
| } |
| EXPORT_SYMBOL(inc_node_page_state); |
| |
| void dec_node_page_state(struct page *page, enum node_stat_item item) |
| { |
| mod_node_state(page_pgdat(page), item, -1, -1); |
| } |
| EXPORT_SYMBOL(dec_node_page_state); |
| #else |
| /* |
| * Use interrupt disable to serialize counter updates |
| */ |
| void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
| long delta) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __mod_zone_page_state(zone, item, delta); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(mod_zone_page_state); |
| |
| void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
| { |
| unsigned long flags; |
| struct zone *zone; |
| |
| zone = page_zone(page); |
| local_irq_save(flags); |
| __inc_zone_state(zone, item); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(inc_zone_page_state); |
| |
| void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __dec_zone_page_state(page, item); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(dec_zone_page_state); |
| |
| void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __inc_node_state(pgdat, item); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(inc_node_state); |
| |
| void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
| long delta) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __mod_node_page_state(pgdat, item, delta); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(mod_node_page_state); |
| |
| void inc_node_page_state(struct page *page, enum node_stat_item item) |
| { |
| unsigned long flags; |
| struct pglist_data *pgdat; |
| |
| pgdat = page_pgdat(page); |
| local_irq_save(flags); |
| __inc_node_state(pgdat, item); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(inc_node_page_state); |
| |
| void dec_node_page_state(struct page *page, enum node_stat_item item) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __dec_node_page_state(page, item); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(dec_node_page_state); |
| #endif |
| |
| /* |
| * Fold a differential into the global counters. |
| * Returns the number of counters updated. |
| */ |
| static int fold_diff(int *zone_diff, int *node_diff) |
| { |
| int i; |
| int changes = 0; |
| |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
| if (zone_diff[i]) { |
| atomic_long_add(zone_diff[i], &vm_zone_stat[i]); |
| changes++; |
| } |
| |
| for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) |
| if (node_diff[i]) { |
| atomic_long_add(node_diff[i], &vm_node_stat[i]); |
| changes++; |
| } |
| return changes; |
| } |
| |
| /* |
| * Update the zone counters for the current cpu. |
| * |
| * Note that refresh_cpu_vm_stats strives to only access |
| * node local memory. The per cpu pagesets on remote zones are placed |
| * in the memory local to the processor using that pageset. So the |
| * loop over all zones will access a series of cachelines local to |
| * the processor. |
| * |
| * The call to zone_page_state_add updates the cachelines with the |
| * statistics in the remote zone struct as well as the global cachelines |
| * with the global counters. These could cause remote node cache line |
| * bouncing and will have to be only done when necessary. |
| * |
| * The function returns the number of global counters updated. |
| */ |
| static int refresh_cpu_vm_stats(bool do_pagesets) |
| { |
| struct pglist_data *pgdat; |
| struct zone *zone; |
| int i; |
| int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
| int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; |
| int changes = 0; |
| |
| for_each_populated_zone(zone) { |
| struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; |
| struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; |
| |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| int v; |
| |
| v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); |
| if (v) { |
| |
| atomic_long_add(v, &zone->vm_stat[i]); |
| global_zone_diff[i] += v; |
| #ifdef CONFIG_NUMA |
| /* 3 seconds idle till flush */ |
| __this_cpu_write(pcp->expire, 3); |
| #endif |
| } |
| } |
| |
| if (do_pagesets) { |
| cond_resched(); |
| |
| changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); |
| #ifdef CONFIG_NUMA |
| /* |
| * Deal with draining the remote pageset of this |
| * processor |
| * |
| * Check if there are pages remaining in this pageset |
| * if not then there is nothing to expire. |
| */ |
| if (!__this_cpu_read(pcp->expire) || |
| !__this_cpu_read(pcp->count)) |
| continue; |
| |
| /* |
| * We never drain zones local to this processor. |
| */ |
| if (zone_to_nid(zone) == numa_node_id()) { |
| __this_cpu_write(pcp->expire, 0); |
| continue; |
| } |
| |
| if (__this_cpu_dec_return(pcp->expire)) { |
| changes++; |
| continue; |
| } |
| |
| if (__this_cpu_read(pcp->count)) { |
| drain_zone_pages(zone, this_cpu_ptr(pcp)); |
| changes++; |
| } |
| #endif |
| } |
| } |
| |
| for_each_online_pgdat(pgdat) { |
| struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; |
| |
| for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| int v; |
| |
| v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); |
| if (v) { |
| atomic_long_add(v, &pgdat->vm_stat[i]); |
| global_node_diff[i] += v; |
| } |
| } |
| } |
| |
| changes += fold_diff(global_zone_diff, global_node_diff); |
| return changes; |
| } |
| |
| /* |
| * Fold the data for an offline cpu into the global array. |
| * There cannot be any access by the offline cpu and therefore |
| * synchronization is simplified. |
| */ |
| void cpu_vm_stats_fold(int cpu) |
| { |
| struct pglist_data *pgdat; |
| struct zone *zone; |
| int i; |
| int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
| int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; |
| |
| for_each_populated_zone(zone) { |
| struct per_cpu_zonestat *pzstats; |
| |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| if (pzstats->vm_stat_diff[i]) { |
| int v; |
| |
| v = pzstats->vm_stat_diff[i]; |
| pzstats->vm_stat_diff[i] = 0; |
| atomic_long_add(v, &zone->vm_stat[i]); |
| global_zone_diff[i] += v; |
| } |
| } |
| #ifdef CONFIG_NUMA |
| for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { |
| if (pzstats->vm_numa_event[i]) { |
| unsigned long v; |
| |
| v = pzstats->vm_numa_event[i]; |
| pzstats->vm_numa_event[i] = 0; |
| zone_numa_event_add(v, zone, i); |
| } |
| } |
| #endif |
| } |
| |
| for_each_online_pgdat(pgdat) { |
| struct per_cpu_nodestat *p; |
| |
| p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); |
| |
| for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) |
| if (p->vm_node_stat_diff[i]) { |
| int v; |
| |
| v = p->vm_node_stat_diff[i]; |
| p->vm_node_stat_diff[i] = 0; |
| atomic_long_add(v, &pgdat->vm_stat[i]); |
| global_node_diff[i] += v; |
| } |
| } |
| |
| fold_diff(global_zone_diff, global_node_diff); |
| } |
| |
| /* |
| * this is only called if !populated_zone(zone), which implies no other users of |
| * pset->vm_stat_diff[] exist. |
| */ |
| void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) |
| { |
| unsigned long v; |
| int i; |
| |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| if (pzstats->vm_stat_diff[i]) { |
| v = pzstats->vm_stat_diff[i]; |
| pzstats->vm_stat_diff[i] = 0; |
| zone_page_state_add(v, zone, i); |
| } |
| } |
| |
| #ifdef CONFIG_NUMA |
| for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { |
| if (pzstats->vm_numa_event[i]) { |
| v = pzstats->vm_numa_event[i]; |
| pzstats->vm_numa_event[i] = 0; |
| zone_numa_event_add(v, zone, i); |
| } |
| } |
| #endif |
| } |
| #endif |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Determine the per node value of a stat item. This function |
| * is called frequently in a NUMA machine, so try to be as |
| * frugal as possible. |
| */ |
| unsigned long sum_zone_node_page_state(int node, |
| enum zone_stat_item item) |
| { |
| struct zone *zones = NODE_DATA(node)->node_zones; |
| int i; |
| unsigned long count = 0; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) |
| count += zone_page_state(zones + i, item); |
| |
| return count; |
| } |
| |
| /* Determine the per node value of a numa stat item. */ |
| unsigned long sum_zone_numa_event_state(int node, |
| enum numa_stat_item item) |
| { |
| struct zone *zones = NODE_DATA(node)->node_zones; |
| unsigned long count = 0; |
| int i; |
| |
| for (i = 0; i < MAX_NR_ZONES; i++) |
| count += zone_numa_event_state(zones + i, item); |
| |
| return count; |
| } |
| |
| /* |
| * Determine the per node value of a stat item. |
| */ |
| unsigned long node_page_state_pages(struct pglist_data *pgdat, |
| enum node_stat_item item) |
| { |
| long x = atomic_long_read(&pgdat->vm_stat[item]); |
| #ifdef CONFIG_SMP |
| if (x < 0) |
| x = 0; |
| #endif |
| return x; |
| } |
| |
| unsigned long node_page_state(struct pglist_data *pgdat, |
| enum node_stat_item item) |
| { |
| VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
| |
| return node_page_state_pages(pgdat, item); |
| } |
| #endif |
| |
| /* |
| * Count number of pages "struct page" and "struct page_ext" consume. |
| * nr_memmap_boot_pages: # of pages allocated by boot allocator |
| * nr_memmap_pages: # of pages that were allocated by buddy allocator |
| */ |
| static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0); |
| static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0); |
| |
| void memmap_boot_pages_add(long delta) |
| { |
| atomic_long_add(delta, &nr_memmap_boot_pages); |
| } |
| |
| void memmap_pages_add(long delta) |
| { |
| atomic_long_add(delta, &nr_memmap_pages); |
| } |
| |
| #ifdef CONFIG_COMPACTION |
| |
| struct contig_page_info { |
| unsigned long free_pages; |
| unsigned long free_blocks_total; |
| unsigned long free_blocks_suitable; |
| }; |
| |
| /* |
| * Calculate the number of free pages in a zone, how many contiguous |
| * pages are free and how many are large enough to satisfy an allocation of |
| * the target size. Note that this function makes no attempt to estimate |
| * how many suitable free blocks there *might* be if MOVABLE pages were |
| * migrated. Calculating that is possible, but expensive and can be |
| * figured out from userspace |
| */ |
| static void fill_contig_page_info(struct zone *zone, |
| unsigned int suitable_order, |
| struct contig_page_info *info) |
| { |
| unsigned int order; |
| |
| info->free_pages = 0; |
| info->free_blocks_total = 0; |
| info->free_blocks_suitable = 0; |
| |
| for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| unsigned long blocks; |
| |
| /* |
| * Count number of free blocks. |
| * |
| * Access to nr_free is lockless as nr_free is used only for |
| * diagnostic purposes. Use data_race to avoid KCSAN warning. |
| */ |
| blocks = data_race(zone->free_area[order].nr_free); |
| info->free_blocks_total += blocks; |
| |
| /* Count free base pages */ |
| info->free_pages += blocks << order; |
| |
| /* Count the suitable free blocks */ |
| if (order >= suitable_order) |
| info->free_blocks_suitable += blocks << |
| (order - suitable_order); |
| } |
| } |
| |
| /* |
| * A fragmentation index only makes sense if an allocation of a requested |
| * size would fail. If that is true, the fragmentation index indicates |
| * whether external fragmentation or a lack of memory was the problem. |
| * The value can be used to determine if page reclaim or compaction |
| * should be used |
| */ |
| static int __fragmentation_index(unsigned int order, struct contig_page_info *info) |
| { |
| unsigned long requested = 1UL << order; |
| |
| if (WARN_ON_ONCE(order > MAX_PAGE_ORDER)) |
| return 0; |
| |
| if (!info->free_blocks_total) |
| return 0; |
| |
| /* Fragmentation index only makes sense when a request would fail */ |
| if (info->free_blocks_suitable) |
| return -1000; |
| |
| /* |
| * Index is between 0 and 1 so return within 3 decimal places |
| * |
| * 0 => allocation would fail due to lack of memory |
| * 1 => allocation would fail due to fragmentation |
| */ |
| return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); |
| } |
| |
| /* |
| * Calculates external fragmentation within a zone wrt the given order. |
| * It is defined as the percentage of pages found in blocks of size |
| * less than 1 << order. It returns values in range [0, 100]. |
| */ |
| unsigned int extfrag_for_order(struct zone *zone, unsigned int order) |
| { |
| struct contig_page_info info; |
| |
| fill_contig_page_info(zone, order, &info); |
| if (info.free_pages == 0) |
| return 0; |
| |
| return div_u64((info.free_pages - |
| (info.free_blocks_suitable << order)) * 100, |
| info.free_pages); |
| } |
| |
| /* Same as __fragmentation index but allocs contig_page_info on stack */ |
| int fragmentation_index(struct zone *zone, unsigned int order) |
| { |
| struct contig_page_info info; |
| |
| fill_contig_page_info(zone, order, &info); |
| return __fragmentation_index(order, &info); |
| } |
| #endif |
| |
| #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ |
| defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) |
| #ifdef CONFIG_ZONE_DMA |
| #define TEXT_FOR_DMA(xx) xx "_dma", |
| #else |
| #define TEXT_FOR_DMA(xx) |
| #endif |
| |
| #ifdef CONFIG_ZONE_DMA32 |
| #define TEXT_FOR_DMA32(xx) xx "_dma32", |
| #else |
| #define TEXT_FOR_DMA32(xx) |
| #endif |
| |
| #ifdef CONFIG_HIGHMEM |
| #define TEXT_FOR_HIGHMEM(xx) xx "_high", |
| #else |
| #define TEXT_FOR_HIGHMEM(xx) |
| #endif |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| #define TEXT_FOR_DEVICE(xx) xx "_device", |
| #else |
| #define TEXT_FOR_DEVICE(xx) |
| #endif |
| |
| #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ |
| TEXT_FOR_HIGHMEM(xx) xx "_movable", \ |
| TEXT_FOR_DEVICE(xx) |
| |
| const char * const vmstat_text[] = { |
| /* enum zone_stat_item counters */ |
| "nr_free_pages", |
| "nr_zone_inactive_anon", |
| "nr_zone_active_anon", |
| "nr_zone_inactive_file", |
| "nr_zone_active_file", |
| "nr_zone_unevictable", |
| "nr_zone_write_pending", |
| "nr_mlock", |
| "nr_bounce", |
| "nr_zspages", |
| "nr_free_cma", |
| #ifdef CONFIG_UNACCEPTED_MEMORY |
| "nr_unaccepted", |
| #endif |
| |
| /* enum numa_stat_item counters */ |
| #ifdef CONFIG_NUMA |
| "numa_hit", |
| "numa_miss", |
| "numa_foreign", |
| "numa_interleave", |
| "numa_local", |
| "numa_other", |
| #endif |
| |
| /* enum node_stat_item counters */ |
| "nr_inactive_anon", |
| "nr_active_anon", |
| "nr_inactive_file", |
| "nr_active_file", |
| "nr_unevictable", |
| "nr_slab_reclaimable", |
| "nr_slab_unreclaimable", |
| "nr_isolated_anon", |
| "nr_isolated_file", |
| "workingset_nodes", |
| "workingset_refault_anon", |
| "workingset_refault_file", |
| "workingset_activate_anon", |
| "workingset_activate_file", |
| "workingset_restore_anon", |
| "workingset_restore_file", |
| "workingset_nodereclaim", |
| "nr_anon_pages", |
| "nr_mapped", |
| "nr_file_pages", |
| "nr_dirty", |
| "nr_writeback", |
| "nr_writeback_temp", |
| "nr_shmem", |
| "nr_shmem_hugepages", |
| "nr_shmem_pmdmapped", |
| "nr_file_hugepages", |
| "nr_file_pmdmapped", |
| "nr_anon_transparent_hugepages", |
| "nr_vmscan_write", |
| "nr_vmscan_immediate_reclaim", |
| "nr_dirtied", |
| "nr_written", |
| "nr_throttled_written", |
| "nr_kernel_misc_reclaimable", |
| "nr_foll_pin_acquired", |
| "nr_foll_pin_released", |
| "nr_kernel_stack", |
| #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) |
| "nr_shadow_call_stack", |
| #endif |
| "nr_page_table_pages", |
| "nr_sec_page_table_pages", |
| #ifdef CONFIG_IOMMU_SUPPORT |
| "nr_iommu_pages", |
| #endif |
| #ifdef CONFIG_SWAP |
| "nr_swapcached", |
| #endif |
| #ifdef CONFIG_NUMA_BALANCING |
| "pgpromote_success", |
| "pgpromote_candidate", |
| #endif |
| "pgdemote_kswapd", |
| "pgdemote_direct", |
| "pgdemote_khugepaged", |
| /* system-wide enum vm_stat_item counters */ |
| "nr_dirty_threshold", |
| "nr_dirty_background_threshold", |
| "nr_memmap_pages", |
| "nr_memmap_boot_pages", |
| |
| #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) |
| /* enum vm_event_item counters */ |
| "pgpgin", |
| "pgpgout", |
| "pswpin", |
| "pswpout", |
| |
| TEXTS_FOR_ZONES("pgalloc") |
| TEXTS_FOR_ZONES("allocstall") |
| TEXTS_FOR_ZONES("pgskip") |
| |
| "pgfree", |
| "pgactivate", |
| "pgdeactivate", |
| "pglazyfree", |
| |
| "pgfault", |
| "pgmajfault", |
| "pglazyfreed", |
| |
| "pgrefill", |
| "pgreuse", |
| "pgsteal_kswapd", |
| "pgsteal_direct", |
| "pgsteal_khugepaged", |
| "pgscan_kswapd", |
| "pgscan_direct", |
| "pgscan_khugepaged", |
| "pgscan_direct_throttle", |
| "pgscan_anon", |
| "pgscan_file", |
| "pgsteal_anon", |
| "pgsteal_file", |
| |
| #ifdef CONFIG_NUMA |
| "zone_reclaim_success", |
| "zone_reclaim_failed", |
| #endif |
| "pginodesteal", |
| "slabs_scanned", |
| "kswapd_inodesteal", |
| "kswapd_low_wmark_hit_quickly", |
| "kswapd_high_wmark_hit_quickly", |
| "pageoutrun", |
| |
| "pgrotated", |
| |
| "drop_pagecache", |
| "drop_slab", |
| "oom_kill", |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| "numa_pte_updates", |
| "numa_huge_pte_updates", |
| "numa_hint_faults", |
| "numa_hint_faults_local", |
| "numa_pages_migrated", |
| #endif |
| #ifdef CONFIG_MIGRATION |
| "pgmigrate_success", |
| "pgmigrate_fail", |
| "thp_migration_success", |
| "thp_migration_fail", |
| "thp_migration_split", |
| #endif |
| #ifdef CONFIG_COMPACTION |
| "compact_migrate_scanned", |
| "compact_free_scanned", |
| "compact_isolated", |
| "compact_stall", |
| "compact_fail", |
| "compact_success", |
| "compact_daemon_wake", |
| "compact_daemon_migrate_scanned", |
| "compact_daemon_free_scanned", |
| #endif |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| "htlb_buddy_alloc_success", |
| "htlb_buddy_alloc_fail", |
| #endif |
| #ifdef CONFIG_CMA |
| "cma_alloc_success", |
| "cma_alloc_fail", |
| #endif |
| "unevictable_pgs_culled", |
| "unevictable_pgs_scanned", |
| "unevictable_pgs_rescued", |
| "unevictable_pgs_mlocked", |
| "unevictable_pgs_munlocked", |
| "unevictable_pgs_cleared", |
| "unevictable_pgs_stranded", |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| "thp_fault_alloc", |
| "thp_fault_fallback", |
| "thp_fault_fallback_charge", |
| "thp_collapse_alloc", |
| "thp_collapse_alloc_failed", |
| "thp_file_alloc", |
| "thp_file_fallback", |
| "thp_file_fallback_charge", |
| "thp_file_mapped", |
| "thp_split_page", |
| "thp_split_page_failed", |
| "thp_deferred_split_page", |
| "thp_underused_split_page", |
| "thp_split_pmd", |
| "thp_scan_exceed_none_pte", |
| "thp_scan_exceed_swap_pte", |
| "thp_scan_exceed_share_pte", |
| #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| "thp_split_pud", |
| #endif |
| "thp_zero_page_alloc", |
| "thp_zero_page_alloc_failed", |
| "thp_swpout", |
| "thp_swpout_fallback", |
| #endif |
| #ifdef CONFIG_MEMORY_BALLOON |
| "balloon_inflate", |
| "balloon_deflate", |
| #ifdef CONFIG_BALLOON_COMPACTION |
| "balloon_migrate", |
| #endif |
| #endif /* CONFIG_MEMORY_BALLOON */ |
| #ifdef CONFIG_DEBUG_TLBFLUSH |
| "nr_tlb_remote_flush", |
| "nr_tlb_remote_flush_received", |
| "nr_tlb_local_flush_all", |
| "nr_tlb_local_flush_one", |
| #endif /* CONFIG_DEBUG_TLBFLUSH */ |
| |
| #ifdef CONFIG_SWAP |
| "swap_ra", |
| "swap_ra_hit", |
| #ifdef CONFIG_KSM |
| "ksm_swpin_copy", |
| #endif |
| #endif |
| #ifdef CONFIG_KSM |
| "cow_ksm", |
| #endif |
| #ifdef CONFIG_ZSWAP |
| "zswpin", |
| "zswpout", |
| "zswpwb", |
| #endif |
| #ifdef CONFIG_X86 |
| "direct_map_level2_splits", |
| "direct_map_level3_splits", |
| #endif |
| #ifdef CONFIG_PER_VMA_LOCK_STATS |
| "vma_lock_success", |
| "vma_lock_abort", |
| "vma_lock_retry", |
| "vma_lock_miss", |
| #endif |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| "kstack_1k", |
| #if THREAD_SIZE > 1024 |
| "kstack_2k", |
| #endif |
| #if THREAD_SIZE > 2048 |
| "kstack_4k", |
| #endif |
| #if THREAD_SIZE > 4096 |
| "kstack_8k", |
| #endif |
| #if THREAD_SIZE > 8192 |
| "kstack_16k", |
| #endif |
| #if THREAD_SIZE > 16384 |
| "kstack_32k", |
| #endif |
| #if THREAD_SIZE > 32768 |
| "kstack_64k", |
| #endif |
| #if THREAD_SIZE > 65536 |
| "kstack_rest", |
| #endif |
| #endif |
| #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ |
| }; |
| #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ |
| |
| #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ |
| defined(CONFIG_PROC_FS) |
| static void *frag_start(struct seq_file *m, loff_t *pos) |
| { |
| pg_data_t *pgdat; |
| loff_t node = *pos; |
| |
| for (pgdat = first_online_pgdat(); |
| pgdat && node; |
| pgdat = next_online_pgdat(pgdat)) |
| --node; |
| |
| return pgdat; |
| } |
| |
| static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) |
| { |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| |
| (*pos)++; |
| return next_online_pgdat(pgdat); |
| } |
| |
| static void frag_stop(struct seq_file *m, void *arg) |
| { |
| } |
| |
| /* |
| * Walk zones in a node and print using a callback. |
| * If @assert_populated is true, only use callback for zones that are populated. |
| */ |
| static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, |
| bool assert_populated, bool nolock, |
| void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) |
| { |
| struct zone *zone; |
| struct zone *node_zones = pgdat->node_zones; |
| unsigned long flags; |
| |
| for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { |
| if (assert_populated && !populated_zone(zone)) |
| continue; |
| |
| if (!nolock) |
| spin_lock_irqsave(&zone->lock, flags); |
| print(m, pgdat, zone); |
| if (!nolock) |
| spin_unlock_irqrestore(&zone->lock, flags); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_PROC_FS |
| static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, |
| struct zone *zone) |
| { |
| int order; |
| |
| seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
| for (order = 0; order < NR_PAGE_ORDERS; ++order) |
| /* |
| * Access to nr_free is lockless as nr_free is used only for |
| * printing purposes. Use data_race to avoid KCSAN warning. |
| */ |
| seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); |
| seq_putc(m, '\n'); |
| } |
| |
| /* |
| * This walks the free areas for each zone. |
| */ |
| static int frag_show(struct seq_file *m, void *arg) |
| { |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| walk_zones_in_node(m, pgdat, true, false, frag_show_print); |
| return 0; |
| } |
| |
| static void pagetypeinfo_showfree_print(struct seq_file *m, |
| pg_data_t *pgdat, struct zone *zone) |
| { |
| int order, mtype; |
| |
| for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { |
| seq_printf(m, "Node %4d, zone %8s, type %12s ", |
| pgdat->node_id, |
| zone->name, |
| migratetype_names[mtype]); |
| for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
| unsigned long freecount = 0; |
| struct free_area *area; |
| struct list_head *curr; |
| bool overflow = false; |
| |
| area = &(zone->free_area[order]); |
| |
| list_for_each(curr, &area->free_list[mtype]) { |
| /* |
| * Cap the free_list iteration because it might |
| * be really large and we are under a spinlock |
| * so a long time spent here could trigger a |
| * hard lockup detector. Anyway this is a |
| * debugging tool so knowing there is a handful |
| * of pages of this order should be more than |
| * sufficient. |
| */ |
| if (++freecount >= 100000) { |
| overflow = true; |
| break; |
| } |
| } |
| seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); |
| spin_unlock_irq(&zone->lock); |
| cond_resched(); |
| spin_lock_irq(&zone->lock); |
| } |
| seq_putc(m, '\n'); |
| } |
| } |
| |
| /* Print out the free pages at each order for each migatetype */ |
| static void pagetypeinfo_showfree(struct seq_file *m, void *arg) |
| { |
| int order; |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| |
| /* Print header */ |
| seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); |
| for (order = 0; order < NR_PAGE_ORDERS; ++order) |
| seq_printf(m, "%6d ", order); |
| seq_putc(m, '\n'); |
| |
| walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); |
| } |
| |
| static void pagetypeinfo_showblockcount_print(struct seq_file *m, |
| pg_data_t *pgdat, struct zone *zone) |
| { |
| int mtype; |
| unsigned long pfn; |
| unsigned long start_pfn = zone->zone_start_pfn; |
| unsigned long end_pfn = zone_end_pfn(zone); |
| unsigned long count[MIGRATE_TYPES] = { 0, }; |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
| struct page *page; |
| |
| page = pfn_to_online_page(pfn); |
| if (!page) |
| continue; |
| |
| if (page_zone(page) != zone) |
| continue; |
| |
| mtype = get_pageblock_migratetype(page); |
| |
| if (mtype < MIGRATE_TYPES) |
| count[mtype]++; |
| } |
| |
| /* Print counts */ |
| seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
| for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
| seq_printf(m, "%12lu ", count[mtype]); |
| seq_putc(m, '\n'); |
| } |
| |
| /* Print out the number of pageblocks for each migratetype */ |
| static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) |
| { |
| int mtype; |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| |
| seq_printf(m, "\n%-23s", "Number of blocks type "); |
| for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
| seq_printf(m, "%12s ", migratetype_names[mtype]); |
| seq_putc(m, '\n'); |
| walk_zones_in_node(m, pgdat, true, false, |
| pagetypeinfo_showblockcount_print); |
| } |
| |
| /* |
| * Print out the number of pageblocks for each migratetype that contain pages |
| * of other types. This gives an indication of how well fallbacks are being |
| * contained by rmqueue_fallback(). It requires information from PAGE_OWNER |
| * to determine what is going on |
| */ |
| static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) |
| { |
| #ifdef CONFIG_PAGE_OWNER |
| int mtype; |
| |
| if (!static_branch_unlikely(&page_owner_inited)) |
| return; |
| |
| drain_all_pages(NULL); |
| |
| seq_printf(m, "\n%-23s", "Number of mixed blocks "); |
| for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
| seq_printf(m, "%12s ", migratetype_names[mtype]); |
| seq_putc(m, '\n'); |
| |
| walk_zones_in_node(m, pgdat, true, true, |
| pagetypeinfo_showmixedcount_print); |
| #endif /* CONFIG_PAGE_OWNER */ |
| } |
| |
| /* |
| * This prints out statistics in relation to grouping pages by mobility. |
| * It is expensive to collect so do not constantly read the file. |
| */ |
| static int pagetypeinfo_show(struct seq_file *m, void *arg) |
| { |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| |
| /* check memoryless node */ |
| if (!node_state(pgdat->node_id, N_MEMORY)) |
| return 0; |
| |
| seq_printf(m, "Page block order: %d\n", pageblock_order); |
| seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); |
| seq_putc(m, '\n'); |
| pagetypeinfo_showfree(m, pgdat); |
| pagetypeinfo_showblockcount(m, pgdat); |
| pagetypeinfo_showmixedcount(m, pgdat); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations fragmentation_op = { |
| .start = frag_start, |
| .next = frag_next, |
| .stop = frag_stop, |
| .show = frag_show, |
| }; |
| |
| static const struct seq_operations pagetypeinfo_op = { |
| .start = frag_start, |
| .next = frag_next, |
| .stop = frag_stop, |
| .show = pagetypeinfo_show, |
| }; |
| |
| static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) |
| { |
| int zid; |
| |
| for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| struct zone *compare = &pgdat->node_zones[zid]; |
| |
| if (populated_zone(compare)) |
| return zone == compare; |
| } |
| |
| return false; |
| } |
| |
| static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |
| struct zone *zone) |
| { |
| int i; |
| seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); |
| if (is_zone_first_populated(pgdat, zone)) { |
| seq_printf(m, "\n per-node stats"); |
| for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| unsigned long pages = node_page_state_pages(pgdat, i); |
| |
| if (vmstat_item_print_in_thp(i)) |
| pages /= HPAGE_PMD_NR; |
| seq_printf(m, "\n %-12s %lu", node_stat_name(i), |
| pages); |
| } |
| } |
| seq_printf(m, |
| "\n pages free %lu" |
| "\n boost %lu" |
| "\n min %lu" |
| "\n low %lu" |
| "\n high %lu" |
| "\n promo %lu" |
| "\n spanned %lu" |
| "\n present %lu" |
| "\n managed %lu" |
| "\n cma %lu", |
| zone_page_state(zone, NR_FREE_PAGES), |
| zone->watermark_boost, |
| min_wmark_pages(zone), |
| low_wmark_pages(zone), |
| high_wmark_pages(zone), |
| promo_wmark_pages(zone), |
| zone->spanned_pages, |
| zone->present_pages, |
| zone_managed_pages(zone), |
| zone_cma_pages(zone)); |
| |
| seq_printf(m, |
| "\n protection: (%ld", |
| zone->lowmem_reserve[0]); |
| for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) |
| seq_printf(m, ", %ld", zone->lowmem_reserve[i]); |
| seq_putc(m, ')'); |
| |
| /* If unpopulated, no other information is useful */ |
| if (!populated_zone(zone)) { |
| seq_putc(m, '\n'); |
| return; |
| } |
| |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
| seq_printf(m, "\n %-12s %lu", zone_stat_name(i), |
| zone_page_state(zone, i)); |
| |
| #ifdef CONFIG_NUMA |
| for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) |
| seq_printf(m, "\n %-12s %lu", numa_stat_name(i), |
| zone_numa_event_state(zone, i)); |
| #endif |
| |
| seq_printf(m, "\n pagesets"); |
| for_each_online_cpu(i) { |
| struct per_cpu_pages *pcp; |
| struct per_cpu_zonestat __maybe_unused *pzstats; |
| |
| pcp = per_cpu_ptr(zone->per_cpu_pageset, i); |
| seq_printf(m, |
| "\n cpu: %i" |
| "\n count: %i" |
| "\n high: %i" |
| "\n batch: %i", |
| i, |
| pcp->count, |
| pcp->high, |
| pcp->batch); |
| #ifdef CONFIG_SMP |
| pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); |
| seq_printf(m, "\n vm stats threshold: %d", |
| pzstats->stat_threshold); |
| #endif |
| } |
| seq_printf(m, |
| "\n node_unreclaimable: %u" |
| "\n start_pfn: %lu", |
| pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, |
| zone->zone_start_pfn); |
| seq_putc(m, '\n'); |
| } |
| |
| /* |
| * Output information about zones in @pgdat. All zones are printed regardless |
| * of whether they are populated or not: lowmem_reserve_ratio operates on the |
| * set of all zones and userspace would not be aware of such zones if they are |
| * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). |
| */ |
| static int zoneinfo_show(struct seq_file *m, void *arg) |
| { |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); |
| return 0; |
| } |
| |
| static const struct seq_operations zoneinfo_op = { |
| .start = frag_start, /* iterate over all zones. The same as in |
| * fragmentation. */ |
| .next = frag_next, |
| .stop = frag_stop, |
| .show = zoneinfo_show, |
| }; |
| |
| #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ |
| NR_VM_NUMA_EVENT_ITEMS + \ |
| NR_VM_NODE_STAT_ITEMS + \ |
| NR_VM_STAT_ITEMS + \ |
| (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ |
| NR_VM_EVENT_ITEMS : 0)) |
| |
| static void *vmstat_start(struct seq_file *m, loff_t *pos) |
| { |
| unsigned long *v; |
| int i; |
| |
| if (*pos >= NR_VMSTAT_ITEMS) |
| return NULL; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); |
| fold_vm_numa_events(); |
| v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); |
| m->private = v; |
| if (!v) |
| return ERR_PTR(-ENOMEM); |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
| v[i] = global_zone_page_state(i); |
| v += NR_VM_ZONE_STAT_ITEMS; |
| |
| #ifdef CONFIG_NUMA |
| for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) |
| v[i] = global_numa_event_state(i); |
| v += NR_VM_NUMA_EVENT_ITEMS; |
| #endif |
| |
| for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| v[i] = global_node_page_state_pages(i); |
| if (vmstat_item_print_in_thp(i)) |
| v[i] /= HPAGE_PMD_NR; |
| } |
| v += NR_VM_NODE_STAT_ITEMS; |
| |
| global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, |
| v + NR_DIRTY_THRESHOLD); |
| v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages); |
| v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages); |
| v += NR_VM_STAT_ITEMS; |
| |
| #ifdef CONFIG_VM_EVENT_COUNTERS |
| all_vm_events(v); |
| v[PGPGIN] /= 2; /* sectors -> kbytes */ |
| v[PGPGOUT] /= 2; |
| #endif |
| return (unsigned long *)m->private + *pos; |
| } |
| |
| static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |
| { |
| (*pos)++; |
| if (*pos >= NR_VMSTAT_ITEMS) |
| return NULL; |
| return (unsigned long *)m->private + *pos; |
| } |
| |
| static int vmstat_show(struct seq_file *m, void *arg) |
| { |
| unsigned long *l = arg; |
| unsigned long off = l - (unsigned long *)m->private; |
| |
| seq_puts(m, vmstat_text[off]); |
| seq_put_decimal_ull(m, " ", *l); |
| seq_putc(m, '\n'); |
| |
| if (off == NR_VMSTAT_ITEMS - 1) { |
| /* |
| * We've come to the end - add any deprecated counters to avoid |
| * breaking userspace which might depend on them being present. |
| */ |
| seq_puts(m, "nr_unstable 0\n"); |
| } |
| return 0; |
| } |
| |
| static void vmstat_stop(struct seq_file *m, void *arg) |
| { |
| kfree(m->private); |
| m->private = NULL; |
| } |
| |
| static const struct seq_operations vmstat_op = { |
| .start = vmstat_start, |
| .next = vmstat_next, |
| .stop = vmstat_stop, |
| .show = vmstat_show, |
| }; |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifdef CONFIG_SMP |
| static DEFINE_PER_CPU(struct delayed_work, vmstat_work); |
| int sysctl_stat_interval __read_mostly = HZ; |
| |
| #ifdef CONFIG_PROC_FS |
| static void refresh_vm_stats(struct work_struct *work) |
| { |
| refresh_cpu_vm_stats(true); |
| } |
| |
| int vmstat_refresh(const struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| long val; |
| int err; |
| int i; |
| |
| /* |
| * The regular update, every sysctl_stat_interval, may come later |
| * than expected: leaving a significant amount in per_cpu buckets. |
| * This is particularly misleading when checking a quantity of HUGE |
| * pages, immediately after running a test. /proc/sys/vm/stat_refresh, |
| * which can equally be echo'ed to or cat'ted from (by root), |
| * can be used to update the stats just before reading them. |
| * |
| * Oh, and since global_zone_page_state() etc. are so careful to hide |
| * transiently negative values, report an error here if any of |
| * the stats is negative, so we know to go looking for imbalance. |
| */ |
| err = schedule_on_each_cpu(refresh_vm_stats); |
| if (err) |
| return err; |
| for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| /* |
| * Skip checking stats known to go negative occasionally. |
| */ |
| switch (i) { |
| case NR_ZONE_WRITE_PENDING: |
| case NR_FREE_CMA_PAGES: |
| continue; |
| } |
| val = atomic_long_read(&vm_zone_stat[i]); |
| if (val < 0) { |
| pr_warn("%s: %s %ld\n", |
| __func__, zone_stat_name(i), val); |
| } |
| } |
| for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| /* |
| * Skip checking stats known to go negative occasionally. |
| */ |
| switch (i) { |
| case NR_WRITEBACK: |
| continue; |
| } |
| val = atomic_long_read(&vm_node_stat[i]); |
| if (val < 0) { |
| pr_warn("%s: %s %ld\n", |
| __func__, node_stat_name(i), val); |
| } |
| } |
| if (write) |
| *ppos += *lenp; |
| else |
| *lenp = 0; |
| return 0; |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| static void vmstat_update(struct work_struct *w) |
| { |
| if (refresh_cpu_vm_stats(true)) { |
| /* |
| * Counters were updated so we expect more updates |
| * to occur in the future. Keep on running the |
| * update worker thread. |
| */ |
| queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, |
| this_cpu_ptr(&vmstat_work), |
| round_jiffies_relative(sysctl_stat_interval)); |
| } |
| } |
| |
| /* |
| * Check if the diffs for a certain cpu indicate that |
| * an update is needed. |
| */ |
| static bool need_update(int cpu) |
| { |
| pg_data_t *last_pgdat = NULL; |
| struct zone *zone; |
| |
| for_each_populated_zone(zone) { |
| struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| struct per_cpu_nodestat *n; |
| |
| /* |
| * The fast way of checking if there are any vmstat diffs. |
| */ |
| if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) |
| return true; |
| |
| if (last_pgdat == zone->zone_pgdat) |
| continue; |
| last_pgdat = zone->zone_pgdat; |
| n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); |
| if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Switch off vmstat processing and then fold all the remaining differentials |
| * until the diffs stay at zero. The function is used by NOHZ and can only be |
| * invoked when tick processing is not active. |
| */ |
| void quiet_vmstat(void) |
| { |
| if (system_state != SYSTEM_RUNNING) |
| return; |
| |
| if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) |
| return; |
| |
| if (!need_update(smp_processor_id())) |
| return; |
| |
| /* |
| * Just refresh counters and do not care about the pending delayed |
| * vmstat_update. It doesn't fire that often to matter and canceling |
| * it would be too expensive from this path. |
| * vmstat_shepherd will take care about that for us. |
| */ |
| refresh_cpu_vm_stats(false); |
| } |
| |
| /* |
| * Shepherd worker thread that checks the |
| * differentials of processors that have their worker |
| * threads for vm statistics updates disabled because of |
| * inactivity. |
| */ |
| static void vmstat_shepherd(struct work_struct *w); |
| |
| static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); |
| |
| static void vmstat_shepherd(struct work_struct *w) |
| { |
| int cpu; |
| |
| cpus_read_lock(); |
| /* Check processors whose vmstat worker threads have been disabled */ |
| for_each_online_cpu(cpu) { |
| struct delayed_work *dw = &per_cpu(vmstat_work, cpu); |
| |
| /* |
| * In kernel users of vmstat counters either require the precise value and |
| * they are using zone_page_state_snapshot interface or they can live with |
| * an imprecision as the regular flushing can happen at arbitrary time and |
| * cumulative error can grow (see calculate_normal_threshold). |
| * |
| * From that POV the regular flushing can be postponed for CPUs that have |
| * been isolated from the kernel interference without critical |
| * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd |
| * for all isolated CPUs to avoid interference with the isolated workload. |
| */ |
| if (cpu_is_isolated(cpu)) |
| continue; |
| |
| if (!delayed_work_pending(dw) && need_update(cpu)) |
| queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); |
| |
| cond_resched(); |
| } |
| cpus_read_unlock(); |
| |
| schedule_delayed_work(&shepherd, |
| round_jiffies_relative(sysctl_stat_interval)); |
| } |
| |
| static void __init start_shepherd_timer(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), |
| vmstat_update); |
| |
| schedule_delayed_work(&shepherd, |
| round_jiffies_relative(sysctl_stat_interval)); |
| } |
| |
| static void __init init_cpu_node_state(void) |
| { |
| int node; |
| |
| for_each_online_node(node) { |
| if (!cpumask_empty(cpumask_of_node(node))) |
| node_set_state(node, N_CPU); |
| } |
| } |
| |
| static int vmstat_cpu_online(unsigned int cpu) |
| { |
| refresh_zone_stat_thresholds(); |
| |
| if (!node_state(cpu_to_node(cpu), N_CPU)) { |
| node_set_state(cpu_to_node(cpu), N_CPU); |
| } |
| |
| return 0; |
| } |
| |
| static int vmstat_cpu_down_prep(unsigned int cpu) |
| { |
| cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); |
| return 0; |
| } |
| |
| static int vmstat_cpu_dead(unsigned int cpu) |
| { |
| const struct cpumask *node_cpus; |
| int node; |
| |
| node = cpu_to_node(cpu); |
| |
| refresh_zone_stat_thresholds(); |
| node_cpus = cpumask_of_node(node); |
| if (!cpumask_empty(node_cpus)) |
| return 0; |
| |
| node_clear_state(node, N_CPU); |
| |
| return 0; |
| } |
| |
| #endif |
| |
| struct workqueue_struct *mm_percpu_wq; |
| |
| void __init init_mm_internals(void) |
| { |
| int ret __maybe_unused; |
| |
| mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); |
| |
| #ifdef CONFIG_SMP |
| ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", |
| NULL, vmstat_cpu_dead); |
| if (ret < 0) |
| pr_err("vmstat: failed to register 'dead' hotplug state\n"); |
| |
| ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", |
| vmstat_cpu_online, |
| vmstat_cpu_down_prep); |
| if (ret < 0) |
| pr_err("vmstat: failed to register 'online' hotplug state\n"); |
| |
| cpus_read_lock(); |
| init_cpu_node_state(); |
| cpus_read_unlock(); |
| |
| start_shepherd_timer(); |
| #endif |
| #ifdef CONFIG_PROC_FS |
| proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); |
| proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); |
| proc_create_seq("vmstat", 0444, NULL, &vmstat_op); |
| proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); |
| #endif |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) |
| |
| /* |
| * Return an index indicating how much of the available free memory is |
| * unusable for an allocation of the requested size. |
| */ |
| static int unusable_free_index(unsigned int order, |
| struct contig_page_info *info) |
| { |
| /* No free memory is interpreted as all free memory is unusable */ |
| if (info->free_pages == 0) |
| return 1000; |
| |
| /* |
| * Index should be a value between 0 and 1. Return a value to 3 |
| * decimal places. |
| * |
| * 0 => no fragmentation |
| * 1 => high fragmentation |
| */ |
| return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); |
| |
| } |
| |
| static void unusable_show_print(struct seq_file *m, |
| pg_data_t *pgdat, struct zone *zone) |
| { |
| unsigned int order; |
| int index; |
| struct contig_page_info info; |
| |
| seq_printf(m, "Node %d, zone %8s ", |
| pgdat->node_id, |
| zone->name); |
| for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
| fill_contig_page_info(zone, order, &info); |
| index = unusable_free_index(order, &info); |
| seq_printf(m, "%d.%03d ", index / 1000, index % 1000); |
| } |
| |
| seq_putc(m, '\n'); |
| } |
| |
| /* |
| * Display unusable free space index |
| * |
| * The unusable free space index measures how much of the available free |
| * memory cannot be used to satisfy an allocation of a given size and is a |
| * value between 0 and 1. The higher the value, the more of free memory is |
| * unusable and by implication, the worse the external fragmentation is. This |
| * can be expressed as a percentage by multiplying by 100. |
| */ |
| static int unusable_show(struct seq_file *m, void *arg) |
| { |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| |
| /* check memoryless node */ |
| if (!node_state(pgdat->node_id, N_MEMORY)) |
| return 0; |
| |
| walk_zones_in_node(m, pgdat, true, false, unusable_show_print); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations unusable_sops = { |
| .start = frag_start, |
| .next = frag_next, |
| .stop = frag_stop, |
| .show = unusable_show, |
| }; |
| |
| DEFINE_SEQ_ATTRIBUTE(unusable); |
| |
| static void extfrag_show_print(struct seq_file *m, |
| pg_data_t *pgdat, struct zone *zone) |
| { |
| unsigned int order; |
| int index; |
| |
| /* Alloc on stack as interrupts are disabled for zone walk */ |
| struct contig_page_info info; |
| |
| seq_printf(m, "Node %d, zone %8s ", |
| pgdat->node_id, |
| zone->name); |
| for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
| fill_contig_page_info(zone, order, &info); |
| index = __fragmentation_index(order, &info); |
| seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); |
| } |
| |
| seq_putc(m, '\n'); |
| } |
| |
| /* |
| * Display fragmentation index for orders that allocations would fail for |
| */ |
| static int extfrag_show(struct seq_file *m, void *arg) |
| { |
| pg_data_t *pgdat = (pg_data_t *)arg; |
| |
| walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations extfrag_sops = { |
| .start = frag_start, |
| .next = frag_next, |
| .stop = frag_stop, |
| .show = extfrag_show, |
| }; |
| |
| DEFINE_SEQ_ATTRIBUTE(extfrag); |
| |
| static int __init extfrag_debug_init(void) |
| { |
| struct dentry *extfrag_debug_root; |
| |
| extfrag_debug_root = debugfs_create_dir("extfrag", NULL); |
| |
| debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, |
| &unusable_fops); |
| |
| debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, |
| &extfrag_fops); |
| |
| return 0; |
| } |
| |
| module_init(extfrag_debug_init); |
| |
| #endif |